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Introduction

“Neutrino astronomy is interesting
for the same reason it is difficult.”

John Bahcall, 1989
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arXiv:2310.19868; ivan.esteban@ehu.eus

2/27 Neutrino astronomy



Introduction

Neutrino detection is difficult. But, precisely because of that, neutrinos
Provide us with the conditions deep inside sources.
Carry out real-time tracking.
Are not affected by propagation.

Neutrinos interact weakly. But, precisely because of that, neutrinos
Are a clean probe of new, weak, interactions.
Are a clean probe of accumulating propagation effects.
Are a clean probe of large densities.

Ivan Esteban, University of the Basque Country
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Introduction

Clean, real-time probes of dense interiors of sources.

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Introduction
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Introduction

Clean probes of new interactions, dense matter, and/or propagation effects.

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution

A process where two stars share a common
envelope, due to expansion or orbital decrease.

Suggested by Paczynski in 1976. Sounds
exotic, but most likely necessary for

Type Ia-supernovae
X-ray binaries
Gravitational-wave sources
. . .

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution
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From Ivanova et al, 1209.4302

Yet still unobserved
unambiguously (though see
Dong et al., 2021, Science), and
very challenging to
simulate!
We need new signatures.
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Common Envelope Evolution

For the rest of the talk, I will focus on common envelope with neutron stars
(relevant for, e.g., X-ray binaries or gravitational wave sources).

Roughly, the main processes that happen during common envelope are
The neutron star inspirals due to drag.
The neutron star accretes material.

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution

The neutron star accretion rate can be estimated [Hoyle, Littleton (1939);
Bondi (1952)]

Ṁ ∼ G2M2
NSρ

(v 2 + c2
s )3/2 ∼ 102 Msun/year

∼ 1025 kg/s

[This is an approximation, I’ll lift it in a few slides]

Ivan Esteban, University of the Basque Country
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Common Envelope Evolution

Usually, accretion is limited because [Eddington (1926)]
1 Inflow gains kinetic energy, heats up, and radiation pressure can

compensate gravity.
2 That kinetic energy must go somewhere.

Eddington limit! ∼ 10−8Msun/year for a neutron star.

How can we violate it by orders of magnitude in common envelope?

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution

Accreted envelope

Neutron Star

Trapped light due to large inflow velocities

Neutrino cooling

Basics well-understood since the 90s [Chevalier (1989); Houck & Chevalier (1991); Chevalier (1993)].

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution

Accreted envelope

Neutron Star

Trapped light due to large inflow velocities Neutrino cooling
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Common Envelope Evolution

The main uncertainty is the accretion rate. Simulations are hard
(10 km neutron star vs 100 Rsun ∼ 108 km giant)

Angular momentum?
How much of the energy is dissipated by neutrinos? Are jets formed?
What are the details of the onset of super-Eddington accretion?

Fragos et al, 2019; Ivanova et al, 2012; Ricker et al, 2011; Houck & Chevalier, 1991; Brown, 1995; Ricket
& Taam, 2012; Macleod & Ramirez-Ruiz, 2014; Macleod et al, 2017; Brown et al, 2000; . . .

Yet recent 3D simulations still find super-Eddington accretion [Macleod &
Ramirez-Ruiz, 2014; Hutchinson-Smith et al, 2023; Everson et al, 2023],
with Ṁ ∼ 0.1Msun/year.
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Common Envelope Evolution

Duration? The neutron star momentum loss (due to drag) can be
estimated by the linear momentum gained by the inflow, Macleod &
Ramirez-Ruiz, 2014. . .

t ∼ month ×
0.1 Msun/year

Ṁ


Rate in the Milky Way? From X-ray binary catalogs, estimates are
Ginat et al, 2019; Hutilukejiang et al, 2018

τ ∼ 10−2 – 1 century−1

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Common Envelope Evolution

Understanding common envelope is key to understand X-ray binaries,
gravitational-wave sources. . .
But direct, unambiguous observational windows lack.

Super-Eddington accretion, hypothesized since the 90s, would involve
Accretion rates ∼ 0.1Msun/year.
For about a month.
∼ 10−2 – 1 century−1 in our galaxy.
With neutrinos playing a key role.

How can we look for this?

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Neutrino signal

Esteban, Beacom, Kopp; 2310.19868
What are the properties of the neutrino signal?
Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.

Inflow heating ⇒ dE
dtdV ∼ GMNSṀ

rNS

1
4πr 2

NS(rNS/2)

Neutrino-cooling ⇒ dE
dtdV ∼ G2

F T 9. So T∼
(

dE
dtdV

)1/9
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Neutrino signal

Esteban, Beacom, Kopp; 2310.19868
Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.
⟨Eν⟩ ∼ 4 MeV.

dNν

dt ∼ dE/dt
⟨Eν⟩

∼ GMNSṀ/rNS

⟨Eν⟩
∼ 1050 neutrinos/s

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Neutrino signal

Esteban, Beacom, Kopp; 2310.19868
Neutrinos dissipate the kinetic energy gained by the inflow. Simple
energy conservation determines the signal properties.
⟨Eν⟩ ∼ 4 MeV, 1050 neutrinos/s.

At 10 kpc, ϕν ∼ 104 cm−2 s−1.
Is it observable? At ∼ MeV energies, the most efficient detection channel is

ν̄e + p ⇒ n + e+

with σ ∼ 10−42 cm2. ϕ × σ × Ntargets ∼ 100 events/few months at
Super-Kamiokande! (Of course, beware of backgrounds!)

Ivan Esteban, University of the Basque Country
arXiv:2310.19868; ivan.esteban@ehu.eus
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Neutrino signal

Up to now, I’ve only given (robust) order-of-magnitude estimations.
We sharpened them via simulation. Main input is accretion rate [⟨Eν⟩ ∝ Ṁ1/9; ϕν ∝ Ṁ],
that we took from the 3D simulation Macleod & Ramirez-Ruiz, 2014 [Ṁ ∼ 0.1 Msun/year].
Our code is publicly available! github.com/ivan-esteban-phys/common-envelope-thermal
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Neutrino signal

Archival Super-Kamiokande data: e+ and γ from neutron capture on H.
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Neutrino signal

Super-Kamiokande with low Gd: e+ and γ from neutron capture on Gd.
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Neutrino signal

JUNO: e+ and γ from neutron capture.
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Neutrino signal

DUNE: ν on e−, directional.
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Neutrino signal

Improvable! (More Gd, dedicated background reduction strategies . . . )

20 kpc

10 kpc

5 kpc

For Inverted Ordering, currently disfavored by ∼ 2–3 sigma, distance reach worsens by a factor ∼ 2.
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Summary

Neutron-star common-envelope is key to understand many binary
systems. But it has never been observed unambiguously.

If accretion is super-Eddington, cooling proceeds emitting neutrinos.

A Milky Way event (∼ 10−2 – 1 century−1) would produce detectable,
months-long, MeV neutrino signals.
The third MeV astrophysical neutrino source, after the Sun and
supernovae. It is rare, but we won’t see it unless we look for it!

Ivan Esteban, University of the Basque Country
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Outlook

In case of a detection,
Common-envelope would be observationally established.
Super-Eddington accretion would be observationally established.
Even a non-detection with an electromagnetic/gravitational wave
counterpart would be useful!

What’s next?
Astrophysics: more simulation. Accretion on white dwarfs?
Experiments: dedicated searches, including archival data.
Theory: neutrino properties? Particle physics?

We extensively detail how to predict the neutrino flux.
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