What did the Flavour Anomalies teach us?

HiDDeN ITN 29 - 11 - 2022

Frits Ahlefeldt

Run-2 LHCb analysis (9fb⁻¹) showed a **3.1** σ deviation in R_K. [2103.11769] LHCb is now performing a combined measurement of $\mathbf{R}_{\mathbf{K}} \& \mathbf{R}_{\mathbf{K}^*}$ with the same dataset.

Wild rumours suggest that this new analysis now finds SM-like values for both observables...

Is the R_K anomaly going away? Hopefully soon we will see this update.

Frits Ahlefeldt

Meanwhile we can ask...

Was this all for naught?

In the worst-case scenario, what did we (or better, I) learn from the Flavour Anomalies?

Run-2 LHCb analysis (9fb⁻¹) showed a **3.1** σ deviation in R_K. [2103.11769] LHCb is now performing a combined measurement of **R_K** & **R_K** with the same dataset.

Wild rumours suggest that this new analysis now finds SM-like values for both observables...

Is the R_K anomaly going away? Hopefully soon we will see this update.

Frits Ahlefeldt

1 - Judging anomalies

Why working on anomalies at all?

A physicist's job is to understand Nature in a mathematical model, using the scientific method. An **anomaly** is just an **experimental phenomenon** we do not understand, it is thus worthwhile to try to gain insight and obtain a **possible explanation**, with correlated **predictions to be tested** experimentally. ... it is a lot of fun.

1 - Judging anomalies

Why working on anomalies at all?

A physicist's job is to understand Nature in a mathematical model, using the scientific method. An **anomaly** is just an **experimental phenomenon** we do not understand, it is thus worthwhile to try to gain insight and obtain a **possible explanation**, with correlated **predictions to be tested** experimentally. ... it is a lot of fun.

... but which one(s)?

Our time is limited and "anomalies" are abundant. How does one choose?

- Field of interest
- Statistical significance
- Theoretical and experimental "robustness"
- Viability of a New Physics explanation + "beauty"
- Personal priors, biases, intuition, ...

1 - Judging anomalies

Why working on anomalies at all?

A physicist's job is to understand Nature in a mathematical model, using the scientific method. An **anomaly** is just an **experimental phenomenon** we do not understand, it is thus worthwhile to try to gain insight and obtain a **possible explanation**, with correlated **predictions to be tested** experimentally. ... it is a lot of fun.

... but which one(s)?

Our time is limited and "anomalies" are abundant. How does one choose?

- Field of interest
- Statistical significance
- Theoretical and experimental "robustness"
- Viability of a New Physics explanation + "beauty"
- Personal priors, biases, intuition, ...

The anomaly traffic lights

HVP via *lattice calculations* (convolution of the Euclidean current-current correlator)

$$a_{\mu}^{\rm LO-HVP} = \alpha^2 \int_0^\infty dt \ K(t) \ G_{1\gamma I}(t)$$

 $G(t) = \frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(\vec{x},t) J_{\mu}(0) \rangle$

HVP via *lattice calculations* (convolution of the Euclidean current-current correlator)

$$G(t) = \frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(\vec{x},t) J_{\mu}(0) \rangle$$

HVP via *lattice calculations* (convolution of the Euclidean current-current correlator)

$$a_{\mu}^{\rm LO-HVP} = \alpha^2 \int_0^\infty dt \ K(t) \ G_{1\gamma \rm I}(t)$$

 $G(t) = \frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(\vec{x},t) J_{\mu}(0) \rangle$

SD 67.5 68.0 [ETMC 2206.15084]

HVP via *lattice calculations* (convolution of the Euclidean current-current correlator)

$$a_{\mu}^{\rm LO-HVP} = \alpha^2 \int_0^\infty dt \ K(t) \ G_{1\gamma \rm I}(t)$$

 $G(t) = \frac{1}{3e^2} \sum_{\mu=1,2,3} \int d^3x \langle J_{\mu}(\vec{x},t) J_{\mu}(0) \rangle$

SD 67.5 68.0 [ETMC 2206.15084]

$b \rightarrow c \ \tau \ \overline{v}_{\tau}$

Lepton Flavour Universality

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B^0 \to D^{(*)+} \tau \nu)}{\mathcal{B}(B^0 \to D^{(*)+} \ell \nu)},$$
$$\ell = \mu, e$$

Tree-level SM process $\mathcal{H}_{eff}^{ith} \underbrace{\mathcal{G}}_{cb} \underbrace$

~ 20% enhancement in LH currents ~ 4σ from SM

HFLAV
FPCP 2017

$b \rightarrow c \ \tau \ \overline{v}_{\tau}$

Lepton Flavour Universality

Tree-level SM process $\mathcal{H}_{eff}^{i} \stackrel{\text{CF}}{\to} \stackrel$

$b \rightarrow c \ \tau \ \overline{v}_{\tau}$

Lepton Flavour Universality

Tree-level SM process $\mathcal{H}_{eff} \stackrel{\text{CF}}{=} \mathcal{H}_{cb} \stackrel{\text{CF}}{$

B-anomalies

"Clean" observables

Compilation of clean observables testing the b \rightarrow sµµ transition. 08/2022

Branching ratios

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s\mu\mu$ transition. 08/2022

$$\mathcal{L}_{LCFT} = C_{S,b_{L}}\mathcal{H}_{H_{L}} \left(\overline{S}_{L} \partial_{\mu} b_{L} \right)$$

$$C_{S,b_{L}}\mathcal{H}_{H_{L}} \approx \left(377\right)$$

Branching ratios

"Clean" observables

Compilation of clean observables testing the $b \rightarrow s\mu\mu$ transition. 08/2022

 $C_{S,b,\mu,\mu,\nu} \left(\overline{S}_{L} \partial_{\mu} b_{L} \right) \left(\overline{\mu}_{L} \partial^{\mu} \mu_{L} \right)$ LCFT $C_{\rm S,b,H,H,} \approx (37 \, {\rm TeV})^{-2}$

Branching ratios

2 - Combining them

If several anomalies can be coherently explained in a single unified framework, with interesting correlations arising among them, they become collectively more interesting as possible NP signals.

Two anomalies are better than one [cit.]

Coherent EFT interpretation

$b \rightarrow s \mu^+ \mu^-$

Coherent EFT interpretation $b \rightarrow c \ \tau \ \overline{v}_{\tau}$ $b \rightarrow s \mu^+ \mu^-$ 0.10 $[O_{\ell q}^{(1)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha} \gamma_\mu \ell_L^{\beta}) (\bar{q}_L^i \gamma^\mu q_L^j),$ $B_s \to \mu \mu \ 1\sigma$ $R_K \& R_{K^*} \ 1\sigma, 2\sigma$ $b \rightarrow s \mu \mu \ 1 \sigma, \ 2 \sigma$ $[O_{\ell q}^{(3)}]_{\alpha\beta ij} = (\bar{\ell}_L^{\alpha}\sigma^I\gamma_{\mu}\ell_L^{\beta})(\bar{q}_L^i\sigma^I\gamma^{\mu}q_L^j)$ 1.5 -0.05rare B decays 1σ , 2σ R_D 1.0 $3_q \rightarrow 2_q 3_l 3_l 3_q \rightarrow 2_q 2_l 2_l$ 0.00 $\mathcal{B}(B^- \to \tau \bar{\nu})_{0}$ ${\cal C}^c_{LR}$ - 5.0 μμ - 5.0 $\mathcal{B}(B^- \to \tau \bar{\nu})_{[s_u=0]}$ -0.05 $\sim \frac{1}{(4 \text{ TeV})^2} >> \sim \frac{1}{(40 \text{ TeV})^2}$ 0.0 -0.10 $\sim c_{\gamma} \frac{V_{cb} (\lambda_{\gamma})^2}{2} \sim c_{\mu} \frac{V_{ts} (\lambda_{\mu})^2}{2}$ ~4σ R_{D^*} $R_{\Lambda_b[90\%]}$ -0.52210.13422 -0.10 - 0.050.200.000.150.050.10Altmannshofer and Stangl [2103.13370] -1.0+ \mathcal{C}_{LL}^c -1.5-2.0-0.5-1.00.0 **New Physics mainly coupled** $C_{\mathrm{q}}^{bs\mu\mu}$ $\lambda_{\pi} = 1$, $\lambda_{\mu} \sim 0.7$ (=) $\frac{\lambda_{\mu}}{\lambda_{\pi}} \sim \frac{M_{\mu}}{M_{\pi}}$ to the 3rd generation. = $\int \left\{ \begin{array}{l} \Lambda \sim 1 \text{ TeV} \\ C_{n,r} \gtrsim O(1) \end{array} \right\}$ **R(D^(*))** anomalies drive most

- new physics requirements

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-lepton only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

To address both B-anomalies:

TeV-scale leptoquark coupled to **3rd** and **2nd** generation g(3rd) > g(2nd) > g(1st)

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

TeV-scale leptoquark coupled to 3rd and 2nd generation g(3rd) > g(2nd) > g(1st)

S₁ and S₃ - contributions to anomalies

Predictions!

Better to be wrong than "not even wrong"

Typical for all models addressing R(D^(*))

Large effects are also expected in $b \rightarrow s \tau \tau$ and $b \rightarrow s \tau \mu$ transitions, as well as in $\mu \rightarrow e$:

The large couplings to τ imply signatures in DY tails of $pp \rightarrow \tau \tau$, deviations in τLFU tests and $\tau \rightarrow \mu LFV$ tests (Belle-II). Also B_s -mixing and $B \rightarrow K^* \vee \overline{\nu}$ are close to present bounds.

Near Future Prospects in Flavour

Belle-II

Belle-II will be able to completely test $R(D^{(*)})$ with 5ab⁻¹. Measuring $R(K^{(*)})$ with 3% precision requires 50ab⁻¹. Discover SM value of $B^{0} \rightarrow K^{*0} v \overline{v}$ with ~5ab⁻¹. Bound on $Br(\tau \rightarrow \mu \gamma (3 \mu))$ will improve by a factor of 6 (60).

$\mu \rightarrow e LFV$

today:

$\mathcal{B}(\mu \to e\gamma)$	$< 5.0 \times 10^{-13}$
$\mathcal{B}(\mu \to 3e)$	$< 1.2 \times 10^{-12}$
$\mathcal{B}_{\mu e}^{(\mathrm{Ti})}$	$< 5.1 \times 10^{-12}$
$ig \mathcal{B}^{(\mathrm{Au})}_{\mu e}$	$< 8.3 \times 10^{-13}$

[Greljo, Camalich, Ruiz-Alvarez 1811.07920] [DM, Min, Son, 2008.07541]

High-pt tails

If $m_{EW} < E_{\mu\mu} \ll M_{NP}$ we can use an EFT approach

Now also a public tool: HighpT: [2207.10714, 2207.10756]

[Faroughy, Greljo, Kamenik 1609.07138]

High-p_T tails

The **EFT contributions** to the amplitude grow with the energy, compared to the SM.

 $E \gg m_{EW}$

$$A \sim \frac{g_{sm}^{2}}{E^{2}} + \frac{C_{ij}}{M_{NP}^{2}} \sim A_{SM} \left(1 + \frac{C_{ij}}{g_{sm}^{2}} + \frac{E^{2}}{M_{NP}^{2}} \right)$$

EFT enhancement in high-pT tails

Lessons Learned (part 1)

Broadening of experimental analyses

- Broader range of processes studied to test
- Renewed focus on LFU ratios (also at high- p_T)!
- Development of a leptoquark search program at ATLAS and CMS
- Interest in high-p_T tails at LHC: SMEFT, simplified models.
 These are some of the most interesting searches to look for from HL-LHC.

 $b \rightarrow s(d) \ell \ell$ and $b \rightarrow c(u) \tau v$ transitions.

Lessons Learned (part 1)

Broadening of experimental analyses

SM theory improvements and BSM perspectives

- Broader range of processes studied to test
- Renewed focus on LFU ratios (also at high- p_T)!
- Development of a leptoquark search program at ATLAS and CMS
- Interest in high- p_T tails at LHC: SMEFT, simplified models. These are some of the most interesting searches to look for from HL-LHC.

 $b \rightarrow s(d) \ell \ell$ and $b \rightarrow c(u) \tau v$ transitions.

 Improvements in SM understanding of hadronic matrix elements Renaissance of leptoquarks as possible BSM scenarios New Physics models built around (vs against) flavour

3 - Do they help us address SM problems?

How do these leptoquarks fit in a bigger picture? Are they involved in answers to the big puzzles of the Standard Model?

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

Higgs & EW hierarchy

MBSM ≲ TeV

Hierarchical Yukawa couplings y(3rd) > y(2nd) > y(1st)

From Leptoquarks to the Higgs, and back

From B-anomalies

M_{LQ} ~ TeV

Hierarchical couplings to SM fermions

g(3rd) > g(2nd) > g(1st)

LQ from same UV responsible for the EW scale, connection between LQ couplings and Yukawa couplings.

Higgs & EW hierarchy

MBSM ≲ TeV

Hierarchical Yukawa couplings

y(3rd) > y(2nd) > y(1st)

Scalar LQ & Higgs: both pseudo-Goldstones?

In Composite Higgs models the Higgs arises as a pseudo-Goldstone (pNGB) of a spontaneously broken global symmetry $G \rightarrow H$ of a TeV-scale strong sector

Spontaneous global symmetry breaking at the $f \sim 1 \text{ TeV}$ scale

 $G \longrightarrow H$

One obtains naturally $m_{PNGB} \ll M_{Resonances}$

Scalar LQ & Higgs: both pseudo-Goldstones? Scalar LQs could arise as pNGB together with the Higgs from the same G/H of the strong sector. [Gripaios 0910.1789, Gripaios, Nardecchia, Renner 1412.1791]

 $\Lambda \sim g_{\rho} f \sim 10 \text{ TeV}$ other resonances Gap $m_{pNGB} \sim O(1) \text{ TeV}$ Leptoquarks hierarchy problem Higgs

Μ

Low-energy phenomenology dominated by the LQs

Having the same origin, it is expected that LQ couplings have same structure as Higgs Yukawa couplings: possible connection with flavour structure

 $m_{SLQ} \ll \Lambda$

A Fundamental Composite Higgs + LQ Model D.M. 1803.10972 Gauge group: $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$

"HyperColor"

Extra vectorlike fermions charged under SU(*N_{HC}*):

	1:KC.
G	

	$ $ SU(N_{HC})	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_w$	$\mathrm{U}(1)_Y$
$\overline{\Psi_L}$	$\mathbf{N}_{\mathbf{HC}}$	1	2	Y_L
Ψ_N	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L + 1/2$
Ψ_E	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L - 1/2$
Ψ_Q	N _{HC}	3	2	$Y_L - 1/3$

SU($N_{\rm HC}$) confines at $\Lambda_{\rm HC} \sim 10 {\rm ~TeV}$

For similar constructions see: Shmaltz et al 1006.1356, Vecchi 1506.00623, Ma, Cacciapaglia 1508.07014

A Fundamental Composite Higgs + LQ Model D.M. 1803.10972 Gauge group: $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$

"HyperColor"

	$\mathrm{SU}(N_{HC})$	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_w$	$\mathrm{U}(1)_Y$
Ψ_L	$\mathbf{N}_{\mathbf{HC}}$	1	2	Y_L
Ψ_N	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L + 1/2$
Ψ_E	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L - 1/2$
Ψ_Q	$\mathbf{N_{HC}}$	3	2	$Y_L - 1/3$

Approximate global symmetry, spontaneously broken (as chiral symm. in QCD) $G = SU(10)_{\rm L} \times SU(10)_{\rm R} \times U(1)_{\rm V} \xrightarrow{f} \sim 1 \,{\rm TeV} \qquad H = SU(10)_{\rm V} \times U(1)_{\rm V}$ $\langle \bar{\Psi}_i \Psi_i \rangle = -B_0 f^2 \delta_{ij}$

Extra vectorlike fermions charged under SU(N_{HC}): cp-like!!

For similar constructions see: Shmaltz et al 1006.1356, Vecchi 1506.00623, Ma, Cacciapaglia 1508.07014

SU($N_{\rm HC}$) confines at $\Lambda_{\rm HC} \sim 10 {\rm ~TeV}$

A Fundamental Composite Higgs + LQ Model D.M. 1803.10972 Gauge group: $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$

"HyperColor"

Extra vectorlike

fermions charged

under SU(N_{HC}):

cp-like!!

	$\mathrm{SU}(N_{HC})$	$\mathrm{SU}(3)_c$	$\mathrm{SU}(2)_w$	$\mathrm{U}(1)_Y$
Ψ_L	$\mathbf{N}_{\mathbf{HC}}$	1	2	Y_L
Ψ_N	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L + 1/2$
Ψ_E	$\mathbf{N}_{\mathbf{HC}}$	1	1	$Y_L - 1/2$
Ψ_Q	$\mathbf{N_{HC}}$	3	2	$Y_L - 1/3$

Approximate global symmetry, spontaneously broken (as chiral symm. in QCD) $G = SU(10)_{\rm L} \times SU(10)_{\rm R} \times U(1)_{\rm V} \xrightarrow{f} \sim 1 \,{\rm TeV} \qquad H = SU(10)_{\rm V} \times U(1)_{\rm V}$ $\langle \bar{\Psi}_i \Psi_i \rangle = -B_0 f^2 \delta_{ij}$

The **Higgs and leptoquarks** arise together as **pNGB**: close partners.

For similar constructions see: Shmaltz et al 1006.1356, Vecchi 1506.00623, Ma, Cacciapaglia 1508.07014

SU($N_{\rm HC}$) confines at $\Lambda_{\rm HC} \sim 10 {\rm ~TeV}$

Yukawas and LQ couplings from the same origin \rightarrow possible U(2)⁵ flavour structure

Vector Leptoquark

4321 models:

- $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$
- Needs to couple not universally to SM fermions:
- $SU(4) \times SU(3)' \times SU(2)_{L} \times U(1) \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$

Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '17; Blanke, Crivellin '18; Cornella et al 2103.16558

SM fermions have different embedding between SU(4) and SU(3)', or mix with vectorlike fermions.

Vector Leptoquark

4321 models:

From $SU(4) \times SU(3)' \rightarrow SU(3)_c$ one gets:

... result in several years of challenging model building...

- $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$
- Needs to couple not universally to SM fermions:
- $SU(4) \times SU(3)' \times SU(2)_{L} \times U(1) \rightarrow SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$

Di Luzio et al 1708.08450; Bordone et al. 1712.01368; Calibbi et al. '17; Blanke, Crivellin '18; Cornella et al 2103.16558

SM fermions have different embedding between SU(4) and SU(3)', or mix with vectorlike fermions.

Composite Higgs + Vector LQ [2004.11376]

The vector U₁ LQ gets mass from the strong sector, as W,Z bosons do in technicolor.

For the Composite Higgs part: $\langle \bar{\xi}_L^{i\,c}\,\xi_L^j\rangle = \langle \bar{\xi}_R^{i\,c}\,\xi_R^j\rangle = -\frac{1}{2}\,B_\xi\,f_\xi^2\,\epsilon_{ij}$ $SU(4)_{\rm EW} \times U(1)_A \rightarrow Sp(4)_{\rm EW}$

Vector leptoquark UV models: PS³

The vector U₁ LQ comes from a UV structure (Pati-Salam)³, where each fermion generation is charged under its own Pati-Salam gauge group: Lepton-Flavour-Universality is an emergent feature at low energies (like Parity in the SM).

Bordone, Cornella, Fuentes-Martin, Isidori; 1712.01368

Flavour hierarchy \leftrightarrow Hierarchy of scales (RG stable)

Accidental approximate U(2)⁵ at low energy!

This picture can be embedded in a warped 5D compactification

Fuentes-Martin et al; 2203.01952

EW hierarchy problem can be addressed by adding a further Planck brane.

Lessons Learned (part 2)

Broadening of experimental analyses

SM theory improvements and BSM perspectives

Model building

- Broader range of processes studied to test $b \rightarrow s(d) \ell \ell$ and $b \rightarrow c(u) \tau v$ transitions.
- Renewed focus on LFU ratios (also at high-p_)!
- Development of a leptoquark search program at ATLAS and CMS.
- Interest in high- p_T tails at LHC: SMEFT, simplified models: These are some of the most interesting searches to look at from HL-LHC.

- Challenging model building to have large flavour violation at few TeV, consistently with all flavour + collider bounds.
- The hierarchy problem can still be addressed with TeV-scale New Physics
- NP models do not necessarily have to satisfy our minimality criteria: the SM is non minimal! • Addressing flavour pushed to develop new ideas, e.g. PS³

 Improvements in SM understanding of hadronic matrix elements • Renaissance of leptoquarks as possible BSM scenarios New Physics models built around (vs against) flavour

Conclusions

Still too early to conclude anything...

Conclusions

Still too early to conclude anything...

better...

Questions?

Cabibbo Angle Anomaly

Unitarity of the first row of the CKM matrix: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Neglecting the very small V_{ub} : $V_{ud}^2 + V_{us}^2 = 1$

SGPR 1807.10197, Belfatto, Beradze, Berezhiani 1906.02714, Grossmann, Passermar, Schacht 1911.07821

Cabibbo Angle Anomaly

Unitarity of the first row of the CKM matrix: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

Neglecting the very small V_{ub} : $V_{ud}^2 + V_{us}^2 = 1$

SGPR 1807.10197, Belfatto, Beradze, Berezhiani 1906.02714, Grossmann, Passermar, Schacht 1911.07821

Possible New Physics scenarios:

- four fermion operators in $d \rightarrow u e v$
- four fermion operator in $\mu \rightarrow e v v$
- modified $W \rightarrow \mu v$ or $W \rightarrow u d$ couplings
- vectorlike quarks, rescaling of G_F vs G_{μ} , ...

See [2207.02507] for review on possible UV models

S₁ and S₃ - global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

All these are used to build a global likelihood.

$$-2\log \mathcal{L} \equiv \chi^2(\lambda_x, M_x) = \sum_i rac{\left(\mathcal{O}_i(\lambda_x, M_x) - \mu_i\right)^2}{\sigma_i^2}$$

Observable	Experimental bounds
Z boson couplings	App. A.12
$\delta g^Z_{\mu_L}$	$(0.3 \pm 1.1)10^{-3}$ [99]
$\delta g^Z_{\mu_R}$	$(0.2 \pm 1.3)10^{-3}$ [99]
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61)10^{-3}$ [99]
$\delta g^Z_{ au_R}$	$(0.66 \pm 0.65)10^{-3}$ [99]
$\delta g^Z_{b_L}$	$(2.9 \pm 1.6)10^{-3}$ [99]
$\delta g^Z_{c_R}$	$(-3.3\pm5.1)10^{-3}$ [99]
$N_{ u}$	2.9963 ± 0.0074 [100]

Observable	SM prediction	Experimental bounds
$b \rightarrow s\ell\ell$ observables		[37]
$\Delta C_9^{sb\mu\mu}$	0	-0.43 ± 0.09 [79]
$\mathcal{C}_9^{\mathrm{univ}}$	0	-0.48 ± 0.24 [79]
$b \to c\tau(\ell)\nu$ observables		[37]
R_D	0.299 ± 0.003 [12]	$0.34 \pm 0.027 \pm 0.013$ [12]
R_D^*	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]
$P_{ au}^{D^*}$	-0.488 ± 0.018 [80]	$-0.38 \pm 0.51 \pm 0.2 \pm 0.018$ [7]
F_L	0.470 ± 0.012 [80]	$0.60 \pm 0.08 \pm 0.038 \pm 0.012$ [81]
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	2.3%	< 10% (95% CL) [82]
$R_D^{\mu/e}$	1	0.978 ± 0.035 [83, 84]
$b \to s \nu \nu$ and $s \to d \nu \nu$		[37]
$R_K^{ u}$	1 [85]	< 4.7 [86]
$R_{K^*}^{ u}$	1 [85]	< 3.2 [86]
$b \rightarrow d\mu\mu$ and $b \rightarrow dee$		App. A.5
$\mathcal{B}(B^0 o \mu\mu)$	$(1.06 \pm 0.09) \times 10^{-10}$ [87,88]	$(1.1 \pm 1.4) \times 10^{-10}$ [89,90]
$\mathcal{B}(B^+ o \pi^+ \mu \mu)$	$(2.04 \pm 0.21) \times 10^{-8} \ [87, 88]$	$(1.83 \pm 0.24) \times 10^{-8}$ [89,90]
$\mathcal{B}(B^0 \to ee)$	$(2.48 \pm 0.21) \times 10^{-15} \ [87, 88]$	$< 8.3 imes 10^{-8}$ [51]
$\mathcal{B}(B^+ \to \pi^+ ee)$	$(2.04 \pm 0.24) \times 10^{-8}$ [87,88]	$< 8 imes 10^{-8}$ [51]
B LFV decays		[37]
$\mathcal{B}(B_d \to \tau^{\pm} \mu^{\mp})$	0	$< 1.4 imes 10^{-5}$ [91]
$\mathcal{B}(B_s o au^{\pm} \mu^{\mp})$	0	$< 4.2 \times 10^{-5}$ [91]
$\mathcal{B}(B^+ \to K^+ \tau^- \mu^+)$	0	$< 5.4 \times 10^{-5}$ [92]
$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-)$	0	$< 3.3 \times 10^{-5}$ [92]
		$< 4.5 \times 10^{-5}$ [93]
Observable	SM prediction	Experimental bounds
D leptonic decay		[37] and App. A.4
$\mathcal{B}(D_s \to \tau \nu)$	$(5.169 \pm 0.004) \times 10^{-2}$ [94]	$[(5.48 \pm 0.23) \times 10^{-2} [51]$
$\mathcal{B}(D^0 o \mu\mu)$	$\approx 10^{-11} [95]$	$< 7.6 \times 10^{-9}$ [96]
$\mathcal{B}(D^+ \to \pi^+ \mu \mu)$	$O(10^{-12})$ [97]	$< 7.4 \times 10^{-8}$ [98]
Rare Kaon decays $(\nu\nu)$		App. A.1
$\mathcal{B}(K^+ \to \pi^+ \nu \nu)$	8.64×10^{-11} [99]	$(11.0 \pm 4.0) \times 10^{-11}$ [100]
${\cal B}(K_L o \pi^0 u u)$	3.4×10^{-11} [99]	$< 3.6 \times 10^{-9} [101]$
Rare Kaon decays $(\ell \ell)$		App. A.3 and A.2
$\mathcal{B}(K_L \to \mu\mu)_{SD}$	$8.4 imes 10^{-10}$ [102]	$< 2.5 \times 10^{-9}$ [76]

 $< 2.5 \times 10^{-10}$ [105]

 $\begin{array}{c} < 4.5 \times 10^{-10} \ [107] \\ < 2.8 \times 10^{-10} \ [109] \end{array}$

App. A.3 and A.2 $< 4.7 \times 10^{-12}$ [110]

 $< 7.9 \times 10^{-11}$ [111]

 $< 1.5 \times 10^{-11}$ [112]

App. A.8

 $(16.6 \pm 2.3) \times 10^{-4} [51]$

Observable	SM prediction
D leptonic decay	
$\mathcal{B}(D_s \to \tau \nu)$	$(5.169 \pm 0.004) \times 10^{-2} \ [94]$
${\cal B}(D^0 o \mu \mu)$	$pprox 10^{-11}$ [95]
$\mathcal{B}(D^+ \to \pi^+ \mu \mu)$	$\mathcal{O}(10^{-12})$ [97]
Rare Kaon decays $(\nu\nu)$	
$\mathcal{B}(K^+ o \pi^+ \nu \nu)$	$8.64 imes 10^{-11}$ [99]
${\cal B}(K_L o \pi^0 u u)$	$3.4 imes 10^{-11}$ [99]
Rare Kaon decays $(\ell \ell)$	
${\cal B}(K_L o \mu \mu)_{SD}$	$8.4 imes 10^{-10} \; [102]$
$\mathcal{B}(K_S \to \mu \mu)$	$(5.18 \pm 1.5) \times 10^{-12} [76, 103, 104]$
${\cal B}(K_L o \pi^0 \mu \mu)$	$(1.5 \pm 0.3) \times 10^{-11} \ [106]$
$\mathcal{B}(K_L o \pi^0 ee)$	$(3.2^{+1.2}_{-0.8}) \times 10^{-11} \ [108]$
LFV in Kaon decays	
$\mathcal{B}(K_L \to \mu e)$	0
${\cal B}(K^+ o \pi^+ \mu^- e^+)$	0
${\cal B}(K^+ o\pi^+e^-\mu^+)$	0
CP-violation	
ϵ_K'/ϵ_K	$(15\pm7)\times10^{-4}$ [113]

Observable	SM prediction	Experimental
$\Delta F = 2$ processes		[37]
$B^0 - \overline{B}^0$: $ C^1_{B_d} $	0	$< 9.1 imes 10^{-7} { m ~TeV^{-2}}$
$B_s^0 - \overline{B}_s^0$: $ C_{B_s}^1 $	0	$< 2.0 \times 10^{-5} \mathrm{~TeV^{-2}}$
$K^0 - \overline{K}^0$: $\operatorname{Re}[C_K^1]$	0	$< 8.0 \times 10^{-7} { m TeV}^{-7}$
$K^0 - \overline{K}^0$: Im $[C_K^1]$	0	$< 3.0 \times 10^{-9} \text{ TeV}^{-3}$
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^1]$	0	$< 3.6 \times 10^{-7} \text{ TeV}^{-7}$
$D^0 - \overline{D}^0$: Im $[C_D^1]$	0	$< 2.2 \times 10^{-8} \text{ TeV}^{-1}$
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^4]$	0	$< 3.2 \times 10^{-8} \text{ TeV}^{-2}$
$D^0 - \overline{D}^0$: Im $[C_D^4]$	0	$< 1.2 \times 10^{-9} \text{ TeV}^{-2}$
$D^0 - \overline{D}^0$: $\operatorname{Re}[C_D^5]$	0	$< 2.7 \times 10^{-7} \text{ TeV}^{-7}$
$D^0 - \overline{D}^0$: Im $[C_D^5]$	0	$< 1.1 \times 10^{-8} \text{ TeV}^{-3}$
LFU in τ decays		[37]
$ g_{\mu}/g_{e} ^{2}$	1	1.0036 ± 0.0028
$ g_ au/g_\mu ^2$	1	1.0022 ± 0.0030
$ g_ au/g_e ^2$	1	1.0058 ± 0.0030
LFV observables		[37]
$\mathcal{B}(au o \mu \phi)$	0	$< 1.00 \times 10^{-7}$
$\mathcal{B}(\tau \to 3\mu)$	0	$< 2.5 \times 10^{-8}$
${\cal B}(au o \mu \gamma)$	0	$< 5.2 \times 10^{-8}$
$\mathcal{B}(au o e\gamma)$	0	$< 3.9 \times 10^{-8}$
$\mathcal{B}(\mu \to e\gamma)$	0	$< 5.0 \times 10^{-13}$
$\mathcal{B}(\mu \to 3e)$	0	$< 1.2 \times 10^{-12}$
$\mathcal{B}_{\mu e}^{(11)}$	0	$< 5.1 \times 10^{-12}$
$\mathcal{B}_{\mu e}^{(\mathrm{Au})}$	0	$< 8.3 imes 10^{-13}$
EDMs		[37]
$ d_e $	$< 10^{-44} \mathrm{e} \cdot \mathrm{cm} [124, 125]$	$< 1.3 \times 10^{-29} \mathrm{e} \cdot$
$ d_{\mu} $	$< 10^{-42} \mathrm{e} \cdot \mathrm{cm} [125]$	$< 1.9 \times 10^{-19} \mathrm{e} \cdot$
$d_{ au}$	$< 10^{-41} \mathrm{e} \cdot \mathrm{cm} [125]$	$(1.15 \pm 1.70) \times 10^{-1}$
d_n	$< 10^{-33} \mathrm{e} \cdot \mathrm{cm} [128]$	$< 2.1 \times 10^{-26} \mathrm{e} \cdot \mathrm{e}$
Anomalous		[37]
Magnetic Moments	10 -	
$a_e - a_e^{SM}$	$\pm 2.3 \times 10^{-13} \ [130, 131]$	$(-8.9 \pm 3.6) \times 10$
$a_\mu - a_\mu^{SM}$	$\pm 43 \times 10^{-11}$ [42]	$(279 \pm 76) \times 10^{-1}$
$a_ au - a_ au^{SM}$	$\pm 3.9 \times 10^{-8} \ [130]$	$(-2.1 \pm 1.7) \times 10$

 $\begin{bmatrix} J & O & O \\ O & O & S \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$

O

 $\lambda^{1R} = 0$ \rightarrow Cannot fit (g-2)_µ

(see backup slides for a S_1+S_3 scenario that addresses also the muon magnetic moment)

 $R(D^{(*)})$

 $\lambda^{1L} =$

S₁ and S₃ — only LH couplings

A Fundamental Composite Higgs + LQ Model $\mathbf{G} = \mathbf{SU}(10)_{\mathrm{L}} \times \mathbf{SU}(10)_{\mathrm{R}} \times \mathbf{U}(1)_{\mathrm{V}} \xrightarrow{\langle \bar{\Psi}_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}} \mathbf{H} = \mathbf{SU}(10)_{\mathrm{V}} \times \mathbf{U}(1)_{\mathrm{V}}$ Like QCD pions, the pNGB are composite states of HC-fermion bilinears: $\Psi\Psi$

Several states are present at the TeV scale as pNGB, including

H_{SM}, $\tilde{H}_2 \sim (1,2)_{1/2}$ Two Higgs doublets: Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_1 \sim (3,3)_{-1/3}$

Coupling with SM fermions from 4-fermion operators

$$\mathcal{L}_{4-\text{Fermi}} \sim \frac{c_{\psi\Psi}}{\Lambda_t^2} \bar{\psi}_{\text{SM}} \psi_{\text{SM}} \bar{\Psi} \Psi \xrightarrow{E \lesssim \Lambda_{HC}}$$

H and LQ are close partners!!

$$H_1 \sim i\sigma^2 (\bar{\Psi}_L \Psi_N)$$
$$H_2 \sim (\bar{\Psi}_E \Psi_L)$$
$$S_1 \sim (\bar{\Psi}_Q \Psi_L)$$
$$S_3 \sim (\bar{\Psi}_Q \sigma^a \Psi_L)$$

 $\sim y_{\psi\phi} \, \bar{\psi}_{\rm SM} \psi_{\rm SM} \, \phi + \dots$

Yukawas & LQ couplings

+ approximate $U(2)^{5}$ flavor symmetry to protect from unwanted flavor violation

Scalar Potential: NDA + symmetry

The pNGB potential arises at 1-loop from all the explicit breaking terms

NDA + spurion analysis

$$m_{(\bar{\Psi}_i\Psi_j)}^2 = B_0(m_i + m_j)$$

pNGB spectrum: example

