$\Delta \text{EFT:}$ An Effective Field Theory of the Type-2 Seesaw Mechanism

Xavier Ponce Díaz

Supervisors: Tilman Plehn and Werner Rodejohann

Internal Hidden Webminar: 20/12/2021

Contents

- Type-2 Seesaw Mechanism lacksquare
- Motivation and Scales
- Effective Field Theory
- **EFT Basis**
- Phenomenology: lacksquare
 - Below the Mass Scale
 - Constraints from Electroweak Precision Observables (EWPO)
 - Phenomenology In Colliders
- Conclusions

Acknowledgements:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881.

Neutrino Masses

Xavier Ponce Díaz

10

The oscillation between different neutrino species implies a mass:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

Type-1 Seesaw Mechanism

Introducing a right-handed neutrino $N_R(1, 1, 0)$ we can explain the "tininess" of the Yukawa couplings

$$\mathscr{L}_m^{\nu} = -\frac{m_R}{2}\overline{N_R^c}N_R - m_D\overline{N_R}\nu_L + \text{h.c.}$$

Which can be rewritten as:

$$\mathscr{L}_{m}^{\nu} = -\frac{1}{2} \begin{pmatrix} \overline{\nu}_{L} & \overline{N_{R}^{C}} \end{pmatrix} \begin{pmatrix} 0 & m_{D} \\ m_{D} & m_{R} \end{pmatrix} \begin{pmatrix} \nu_{L}^{C} \\ N_{R} \end{pmatrix}$$

Using $m_D \ll m_R$ the mass eigenvalues are:

$$m_N \simeq m_R$$
 $m_\nu \simeq \frac{m_D^2}{m_R} = \left(\frac{v_d}{\sqrt{2}}y_\nu\right)^2 \frac{1}{m_R}$

Which for
$$y_{\nu} \sim \mathcal{O}(1)$$
 gives $m_R \sim 10^{15} \, \mathrm{GeV}$

Xavier Ponce Díaz

Type-2 Seesaw Mechanism

$$\mathscr{L}_{m}^{\nu} = -\frac{1}{2} \begin{pmatrix} \overline{\nu}_{L} & \overline{N_{R}^{C}} \end{pmatrix} \begin{pmatrix} 0 & m_{D} \\ m_{D} & m_{R} \end{pmatrix}$$

In $SU(2)_L$ the left handed neutrino is embedded in the leps should come from a combination l^c and l.

Requires an extension of the SM: $\Delta(1,3, +1) = \frac{\sigma^i}{\sqrt{2}} \Delta^i = \begin{pmatrix} \Delta^2 & \Delta^2 \\ & \Delta^2 \end{pmatrix}$

Allowing us to add a term in the Lagrangian: $\mathscr{L}_Y^{\Delta} = f_{ab} \overline{l_a^c} i \sigma^2 \Delta l_b + h.c.$

Let the neutral component acquire a vev: $\langle \Delta^0 \rangle = \frac{v_t}{\sqrt{2}}$

Xavier Ponce Díaz

$$\frac{m_L}{2} \overline{\nu_L^c} \nu_L$$

In $SU(2)_L$ the left handed neutrino is embedded in the lepton left-handed doublet: $l = \binom{\nu}{e}$, so a mass-term like the above

$$\begin{array}{ccc} \Delta^{+}/\sqrt{2} & \Delta^{++} \\ \Delta^{0} & \Delta^{+}/\sqrt{2} \end{array}$$

$$\mathcal{C}_Y^{\Delta} \to f_{ab} \frac{\nu_t}{\sqrt{2}} \overline{\nu}_a^c \nu_b$$

Type-2 Seesaw Mechanism

The Higgs potential now is a bit more complicated....

$$V(\varphi, \Delta) = -m_{\varphi}^{2}\varphi^{\dagger}\varphi + M^{2}\text{Tr}\Delta^{\dagger}\Delta + (\mu\varphi^{T}i\sigma^{2}\Delta^{\dagger}\varphi + \text{h.c.})$$

One can still find that this potential has a minimum at:

$$M^{2} = -\frac{\lambda_{1} + \lambda_{4}}{2}v_{d}^{2} - (\lambda_{2} + \lambda_{3})v_{t}^{2} + \frac{\mu v_{d}^{2}}{\sqrt{2}v_{t}} \qquad \langle \Delta^{0} \rangle = \frac{v_{t}}{\sqrt{2}}$$
$$m_{\varphi}^{2} = \frac{\lambda}{4}v_{d}^{2} + \frac{\lambda_{1} + \lambda_{4}}{2}v_{t}^{2} - \sqrt{2}\mu v_{t} \qquad \langle \varphi^{0} \rangle = \frac{v_{d}}{\sqrt{2}}$$

So, the vev is suppressed if the mass of the triplet is really large

Xavier Ponce Díaz

 $.) + \frac{\lambda}{4}(\varphi^{\dagger}\varphi)^{2} + \lambda_{1}\varphi^{\dagger}\varphi \operatorname{Tr}\Delta^{\dagger}\Delta + \lambda_{2}(\operatorname{Tr}\Delta^{\dagger}\Delta)^{2} + \lambda_{3}\operatorname{Tr}(\Delta^{\dagger}\Delta)^{2} + \lambda_{4}\varphi^{\dagger}\Delta\Delta^{\dagger}\varphi$

Remember: $\mathscr{L}_{Y}^{\Delta} \to f_{ab} \frac{v_{t}}{\sqrt{2}} \overline{\nu}_{a}^{c} \nu_{b}$ **@**So, for $f \sim \mathcal{O}(1)$ we need a small vev. $v_t \simeq \frac{\mu v_d^2}{\sqrt{2M^2}}$

A few comments before moving on...

The GB: G^{\pm} , G^{0} are now a combination of triplet and doublet fields breaking the relation:

Let's do some counting: Before SSB: 4 (doublet) + 6 (triplet) d.o.f After SSB: 3 GB + 7 physical particles

The physical states are: $H^{\pm\pm}$, H^{\pm} , A, H, h, which except $H^{\pm\pm} = \Delta^{\pm\pm}$, mix doublet and triplet fields

$$\varphi = \begin{pmatrix} \varphi^+ \\ \frac{v_d + h_d + iz_d}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} H^+ \\ G^+ \end{pmatrix} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \Delta^+ \\ \varphi^+ \end{pmatrix} \qquad \longrightarrow \qquad \tan \beta \sim \tan \beta' \sim \frac{v_t}{v_d}$$

$$\Delta = \begin{pmatrix} \frac{\Delta^+}{\sqrt{2}} & \Delta^{++} \\ \frac{v_t + h_t + iz_t}{\sqrt{2}} & \frac{\Delta^+}{\sqrt{2}} \end{pmatrix} \qquad \begin{pmatrix} A \\ G^0 \end{pmatrix} = \begin{pmatrix} \cos \beta' & -\sin \beta' \\ \sin \beta' & \cos \beta' \end{pmatrix} \begin{pmatrix} z_t \\ z_d \end{pmatrix} \qquad \longrightarrow \qquad \tan 2\alpha = \frac{-2\sqrt{2} \mu v_d + 2(\lambda_1 + \lambda_4) v_t v_d}{\frac{\lambda}{2} v_d^2 - \frac{\mu}{\sqrt{2} v_t} v_d^2 - 2(\lambda_2 + \lambda_3) v_t^2} \le 0.3 \text{ at } 95\% \text{ C.L.}$$

Xavier Ponce Díaz

$$\rho = \frac{m_W^2}{m_Z^2 \cos^2 \theta_w} = 1 - \frac{2v_t^2}{v_d^2 + 4v_t} = 1.00037 \pm 0.00023 \rightarrow v_t \le 2.1 \text{ GeV}$$

arXiv:1903.02493

Are we done? Well, there are some "issues"

We explain neutrino masses in a natural way, however...

We also know type-2 seesaw mechanism cannot solve all the open questions of the SM, one of the most important: Dark Matter.

And more: Strong-CP problem, flavour hierarchy problem, GUTs, quantum gravity...

Phenomenologically testable at TeV scale.

Xavier Ponce Díaz

Neutral components are unstable, they will always have a decay channel:

Even suppressing f_{ab} does not work, since other decays become relevant e.g. $H \to W^{\pm}W^{\mp}$

Internal Hidden Webminar 2021

φ

Scales and EFT

Consider $\Lambda \gg M_{\Delta} > \mathcal{O}(v_d)$ and a coupling of the NP to the SM + Δ . In this case we can "integrate out" the NP and work with an effective Lagrangian:

$$\mathscr{L}_{\Delta}^{D\leq 4} + \mathscr{L}_{\Delta EFT}^{D=5} + \mathscr{L}_{\Delta EFT}^{D=6} = \sum_{i} C_{i}(\mu) \,\mathcal{O}_{i} + \sum_{j} \frac{C_{j}^{(5)}(\mu)}{\Lambda} \,\mathcal{O}_{j}^{(5)} + \sum_{k} \frac{C_{k}^{(6)}(\mu)}{\Lambda^{2}} \,\mathcal{O}_{k}^{(6)}$$

Where we allow the type-2 Lagrangian to have mass-dimension 6 terms. In other words, think it as SMEFT + Δ

Inevitably we lose the "theoretically natural" mass range of the model.

The Basis

- At dimension 5 we obtain 7 different operators. ullet
- Couplings to quarks do not appear at dimension 4. No lacksquareways of producing these particles at hadron colliders.
- The extended scalar sector is difficult to probe. ullet
- Two $SU(2)_L$ doublets can be combined on a singlet and a ullettriplet: $\bar{q}_p d_r \tilde{\tilde{\varphi}}$ and $\bar{q}_p d_r \tau^I \tilde{\varphi}$

•
$$\Delta \to U_L \Delta U_L^{\dagger}$$
 with $U_L = e^{i\alpha^j \frac{\tau^j}{2}}$

lew	Fermions		Scalars		
•	$\mathcal{O}_{\Delta e}$	$(\overline{e_p^c}e_r)\mathrm{Tr}(\Delta\Delta)$	$\mathcal{O}^{(1)}_{\Delta^3 arphi^2}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta)\varphi^{\dagger}\Delta\tilde{\varphi}$	
	$\mathcal{O}_{\Delta qd}$	$\bar{q}_p\Delta d_r ilde{arphi}$	$\mathcal{O}^{(3)'}_{\Lambda^3 \wp^2}$	$arphi^{\dagger}\Delta\Delta^{\dagger}\Delta ilde{arphi}$	
	$\mathcal{O}_{\Delta le}$	$ar{l}_p \Delta e_r ilde{arphi}$	$\mathcal{O}_{arphi^4\Delta}$	$(\varphi^{\dagger}\Delta\tilde{\varphi})(\varphi^{\dagger}\varphi)$	
anda	$\mathcal{O}_{\Delta q u}$	$arphi^\dagger \Delta ar u_r q_p$			

The Basis

- 43 operators in this table.
- Again an extended scalar sector which is difficult to probe.
- Lower part of table almost identical to the Warsaw Basis.

	Δ^6 and $\Delta^4 D^2$		$\Delta^4 arphi^2$ and $\Delta^2 arphi^4$	Δ	$\Delta^2 \varphi^2 D^2$ and $\tilde{\varphi}^2 \varphi^2 \Delta^2$
\mathcal{O}^1_Δ	$[\text{Tr}(\Delta^{\dagger}\Delta)]^3$	$\mathcal{O}^1_{arphi\Delta}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \; (\varphi^{\dagger}\varphi)^2$	$\mathcal{O}_{\Delta \Box \varphi}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \Box (\varphi_{\leftrightarrow}^{\dagger})$
\mathcal{O}^2_Δ	$\operatorname{Tr}(\Delta^{\dagger}\Delta)^2 \operatorname{Tr}(\Delta^{\dagger}\Delta)$	${\cal O}_{arphi\Delta}^{2}$	$(\varphi^{\dagger}\Delta\Delta^{\dagger}\varphi)\;(\varphi^{\dagger}\varphi)$	$\mathcal{O}^{1}_{\Delta D arphi}$	$\left(\varphi^{\dagger}iD_{\mu}\varphi)\mathrm{Tr}(\Delta^{\dagger}iD_{\mu}\varphi) \right)$
\mathcal{O}_{Δ}^3	${ m Tr}ig(\Delta^\dagger\Deltaig)^3$	$\mathcal{O}^1_{\Delta arphi}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\varphi^{\dagger}\Delta\Delta^{\dagger}\varphi\right)$	$\mathcal{O}^2_{\Delta D arphi}$	$ (\underline{D}^{\mu}\varphi)^{\dagger}\Delta^{\dagger}\Delta D^{\mu}_{\leftrightarrow} $
$\mathcal{O}_{\Delta\Box}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \Box \operatorname{Tr}(\Delta^{\dagger}\Delta)$	$\mathcal{O}^2_{\Delta arphi}$	${ m Tr}(\Delta^{\dagger}\Delta)^2 \; (\varphi^{\dagger}\varphi)$	$\mathcal{O}^3_{\Delta D arphi}$	$ (\varphi^{\dagger} D^{I\mu} \varphi) \operatorname{Tr}(\Delta^{\dagger} D)$
$\mathcal{O}^1_{D\Delta}$	$\operatorname{Tr}(\Delta^{\dagger}D^{\mu}\Delta)^{*}\operatorname{Tr}(\Delta^{\dagger}D_{\mu}\Delta)$	$\mathcal{O}^{3}_{\Delta arphi}$	$({\rm Tr}\Delta^{\dagger}\Delta)^2 \; (\varphi^{\dagger}\varphi)$	$\mathcal{O}^1_{ ilde{arphi}\Delta}$	$\left(arphi^{\dagger}\Delta ilde{arphi} ight) \left(arphi^{\dagger}\Delta ilde{arphi} ight)$
$\mathcal{O}^2_{D\Delta}$	$\operatorname{Tr}[\Delta^{\dagger}\Delta \Box(\Delta^{\dagger}\Delta)]$	$\mathcal{O}^4_{\Delta arphi}$	$arphi^\dagger\Delta\Delta^\dagger\Delta\Delta^\daggerarphi$	$\mathcal{O}_{ ilde{arphi}\Delta}^{2}$	$\left \left(\tilde{\varphi}^{\dagger} \Delta \varphi \right) \left(\varphi^{\dagger} \Delta^{\dagger} \tilde{\varphi} \right) \right.$
	$\Delta^2 X^2$		$\Delta^2 \psi^2 \varphi$		$\psi^2 \Delta^2 D$
$\mathcal{O}_{\Delta G}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) G^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{learphi}^{(1)}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\bar{l}_{p} e_{r} \varphi \right)$	$\mathcal{O}_{\Delta l}^{(1)}$	$ \qquad \qquad Tr(\Delta^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Delta) \; (\bar{l}_{p} \gamma^{\dagger} \Delta) $
$\mathcal{O}_{\Delta ilde{G}}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{qdarphi}^{(1)}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta)\left(ar{q}_{p}d_{r}arphi ight)$	$\mathcal{O}^{(3)}_{\Delta l}$	$\int \operatorname{Tr}(\Delta^{\dagger} i \widetilde{D}^{I}_{\mu} \Delta) (\overline{l}_{p} \tau^{I})$
$\mathcal{O}_{\Delta W}$	$\text{Tr}(\Delta^{\dagger}\Delta) W^{I}_{\mu\nu} W^{I\mu\nu}$	${\cal O}^{(1)}_{quarphi}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\bar{q}_{p} u_{r} \tilde{\varphi} \right)$	$\mathcal{O}_{\Delta e}$	$ \operatorname{Tr}(\Delta^{\dagger} i \overleftrightarrow{D}_{\mu} \Delta) (\bar{e}_{p} \gamma) $
$\mathcal{O}_{\Delta ilde W}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	$\mathcal{O}^{(3)}_{learphi}$	$\bar{l}_p \Delta \Delta^\dagger e_r \varphi$	$\mathcal{O}^{(1)}_{\Delta q}$	$ \left \operatorname{Tr}(\Delta^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \Delta) \left(\bar{q}_{p} \gamma^{\dagger} \right) \right $
$\mathcal{O}_{\Delta B}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) B_{\mu\nu}B^{\mu\nu}$	${\cal O}_{qdarphi}^{(3)}$	$\bar{q}_p \Delta \Delta^{\dagger} d_r \varphi$	$\mathcal{O}_{\Delta q}^{(3)}$	$\int \operatorname{Tr}(\Delta^{\dagger} i D^{I}_{\mu} \Delta) \left(\bar{q}_{p} \tau^{I} \right)$
$\mathcal{O}_{\Delta ilde{B}}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{B}_{\mu\nu} B^{\mu\nu}$	${\cal O}^{(3)}_{quarphi}$	$\bar{q}_p \Delta \Delta^{\dagger} u_r \tilde{\varphi}$	$\mathcal{O}_{\Delta u}$	$ \operatorname{Tr}(\Delta^{\dagger} i \overset{\overleftarrow{D}}{D}_{\mu} \Delta) (\bar{u}_{p} \gamma^{\mu} \Delta) $
$\mathcal{O}_{\Delta WB}$	$\operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta) W^{I}_{\mu\nu}B^{\mu\nu}$			$\mathcal{O}_{\Delta d}$	$ \operatorname{Tr}(\Delta^{\dagger}i\overleftrightarrow{D}_{\mu}\Delta) (\bar{d}_{p}\gamma) $
$\mathcal{O}_{\Delta ilde{W}B}$	$\text{Tr}(\Delta^{\dagger} \tau^{I} \Delta) \tilde{W}^{I}_{\mu u} B^{\mu u}$				
$\mathcal{O}_{\Delta WW}$	$\operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta\tau^{J}) W^{I}_{\mu\nu}W^{J\mu\nu}$				
$\mathcal{O}_{\Delta ilde W W}$	$\operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta\tau^{J}) \tilde{W}^{I}_{\mu\nu}W^{J\mu\nu}$				

Xavier Ponce Díaz

The Basis

- 7 Lepton number violating operators. \bullet
- These operators give contributions to lepton flavour violating processes, such as $\mu \rightarrow 3e$
- In total 57 new operators, 226 real parameters 179 complex phases = 405 number of parameters.

So, how can we constrain all these parameters?

- The triplet has not been observed \rightarrow integrate out the triplet
- EWPO are modified by this basis \rightarrow Constraints from LEP \bullet
- $H^{\pm\pm}$ has a signature of 2 same-charge leptons \rightarrow LHC searches

Xavier Ponce Díaz

Summary

- $\frac{1}{2}m_{ab}^{\nu}\overline{\nu}_{a}^{c}\nu_{b} \text{ with } m_{ab}^{\nu} = \sqrt{2}f_{ab}v_{t} \sim 0.1 \text{eV}$
- The vev is naturally small if the mass of the triplet is larg
- f_{ab} is also the coupling of the decay $H^{++} \rightarrow l^+ l^+$ lower vev stronger coupling.
- questions of the SM remain open.
- physics at a scale $\Lambda \gg M_{\Lambda}$
- that affect EWPO and direct couplings of the triplet field to quarks, which does not happen at dimension 4.

The type-2 seesaw mechanism introduces a complex triplet. After SSB a Majorana neutrino mass-term is produced:

ge:
$$v_t \simeq \frac{\mu v_d^2}{\sqrt{2M^2}}$$

The type-2 seesaw mechanism at a "natural" mass scale, would (naively) imply a hierarchy problem of the Higgs. Other

This motivates the extension of the type-2 seesaw mechanism with higher dimensional operators induced by some new

This basis includes a large amount of new operators, including an enlarged scalar sector difficult to probe, new operators

Phenomenology **Below the mass scale**

Xavier Ponce Díaz

The ΔEFT is defined at energies above the mass of the triplet. If we assume we work at energies below that mass we can also integrate the triplet.

In the process of integrating out include dimension 5 operators.

Then, work with SMEFT:

Only observed fields.

Large amounts of data available.

Many of the SMEFT contributions to observables already computed.

Matching has already been done at tree level: arXiv:1711.10391

The Matching

- We obtain 9 operators of the Warsaw basis.
- Not all operators are well constrained
- Typically Weinberg operator is not included due to LFV.

$$\lambda' = \left(\lambda - 4 \frac{|\mu|^2}{M^2} + 8 \frac{|\mu|^2 m_{\varphi}^2}{M^4}\right) \qquad (C_5)_{rp}$$

$$C_{\varphi \Box} = \frac{|\mu|^2}{M^4} \qquad C_{\varphi} = -\frac{|\mu|^2}{M^4} (\lambda_1)$$

$$(C_{e\varphi})_{rp} = \frac{|\mu|^2}{M^4} y_{rp}^{e^*} + \frac{1}{\Lambda} \frac{\mu}{M^2} (C_{\Delta le})_{rp} \qquad (C_{d\varphi})_{rp} = \frac{|\mu|}{M^4}$$

Xavier Ponce Díaz

$$\mathcal{O}_{5} = (\tilde{\varphi}^{\dagger} l_{p}^{c})^{T} (\tilde{\varphi}^{\dagger} l_{r})$$

$$\mathcal{O}_{\varphi \Box} = (\varphi^{\dagger} \varphi) \Box (\varphi^{\dagger} \varphi) \qquad \mathcal{O}_{ll} = (\bar{l}_{p} \gamma_{\mu} l_{r}) (\bar{l}_{s} \gamma_{\mu} l_{t})$$

$$\mathcal{O}_{\varphi D} = (\varphi^{\dagger} D_{\mu} \varphi)^{*} (\varphi^{\dagger} D_{\mu} \varphi) \qquad \mathcal{O}_{u\varphi} = (\varphi^{\dagger} \varphi) (\bar{q}_{p} u_{r} \tilde{\varphi})$$

Constraints Below the Mass Scale

- Typically these analysis are made using χ^2 functions: $\chi^2 = (y \mu(C))^T V^{-1} (y \mu(C))$
- Some groups make available their χ^2 functions, for global analysis: J. Ellis, et al. arXiv:1803.03252
- Which includes: EWPO (most of them from LEP), LHC run 1 & 2 signal strengths...
- We can use $v_t \simeq \frac{\mu v_d^2}{\sqrt{2}M^2}$ and write the constraints in $v_t C_i$ plane.

Using only dimension 4 operators

Constraints Below the Mass Scale

Xavier Ponce Díaz

 $(\varphi^{\dagger}\varphi)(\bar{l}e\varphi)$

Higgs couplings to fermions are poorly constrained at LHC with current data.

The vacuum expectation value of the triplet is constrained to small values, allowing for larger values of Wilson Coefficients.

ullet

ullet

- It is known in the SMEFT that dimension 6 operators modify Electroweak Observables. \bullet
- G_F is defined as a the 4-fermion vector vector interaction: ●

$$\frac{4\hat{G}_{F}}{\sqrt{2}} \left(\bar{\nu}_{\mu} \gamma_{\mu} P_{L} \mu \right) \left(\bar{e} \gamma^{\mu} P_{L} \nu_{e} \right) \quad \longrightarrow \quad \hat{G}_{F} = \frac{1}{\sqrt{2} \bar{v}^{2}} - \frac{1}{\sqrt{2}} C_{ll} + \frac{1}{\sqrt{2} \bar{v}^{2}} \left(\bar{\nu}_{\mu} \gamma_{\mu} P_{L} \mu \right) \left(\bar{e} \gamma^{\mu} P_{L} \nu_{e} \right) \quad \longrightarrow \quad \hat{G}_{F} = \frac{1}{\sqrt{2} \bar{v}^{2}} - \frac{1}{\sqrt{2}} C_{ll} + \frac{1}{\sqrt{2} \bar{v}^{2}} \left(\bar{v}_{\mu} \gamma_{\mu} P_{L} \mu \right) \left(\bar{e} \gamma^{\mu} P_{L} \nu_{e} \right) \quad \longrightarrow \quad \hat{G}_{F} = \frac{1}{\sqrt{2} \bar{v}^{2}} - \frac{1}{\sqrt{2}} C_{ll} + \frac{1}{\sqrt{2} \bar{v}^{2}} \left(\bar{v}_{\mu} \gamma_{\mu} P_{L} \mu \right) \left(\bar{e} \gamma^{\mu} P_{L} \nu_{e} \right) \quad \longrightarrow \quad \hat{G}_{F} = \frac{1}{\sqrt{2} \bar{v}^{2}} - \frac{1}{\sqrt{2}} C_{ll} + \frac{1}{\sqrt{2} \bar{v}^{2}} \left(\bar{v}_{\mu} \gamma_{\mu} P_{L} \mu \right) \left(\bar{e} \gamma^{\mu} P_{L} \nu_{e} \right) \quad \longrightarrow \quad \hat{G}_{F} = \frac{1}{\sqrt{2} \bar{v}^{2}} - \frac{1}{\sqrt{2}} C_{ll} + \frac{1}{\sqrt{2} \bar{v}^{2}} + \frac{1}{\sqrt{2} \bar{v}^{2}$$

 Δ EFT also contributes to these kind of observables.

- Other parameters that are modified: $g, g', \sin \theta_w, M_W, g_V^f, g_A^f, g_W^f$ with $f = \{u, d, e\}$ •
- Remark: One must always introduce three input parameters $\{G_F, M_Z, \alpha_{ew}\}$ ullet

$$\sqrt{2}C^{(3)}_{\varphi l}$$

$$\hat{G}_F = \frac{1}{\sqrt{2}\bar{v}^2} - \frac{1}{\sqrt{2}}C_{ll} + \sqrt{2}\left(C_{\varphi l}^{(3)} + \frac{v_t^2}{\bar{v}^2}C_{\Delta l}^{(3)}\right)$$

	Λ^6 and $\Lambda^4 D^2$		$\Lambda^4 \omega^2$ and $\Lambda^2 \omega^4$	
\mathcal{O}^1	$\frac{\Delta \operatorname{und} \Delta D}{[\operatorname{Tr}(\Lambda^{\dagger}\Lambda)]^3}$	\mathcal{O}^1	$\frac{\Delta \varphi}{\mathrm{Tr}(\Delta^{\dagger} \Delta)} \frac{\varphi}{(\varphi^{\dagger} \varphi)^2}$	6
\mathcal{O}^2_{Δ}	$ \begin{array}{c} \operatorname{Tr}(\Delta^{\dagger}\Delta)^{2} \operatorname{Tr}(\Delta^{\dagger}\Delta) \\ \operatorname{Tr}(\Delta^{\dagger}\Delta)^{2} \operatorname{Tr}(\Delta^{\dagger}\Delta) \end{array} $	$\mathcal{O}_{\varphi\Delta}^{\varphi\Delta}$ $\mathcal{O}_{\omega\Delta}^{2}$	$(\varphi^{\dagger}\Delta\Delta^{\dagger}\varphi) (\varphi^{\dagger}\varphi)$	C
$\mathcal{O}_{\Delta}^{\overline{3}}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta)^{3}$	$\mathcal{O}^{1}_{\Delta \varphi}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\varphi^{\dagger}\Delta\Delta^{\dagger}\varphi\right)$	C
$\mathcal{O}_{\Delta\Box}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \Box \operatorname{Tr}(\Delta^{\dagger}\Delta)$	$\mathcal{O}^2_{\Delta \varphi}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta)^2 (\varphi^{\dagger}\varphi)$	C
$\mathcal{O}_{D\Delta}^1$	$\operatorname{Tr}(\Delta^{\dagger}D^{\mu}\Delta)^{*}\operatorname{Tr}(\Delta^{\dagger}D_{\mu}\Delta)$	$\mathcal{O}_{\Delta \varphi}^{3}$	$({\rm Tr}\Delta^{\dagger}\Delta)^2 \; (\varphi^{\dagger}\varphi)$	
$\mathcal{O}_{D\Delta}^{\overline{2}}$	$\operatorname{Tr}[\Delta^{\dagger}\Delta \Box(\Delta^{\dagger}\Delta)]$	$\mathcal{O}_{\Delta \varphi}^{\overline{4}^r}$	$arphi^\dagger\Delta\Delta^\dagger\Delta\Delta^\daggerarphi$	(
	$\Delta^2 X^2$		$\Delta^2 \psi^2 \varphi$	
$\mathcal{O}_{\Delta G}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) G^{A}_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{learphi}^{(1)}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\bar{l}_{p} e_{r} \varphi \right)$	
$\mathcal{O}_{\Delta ilde{G}}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{G}^{A}_{\mu\nu} G^{A\mu\nu}$	$ig \mathcal{O}_{qdarphi}^{(1)}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\bar{q}_{p}d_{r}\varphi \right)$	
$\mathcal{O}_{\Delta W}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) W^{I}_{\mu\nu} W^{I\mu\nu}$	$\mathcal{O}_{quarphi}^{(1)}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \left(\bar{q}_{p} u_{r} \tilde{\varphi} \right)$	
$\mathcal{O}_{\Delta ilde W}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	$\mathcal{O}_{learphi}^{(3)}$	$\bar{l}_p \Delta \Delta^\dagger e_r \varphi$	
$\mathcal{O}_{\Delta B}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) B_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{qdarphi}^{(3)}$	$ar{q}_p \Delta \Delta^\dagger d_r arphi$	
$\mathcal{O}_{\Delta ilde{B}}$	$\operatorname{Tr}(\Delta^{\dagger}\Delta) \tilde{B}_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{quarphi}^{(3)}$	$\bar{q}_p \Delta \Delta^{\dagger} u_r \tilde{\varphi}$	
$\mathcal{O}_{\Delta WB}$	$\operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta) W^{I}_{\mu\nu}B^{\mu\nu}$			
$\mathcal{O}_{\Delta ilde WB}$	$\operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta) W^{I}_{\mu\nu}B^{\mu\nu} \qquad \mathbf{}$			┝┺╸
$O_{\Delta WW}$	$\int \operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta\tau^{J}) W^{I}_{\mu\nu} W^{J\mu\nu}$			
$\mathcal{O}_{\Delta ilde W W}$	$\int \operatorname{Tr}(\Delta^{\dagger}\tau^{I}\Delta\tau^{J}) \tilde{W}^{I}_{\mu\nu}W^{J\mu\nu}$			

This adds another mixing term between gauge bosons, modifies $\sin \theta_w$

Xavier Ponce Díaz

Contributions to the mass of the gauge bosons

$$C'_{D\Delta} \equiv \frac{1}{2}C^1_{\Delta D} + 4\left(C^2_{\Delta D} + C^2_{\Delta D}\right)$$

Modified Z and W boson couplings

 $\sim C_{\Delta\psi} v_t^2 Z_{\mu} \bar{\psi} \gamma^{\mu} \psi$

Observable	Measurement	SM prediction
$\Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023	2.4943 ± 0.0005
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	41.488 ± 0.006
R_l^0	20.767 ± 0.025	20.752 ± 0.005
$A_{FB}^{0,l}$	0.0171 ± 0.0010	0.0171 ± 0.00009
$A_l(P_{\tau})$	0.1465 ± 0.0033	0.1470 ± 0.0004
A_l (SLD)	0.1513 ± 0.0021	0.1470 ± 0.0004
R_b^0	0.21629 ± 0.00066	0.2158 ± 0.00015
R_c^0	0.1721 ± 0.0030	0.17223 ± 0.00005
$A^{0,b}_{FB}$	0.0992 ± 0.0016	0.1031 ± 0.0003
$A^{0,c}_{FB}$	0.0707 ± 0.0035	0.0736 ± 0.0002
A_b	0.923 ± 0.020	0.9347
A_c	0.670 ± 0.027	0.6678 ± 0.0002
M_W [GeV]	80.387 ± 0.016	80.361 ± 0.006
M_W [GeV]	80.370 ± 0.016	80.361 ± 0.006
Γ_W [GeV]	2.085 ± 0.042	2.0896 ± 0.0008
$BR(W \to l\nu)$	0.1086 ± 0.0009	0.10832 ± 0.00005
$BR(W \rightarrow \text{hadrons})$	0.6741 ± 0.0027	0.6752 ± 0.0004

Xavier Ponce Díaz

- SMEFT Couplings should also be taken into account.
- Always same combination of parameters, cannot be distinguished by only EW precision data.

$$\delta g_V^u = \delta g_Z g_V^{u,SM} + \frac{v_t^2}{2} \left(C_{\Delta q}^{(3)} - C_{\Delta q}^{(1)} - C_{\Delta u} \right) + \frac{v_d^2}{4} \left(C_{\varphi q}^{(3)} - C_{\varphi q}^{(1)} - C_{\varphi u} \right) - \frac{2}{3} \delta s_{\hat{\theta}}^2$$

23

Xavier Ponce Díaz

- However there are only a couple of ways to produce them at LHC: \bullet

Type-2 Seesaw mechanism is typically searched in colliders by observing the decaying signature of $H^{++} \rightarrow l^+ l^+, W^+ W^+$

- Now with this basis more production channels are added: ${\color{black}\bullet}$
- Direct couplings to quarks and gluons.

Xavier Ponce Díaz

New kinematic distributions: $p \ p \rightarrow H^{++} H^{--} \rightarrow l^+ l^+ l^- l^$ ullet

$$\begin{split} \mathcal{O}_{\Delta G} &= Tr(\Delta^{\dagger}\Delta) \, G^{A}_{\mu\nu} G^{A\mu\nu} \\ \mathcal{O}^{(1)}_{\Delta q} &= Tr(\Delta^{\dagger}i\overleftrightarrow{D}_{\mu}\Delta) \, (\bar{q}_{p}\gamma^{\mu}q_{r}) \\ \mathcal{O}^{(1)}_{\Delta d\varphi} &= Tr(\Delta^{\dagger}\Delta) \, (\bar{q}_{p}d_{r}\varphi) \end{split}$$

Internal Hidden Webminar 2021

- To put constraints we take the latest analysis by CMS on charged Higgs (2021). [2104.04762v2]
- To put constraints we need to reproduce CMS analysis (since our basis modifies kinematic distributions).
- CMS looks at decays of $H \rightarrow W^+ W^+$, which is dominant at larger v_t
- The operators in our basis that contribute to this process are:

$$\mathcal{O}_{\Delta WB} = Tr(\Delta^{\dagger}\tau^{I}\Delta)W^{I}_{\mu\nu}B^{\mu\nu}$$
$$\mathcal{O}_{\Delta WW} = Tr(\Delta^{\dagger}\tau^{I}\Delta\tau^{J})W^{I}_{\mu\nu}W^{J\mu\nu}$$

We also add another operator:

$$\mathcal{O}_{\tilde{\varphi}\Delta D} = (D_{\mu}\varphi)^{\dagger}\Delta D^{\mu}\tilde{\varphi}$$

Xavier Ponce Díaz

- To reproduce CMS analysis one must:
 - Implement the model in Feynrules
 - Generate the relevant processes
 - Hadronize the final quark states with Pythia8
 - Run a (fast) detector simulator Delphes 3 \bullet
 - Run an analysis with mad analysis5 applying all the cuts. lacksquare

Variable	$W^{\pm}W^{\pm}$	$W^{\pm}Z$
Leptons	2 leptons, $p_T > 25/20 \text{ GeV}$	3 leptons, $p_T > 25/10/20$ C
p_T^j	> 50/30 GeV	> 50/30
$\left m_{ll}-m_{Z} ight $	> 15 GeV (ee)	< 15 GeV
m_{ll}	> 20 GeV	—
m_{lll}	—	> 100 GeV
$p_T^{ m miss}$	> 30 GeV	> 30 GeV
b jet veto	Required	Required
τ_h veto	Required	Required
$\max(z_l^*)$	< 0.75	< 1.0
m_{jj}	> 500 GeV	> 500 GeV
$ \Delta\eta_{jj} $	> 2.5	> 2.5

Xavier Ponce Díaz

Xavier Ponce Díaz

By using a Poissonian distribution for each bin: \bullet

- It is possible to define a test statistic to find the values of \bullet
- And then find the values of the Wilson coefficients associated to that signal \bullet

	Operator	$CL_s = 95\%$
	$C_{\tilde{\varphi}\Delta D}/\Lambda \ [\text{TeV}^{-1}]$	1.7
$v_t = 5 \text{ GeV}$	$C_{\Delta WW}/\Lambda^2 \; [\text{TeV}^{-2}]$	27.8
	$C_{\Delta WB}/\Lambda^2 \; [\text{TeV}^{-2}]$	75.5
	$C_{\tilde{\varphi}\Delta D}/\Lambda \ [\text{TeV}^{-1}]$	2.1
$v_t = 3 { m GeV}$	$C_{\Delta WW}/\Lambda^2 \; [\text{TeV}^{-2}]$	49.3
	$C_{\Delta WB}/\Lambda^2 \; [\text{TeV}^{-2}]$	148.9

$$L(\mu, \theta) = \prod_{j}^{N} \frac{(\mu s_{j} + b_{j})^{n_{j}}}{n_{j}!} e^{-(\mu s_{j} + b_{j})}$$

f
$$\mu$$
 for $CL_s = 95\%$

	Operator	$CL_s = 95\%$
	$C_{\tilde{\varphi}\Delta D}/\Lambda \; [\text{TeV}^{-1}]$	2.1
$v_t = 5 \text{ GeV}$	$C_{\Delta WW}/\Lambda^2 \; [\text{TeV}^{-2}]$	30.3
	$C_{\Delta WB}/\Lambda^2 \; [\text{TeV}^{-2}]$	96.9
	$C_{\tilde{\varphi}\Delta D}/\Lambda \; [\text{TeV}^{-1}]$	4.1
$v_t = 3 \text{ GeV}$	$C_{\Delta WW}/\Lambda^2 \; [\text{TeV}^{-2}]$	42.0
	$C_{\Delta WB}/\Lambda^2 \; [\text{TeV}^{-2}]$	145.9

Conclusions

- We have seen arguments that motivate an EFT expansion of the type-2 seesaw mechanism.
- We have built a basis of operators up to dimension 6 containing all possible couplings.
- Different ways of constraining these operators have been used:
 - Integrating out the triplet field, adding dimension 5 operators.
 - Through contribution to EWPO, which are constrained using LEP data.
 - We also showed how to distinguish SMEFT and Δ EFT. \bullet
 - We discussed new interactions relevant in the context of the LHC.
 - And found upper bounds for some parameters using CMS searches. \bullet

Xavier Ponce Díaz

Thanks for your attention and happy holidays!

Xavier Ponce Díaz