Accreting neutron stars: the potential
third MeV astrophysical neutrino source
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Neutrino astronomy

“Neutrino astronomy is interesting
for the same reason it is difficult.”

John Bahcall, 1989
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Neutrino astronomy

Neutrino detection is difficult. But, precisely because of that, neutrinos
Provide us with the conditions deep inside sources.
Carry out real-time tracking.
Are not affected by propagation.

Neutrinos interact weakly. But, precisely because of that, neutrinos
Are a clean probe of new, weak, interactions.
Are a clean probe of accumulating propagation effects.
Are a clean probe of large densities.
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Neutrino astronomy
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Neutrino astronomy: successes in astrophysics
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Abstract

About 99 per cent of solar energy is produced through sequences of nuclear reactions that
convert hydrogen into helium, starting from the fusion of two protons (the pp chain). The
neutrinos emitted by five of these reactions represent a unique probe of the Sun’s internal
working and, at the same time, offer an intense natural neutrino beam for fundamental

physics. Here we report a complete study of the pp chain. We measure the neutrino—electron
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Abstract

In this work, we use Bayesian inference to quantitatively reconstruct the solar
properties most relevant to the solar composition problem using as inputs the
information provided by helioseismic and solar neutrino data. In particular, we
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Neutrino astronomy: successes in astrophysics

PHYSICAL REVIEW D VOLUME 38, NUMBER 2 15 JULY 1988

Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A

The properties of the Kamiokande-II detector and the method of measurement are described in
detail. The data on the neutrino burst from the supernova SN1987A on 23 February 1987 at 7:35:35
UT=1 min are presented, with records of earlier and later observation periods in which other neu-
trino events possibly associated with SN1987A might have occurred. There is no evidence in the
data for any excess of neutrino-induced events, either in a burst of a few seconds duration or over a
longer time interval, relative to the usual count rate, excepting only the neutrino burst at 7:35:35
UT. The nature of the single, observed neutrino burst coincides remarkably well with the elements
of the current model of type-11 supernovae and neutron-star formation. This is the first direct ob-
servation in neutrino astronomy.
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é’ =) ABSTRACT

The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone
leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the
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Clean, real-time probes of dense interiors of sources.
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Neutrino astronomy: successes in particle physics
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Neutrino astronomy: successes in particle physics

Clean probes of new interactions, dense matter, and/or propagation effects.
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See lvanova et al, 1209.4302, for a review
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A process where two stars share a common
envelope, due to expansion or orbital decrease.

Suggested by Paczynski in 1976. Sounds
exotic, but most likely necessary for

m Type la-supernovae

m X-ray binaries

» Gravitational-wave sources
m ...
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For the rest of the talk, | will focus on common envelope with neutron stars
(relevant for, e.g., X-ray binaries or gravitational wave sources).

Roughly, the main processes that happen during common envelope are
The neutron star inspirals due to drag.
The neutron star accretes material.
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TS [ eration

The neutron star accretion rate can be estimated [Hoyle, Littleton (1939);
Bondi (1952)]

p, C

G*Mggp

) 2
M ~ m ~ 10 Msun/year

~ 10® kg/s

[This is an approximation, I'll lift it in a few slides]
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Super-Eddington accretion

Usually, accretion is limited because

Inflow gains kinetic energy, heats up, and radiation pressure can
compensate gravity.

That kinetic energy must go somewhere.
Eddington limit! ~ 10_8I\/Isun/year for a neutron star.

How can we violate it by orders of magnitude in common envelope?
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Trapped light due to large inflow velocities

Basics well-understood since the 90s [Chevalier (1989); Houck & Chevalier (1991); Chevalier (1993)].
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Accreted envelope

Trapped light due to large inflow velocities Neutrino cooling

Basics well-understood since the 90s [Chevalier (1989); Houck & Chevalier (1991); Chevalier (1993)].
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Super-Eddington accretion

The main uncertainty is the accretion rate. Simulations are hard
(10 km neutron star vs 100 Ry, ~ 108 km giant)
Angular momentum?
How much of the energy is dissipated by neutrinos? Are jets formed?
What are the details of the onset of super-Eddington accretion?
Fragos et al, 2019; Ivanova et al, 2012; Ricker et al, 2011; Houck & Chevalier, 1991; Brown, 1995; Ricket
& Taam, 2012; Macleod & Ramirez-Ruiz, 2014; Macleod et al, 2017; Brown et al, 2000; ...

Yet recent 3D simulations still find super-Eddington accretion [Macleod &
Ramir_ez—Ruiz, 2014; Hutchinson-Smith et al, 2023; Everson et al, 2023],
with M ~ 0.1 M, /year.
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Super-Eddington accretion
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Other properties

Duration? The neutron star momentum loss (due to drag) can be
estimated by the linear momentum gained by the inflow,

t ~ month x (
M

0.1 Msun/year>
Rate in the Milky Way? From X-ray binary catalogs, estimates are

7~ 1072-1 century !
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Wrapping up

Understanding common envelope is key to understand X-ray binaries,
gravitational-wave sources. . .
But direct, unambiguous observational windows lack.

Super-Eddington accretion, hypothesized since the 90s, would involve
Accretion rates ~ 0.1 Mg, /year.
For about a month.
~ 1072 =1 century ! in our galaxy.
With neutrinos playing a key role.
How can we look for this?
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Average neutrino energy

What are the properties of the neutrino signal?
Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.

dE GMysM 1
dtdV s Arrdg(ras/2)

Inflow heating =

dE
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Average neutrino energy

What are the properties of the neutrino signal?
Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.
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Neutrino flux

Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.
(E,) ~ 4 MeV.

dN, dE/dt  GMnsM/rs

Pl E) E) ~ 10° neutrinos /s
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Order-of-magnitude estimations

Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.
(E,) ~ 4MeV, 10°° neutrinos/s.

At 10 kpc, ¢, ~ 10*cm 2571,
Is it observable? At ~ MeV energies, the most efficient detection channel is

Ve+p=n+e"

with ¢ ~ 107 cm?. ¢ X 0 X Nyrgets ~ 100 events/few months at
Super-Kamiokande! (Of course, beware of backgrounds!)
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Sharpening up the predictions
Up to now, I've only given (robust) order-of-magnitude estimations.

We sharpened them via simulation. Main input is accretion rate [(E,) oc MY/?; ¢, oc M],
that we took from the 3D simulation Macleod & Ramirez-Ruiz, 2014 [M ~ 0.1 My, /year].
Our code is pUb|IC|y available! github.com/ivan-esteban-phys/common-envelope-thermal )

T
ve (or De)

3-months integrated
10%%v/s x 3months ~ 10%°v

1 m Very well approximated by FD,
T~1.6MeV ((E,)~5MeV).

4 m No oscillations in this plot,
although in our results we
included adiabatic oscillations
(factor of few impact).
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Neutrino signal

Detector signals
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Archival Super-Kamiokande data: e* and ~ from neutron capture on H.

Events per 2-MeV bin

10?

10

Super-K (archival)

T T
Common envelope
at 2kpc
— NO

Bkgd. _
10 15
EMn [MeV]

Collaboration-estimated background from DSNB search.
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Detector signals
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Super-Kamiokande with low Gd- e™ and ~ from neutron capture on Gd.

Super-K (archival)

Super-K + low Gd (present)
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Neutrino signal

Detector signals

JUNO: et and ~ from neutron capture.

Super-K (archival) Super-K + low Gd (present) JUNO (near future)
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Collaboration-estimated background. Large efficiency due to scintillator.




Neutrino signal

Detector signals

DUNE: v on e, directional.

Events per 2-MeV bin

Background estimates from solar neutrino studies (Capozzi et al, 2018; Zhu, Li & Beacom, 2019).
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JUNO (near future) DUNE directional (future)
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Distance reach

Improvable! (More Gd, dedicated background reduction strategies .. .)

30 sensitivity (Normal Ordering)
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For Inverted Ordering, currently disfavored by ~ 2—3 sigma, distance reach worsens by a factor ~ 2.
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Neutron-star common-envelope is key to understand many binary
systems. But it has never been observed unambiguously.

If accretion is super-Eddington, cooling proceeds emitting neutrinos.

A Milky Way event (~ 1072-1 century 1) would produce detectable,
months-long, MeV neutrino signals.

The third MeV astrophysical neutrino source, after the Sun and
supernovae. It is rare, but we won’t see it unless we look for it!
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In case of a detection,
Common-envelope would be observationally established.

Super-Eddington accretion would be observationally established.
Even a non-detection with an electromagnetic/gravitational wave
counterpart would be useful!

What's next?
Astrophysics: more simulation. Accretion on white dwarfs?
Experiments: dedicated searches, including archival data.
Theory: neutrino properties? Particle physics?

We extensively detail how to predict the neutrino flux.



