Constraining Lepton Number Violating Interactions with Rare Kaon Decays

Julia Harz

in collaboration with F. Deppisch and K. Fridell hep-ph/2009.04494

1. Dezember 2020 HiDDeN Webinar

Technische Universität München

Outline

Motivation

- Neutrinos as a window to new physics
- Why lepton-number violation?

Lepton-number violating interactions

- Operators
- Testability (0vββ, neutrino masses)
- Leptogenesis

Rare Kaon decays

- Recap: Kaons in the Standard Model
- LNV interactions in Kaon decays
- Confronting LNV interactions with E949, KOTO, NA62
- Complementarity of constraints
- UV complete example: Leptoquarks

Illustration by Sandbox Studio, Chicago

THE STANDARD MODEL «

Introduction

Neutrinos – what do we know?

"Neutrinos, the Standard Model misfits"

Neutrino **oscillations** require **massive** neutrinos, forbidden in the Standard Model.

How do neutrinos get their masses?

Neutrinos – what do we know?

• Neutrinos in the Standard Model are **massless**

$$L_i \to \left(\begin{array}{c} \nu_i \\ \ell_i \end{array}\right) \qquad \qquad m_\nu = 0$$

• Neutrino **mixing**

Emmy Noether

Programn

$$\left(\begin{array}{c}\nu_e\\\nu_\mu\\\nu_\tau\end{array}\right) = U_{PMNS} \left(\begin{array}{c}\nu_1\\\nu_2\\\nu_3\end{array}\right)$$

Neutrino oscillations require massive neutrinos

$$P(\nu_i \to \nu_j) \propto \Delta m_{ij}^2 \qquad \frac{\Delta m_{12}^2 \sim 7.59 \times 10^{-5} \text{eV}^2}{\Delta m_{23}^2 \sim \Delta m_{31}^2 \sim 2.3 \times 10^{-3} \text{eV}^2}$$

• Normal vs. inverted hierarchy

How do neutrinos get their masses? What nature do neutrinos have? Are they their own anti-particles?

Tech

2015 NOBEL PRIZE

Why Lepton-Number Violation?

- Masses of the active neutrinos cannot be explained within the SM
- BUT right-handed neutrinos could help

Julia Harz Constraining LNV interactions with rare kaon decays

7

Lepton Number Violating Operators and their implications

Lepton-Number Violation

LNV occurs only at odd mass dimension:

Babu, Leung (2001), de Gouvea, Jenkins (2007), Deppisch, Graf, JH, Huang (2017)

Radiative neutrino mass generation

• LNV occurs only at odd mass dimension:

Technische Universität München

Probing LNV interactions – 0vββ decay

Ονββ decay probes only first generation!

Schechter-Valle Theorem – Black Box Theorem

Schechter, Valle (1982)

Any ΔL = 2 operator that leads to 0vbb will induce a **Majorana mass contribution** via loop

9-dim ΔL = 2 operator will lead to 0vbb but only **tiny contribution** to neutrino mass

$$\delta m_{\nu} = 10^{-28} \text{eV}$$

Observation of 0vββ decay does not imply that the mass mechanism is the dominant contribution.

Constraining LNV interactions

Leptonic and hadronic current with different chirality structure:

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \{ j_{V-A}^{\mu} J_{V-A,\mu}^{\dagger} + \sum_{\alpha,\beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} \} \qquad j_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$$

$$J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$$

$$\mathcal{O}_{V\pm A} = \gamma^{\mu} (1 \pm \gamma_5)$$

$$\mathcal{O}_{S\pm P} = (1 \pm \gamma_5)$$

$$\mathcal{O}_{T_{R,L}} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}] (1 \pm \gamma_5)$$

$$j_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$$

$$J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$$

$$\frac{|\epsilon| \times 10^8}{\epsilon_{\nu}} \frac{\epsilon_{V+A}^{V+A}}{\epsilon_{V-A}} \frac{\epsilon_{V+A}^{S+P}}{\epsilon_{T_R}} \frac{\epsilon_{T_R}^{T_R}}{\epsilon_{T_R}}$$

$$\frac{1}{7^6} \text{Ge} \quad 41 \quad 0.21 \quad 37 \quad 0.66 \quad 0.07$$

$$\frac{7^6}{\text{Xe}} \quad 26 \quad 0.11 \quad 22 \quad 0.26 \quad 0.03$$

Scales of New Physics

1st generation couplings

Constraining LNV interactions with rare kaon decays

Technische Universität München

14

Scales of New Physics

3rd generation couplings

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Julia Harz Cons

Emmy Noether-

Programm

Constraining LNV interactions with rare kaon decays

Technische Universität München

Implications on Leptogenesis

- generation of lepton asymmetry via heavy neutrino decays
- competition with lepton number violating (LNV) washout processes
- conversion to baryon asymmetry via sphaleron processes

Fukugita et al. 1986

$$Hz \frac{dN_{N_1}}{dz} = -(\Gamma_D + \Gamma_S)(N_{N_1} - N_{N_1}^{\text{eq}})$$
$$Hz \frac{dN_L}{dz} = \epsilon_1 \Gamma_D(N_{N_1} - N_{N_1}^{\text{eq}}) - \Gamma_W N_L$$

sphaleron processes

 $\Delta L = 1$ scattering processes

Implications on Leptogenesis

The generation of a baryon asymmetry – **baryogenesis** – can be created by a lepton asymmetry – **leptogenesis**:

In turn, lepton number violation (LNV) can destroy a lepton asymmetry, and thus even a baryon asymmetry!

Lepton Asymmetry Washout

 LNV operator would cause washout of pre-existing net lepton asymmetry in the early Universe

$$\mathcal{O}_7 = (L^i d^c) (\bar{e^c} \bar{u^c}) H^j \epsilon_{ij}$$

$$zHn_{\gamma}\frac{d\eta_{L_{e}}}{dz} = -\left(\frac{n_{L_{e}}n_{\bar{e}c}}{n_{L_{e}}^{eq}n_{\bar{e}c}^{eq}} - \frac{n_{u^{c}}n_{\bar{d}c}n_{\bar{H}}}{n_{u^{c}}^{eq}n_{\bar{d}c}^{eq}n_{\bar{H}}^{eq}}\right)\gamma^{eq}(L_{e}\bar{e^{c}} \to u^{c}\bar{d^{c}}\bar{H})$$

$$zHn_{\gamma}\frac{d\eta_{\Delta L_{e}}}{dz} = -c_{D}\frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}\eta_{\Delta L_{e}}$$

$$\gamma^{eq} \propto \frac{T^{2D-4}}{\Lambda_{D}^{2D-8}}$$

 $\frac{\Gamma_W}{H} \equiv \frac{c_D}{n_{\gamma} H} \frac{T^{2D-4}}{\Lambda_D^{2D-8}} = c'_D \frac{\Lambda_{\rm Pl}}{\Lambda_D} \left(\frac{T}{\Lambda_D}\right)^{2D-9} > 1$

- c_D operator specific factor
- η_L lepton density

If Ovßß is observed, washout efficient in the temperature interval

$$\Lambda_D \left(\frac{\Lambda_D}{c'_D \Lambda_{\rm Pl}}\right)^{\frac{1}{2D-9}} \equiv \lambda_D < T < \Lambda_D$$

washout efficient if

Lepton asymmetry washout

1st generation couplings

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Julia Harz Constraining LNV interactions with rare kaon decays

Technische Universität München

Probing LNV interactions – LHC

Washout processes could be observable at the LHC

(scale of asymmetry generation *above* M_x)

Deppisch, JH, Hirsch, Phys. Rev. Lett. (2014) Deppisch, JH, Hirsch, Päs, Int. J. Mod. Phys. A (2015)

Combining LHC & 0vββ

Comprehensive analysis confirms EFT results and shows interesting interplay between collider and 0vββ reach. JH, Ramsey-Musolf, Shen, Urrutia, in preparation

21

Kaon decays as a probe for LNV?

Recap: Kaons in the Standard Model

Recap: Kaons in the Standard Model

Neutral mesons can mix

$$CP | K^{0} \rangle = - | \bar{K}^{0} \rangle$$
$$CP | \bar{K}^{0} \rangle = - | K^{0} \rangle$$

Expected decays:

$$\begin{split} CP \left| K_{1}^{0} \right\rangle &= CP \left(\frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle - \left| \bar{K}^{0} \right\rangle \right) \right) = + \left| K_{1}^{0} \right\rangle \\ CP \left| K_{2}^{0} \right\rangle &= CP \left(\frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle + \left| \bar{K}^{0} \right\rangle \right) \right) = - \left| K_{2}^{0} \right\rangle \\ K_{2}^{0} \to 3\pi \qquad \text{slow} \end{split}$$

BUT: In 1964, Cronin and Fitch realised that physical states are no pure CP eigenstates!

$$|K_{S}^{0}\rangle = \frac{1}{\sqrt{1+\left|\epsilon\right|^{2}}}\left(\left|K_{1}^{0}\rangle + \epsilon\left|\bar{K}_{2}^{0}\rangle\right)\right) \qquad |K_{L}^{0}\rangle = \frac{1}{\sqrt{1+\left|\epsilon\right|^{2}}}\left(\left|K_{2}^{0}\rangle + \epsilon\left|\bar{K}_{1}^{0}\rangle\right)\right)$$
Indirect CP violation!

Julia Harz Constraining LNV interactions with rare kaon decays

Technische Universität München

24

Recap: Rare Kaon decays in the SM

25

Experimental Status and Perspective

Тһеогу	Experiment
BR $(K^+ \to \pi^+ \nu \bar{\nu})_{\rm SM} = (8.4 \pm 1.0) \times 10^{-11}$	$BR(K^+ \to \pi^+ \nu \bar{\nu})_{E949} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$ E949 collaboration (2009)
	$\begin{array}{l} {\rm BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm NA62} < 1.78 \times 10^{-10} \\ {\rm NA62\ collaboration\ (2020)} \end{array}$
$BR(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (3.4 \pm 0.6) \times 10^{-11}$	$BR(K_L \to \pi^0 \nu \bar{\nu})_{KOTO} = (2.1^{+4.1}_{-1.7}) \times 10^{-9}$
Buras, Buttazzo, Girrbach-Noe, Knegjens (2015)	KOTO collaboration (2019)

Grossmann-Nir bound

$$BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \times BR(K^+ \to \pi^+ \nu \bar{\nu})$$

Future Limit:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})^{\text{future}}_{NA62} \lesssim 1.11 \times 10^{-10}$$

"SM sensitivity"

To what extent can NP (e.g. LNV) still hide?

Constraining LNV interactions with rare kaon decays

GIM suppressed

Not explicit LNV!

- No GIM suppression
- Includes first and second generation

How are higher dimensional operators constraint by rare kaon decays?

Probing LNV interactions – Meson decays

Same sign leptonic final state

- LNV is directly tested
 dim-9 only

 - For first generation 0vββ stronger
 - constraints too weak

Liu, Zhang, Zhou (2016) Quintero (2017) Chun, Das, Mandal, Mitra, Sinha (2019)

Decay into neutrino final state

- No experiments
- dim-7

Gninenko (2014)

Neutrino final state

- LNV needs to be independently confirmed
 - dim-7

• dim-7

Deppisch, Fridell, JH (2020)

Charged lepton + neutrino final state

- Neutrino needs to be detected (Cooper et al. 1982)
 - Deppisch, Fridell, JH (2020)

Probing LNV interactions – Meson decays

Same sign leptonic final state

- LNV is directly tested
- dim-9 only
- For first generation 0vββ stronger
- constraints too weak

Liu, Zhang, Zhou (2016) Quintero (2017) Chun, Das, Mandal, Mitra, Sinha (2019)

Decay into neutrino final state

- No experiments
- dim-7

Gninenko (2014)

Neutrino final state

- LNV needs to be independently confirmed
- dim-7

• dim-7

Deppisch, Fridell, JH (2020)

Charged lepton + neutrino final state

- Neutrino needs to be detected (Cooper et al. 1982)
 - Deppisch, Fridell, JH (2020)

Calculating LNV Branching Ratio I

$$\langle \pi(p') | \, \bar{ds} \, | K(p) \rangle \, \nu_i(k) \nu_j(k')$$

Possible SU(2)_L contraction:

$$\mathcal{O}_{3b}^{(7)} = L_i^{\alpha} L_j^{\beta} Q_a^{\rho} d_b^c H^{\sigma} \epsilon_{\alpha\rho} \epsilon_{\beta\sigma} \to h^0 d_a^c d_{L_b} \nu_{L_i} \nu_{L_j}$$

Contraction of spinor indices:

 $h^{0}d_{a}^{c}d_{L_{b}}\nu_{L_{i}}\nu_{L_{j}} \to c_{1}^{ijab}h^{0}\left(d_{a}^{c}d_{L_{b}}\right)\left(\nu_{L_{i}}\nu_{L_{j}}\right) + c_{2}^{ijab}h^{0}\left(d_{a}^{c}\nu_{L_{i}}\right)\left(\nu_{L_{j}}d_{L_{b}}\right)$

Fierz transformation:

$$c_{1}^{ijab} - \frac{c_{2}^{ijab}}{2} h^{0} \left(d_{a}^{c} d_{L_{b}} \right) \left(\nu_{L_{i}} \nu_{L_{j}} \right) - \frac{c_{2}^{ijab}}{2} h^{0} \left(d_{a}^{c} \sigma^{\mu\nu} d_{L_{b}} \right) \left(\nu_{L_{j}} \sigma_{\mu\nu} \nu_{L_{i}} \right) + h.c.$$

Tensor contribution vanishes if neutrinos same flavour

In Dirac notation (assumption of real couplings): $c_{1}^{ijab} - \frac{c_{2}^{ijab}}{2}h^{0}\left[\left(\bar{d}_{a}d_{b}\right)\left(\bar{\nu}_{i}\nu_{j}\right) + \left(\bar{d}_{a}\gamma_{5}d_{b}\right)\left(\bar{\nu}_{i}\gamma_{5}\nu_{j}\right)\right]$

 $\frac{1}{\Lambda_{iii}^3}$

vanishes due to pseudoscalar nature of kaons and pions

$$i\mathcal{M} = \frac{v}{\Lambda_{ijsd}^3} \langle \pi(p') | \, \bar{ds} \, | K(p) \rangle \, \nu_i(k) \nu_j(k')$$

$$\begin{array}{c} \mathbf{U} \\ \mathbf{K}^{+} \\ \mathbf{n}^{+} \\ \mathbf{U} \\ \mathbf{S} \\ \mathbf{O}_{3b} \\ \mathbf{V} \\ \mathbf{V} \end{array}$$

Calculating LNV Branching Ratio II

$$i\mathcal{M} = \frac{v}{\Lambda_{ijsd}^{3}} \langle \underline{\pi(p')} | \, \bar{ds} \, | K(p) \rangle \, \nu_{i}(k) \nu_{j}(k')$$
$$\frac{m_{K}^{2} - m_{\pi}^{2}}{m_{s} - m_{d}} f_{0}^{K}(s)$$
$$|\mathcal{M}|^{2} = \frac{v^{2}}{\Lambda_{ijsd}^{6}} \left(\frac{m_{K}^{2} - m_{\pi}^{2}}{m_{s} - m_{d}} f_{0}^{K}(s) \right)^{2} s$$
$$\frac{\Gamma(K \to \pi \nu_{i} \nu_{j})}{ds \, dt} = \frac{1}{1 + \delta_{ij}} \frac{1}{(2\pi)^{3}} \frac{1}{32m_{K}^{3}} |\overline{\mathcal{M}}|^{2}$$

$$f_0^K(s) = f_+^K(0) \left(1 + \lambda_0 \frac{s}{m_\pi^2} \right)$$

 $f_{+}^{K^{+}}(0) = 0.9778$ $f_{+}^{K_{L}}(0) = 0.9544$

$$t = (k' + p')^2$$

s = $(p - p')^2 = (k + k')^2$

- Usage of **known hadronic matrix elements / form factors**
- Alternative approach: SMEFT matched on chiral perturbation theory

Li, Ma, Schmidt (2019)

Constraining power at E949

• SM, lepton number conserving vector current

$$\mathcal{L}_{\mathrm{SM}}^{K \to \pi \nu \bar{\nu}} = \frac{1}{\Lambda_{\mathrm{SM}}^2} \left(\bar{\nu}_i \gamma^{\mu} \nu_i \right) \left(\bar{d} \gamma_{\mu} s \right)$$

• **BSM**, lepton number **violating scalar** current

$$\mathcal{L}_{\mathrm{BSM}}^{K \to \pi \nu \nu} = \frac{v}{\Lambda_{\mathrm{BSM}}^2} \left(\nu_i \nu_j \right) \left(\bar{ds} \right)$$

- → different phase space distribution
- different acceptance:

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{E949}^{\text{vector}} < 3.35 \times 10^{-10} \text{ at } 90\% \text{ CL}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{E949}^{\text{scalar}} < 21 \times 10^{-10} \text{ at } 90\% \text{ CL}$

Constraining power at KOTO

$$\langle \pi^{0} | \, \bar{ds} \, | \bar{K}^{0} \rangle = \langle \pi^{0} | \, \bar{s}d \, | K^{0} \rangle$$
$$\langle \pi^{0} | \, \bar{d}\gamma^{\mu}s \, | \bar{K}^{0} \rangle = - \langle \pi^{0} | \, \bar{s}\gamma^{\mu}d \, | K^{0} \rangle$$

$$i\mathcal{M}\left(K_L \to \pi^0 \nu \nu\right) = \frac{1}{\sqrt{2+2|\epsilon|^2}} \left(F(1+\epsilon) \left\langle \pi^0 \right| C \left| K^0 \right\rangle + F^*(1-\epsilon) \left\langle \pi^0 \right| C \left| \bar{K}^0 \right\rangle \right) \nu \nu$$

LNV mode \rightarrow scalar current \rightarrow real part LNC mode \rightarrow vector current \rightarrow imaginary part

- \rightarrow no CP phase needed in the LNV case
- → different phase space distribution
- → current signal region more sensitive to SM current

Constraining power at NA62

Summary of sensitivity to scalar current (based on kinematics only):

Experiment	SM (vector)	LNV (scalar)
NA62 SR 1	6%	0.3%
NA62 SR 2	17%	15%
E949 $\pi \nu \overline{\nu}(1)$	29%	2%
E949 $\pi\nu\overline{\nu}(2)$	45%	38%
КОТО	64%	30%

Experiments are generally more sensitive to vector currents

Possibility to disentangle a possible signal by improving on experimental sensitivity and strategy?

Constraining power at NA62

For LNV more events in SR1 expected. for LNC more events in SR2 expected.

Constraints on the New Physics Scale

After integrating over the differential distributions:

$$BR_{LNV}(K^+ \to \pi^+ \nu_i \nu_j) = 10^{-10} \left(\frac{19.2 \text{ TeV}}{\Lambda_{ijsd}}\right)^6$$
$$BR_{LNV}(K_L \to \pi^0 \nu_i \nu_j) = 10^{-10} \left(\frac{24.9 \text{ TeV}}{\Lambda_{ijsd}}\right)^6$$

LNV signal might give additional contribution besides SM contribution:

$$BR(K \to \pi \nu \nu) = BR_{SM}(K \to \pi \nu \bar{\nu}) + \sum_{i \leq j}^{3} BR_{LNV}(K \to \pi \nu_i \nu_j)$$

Different experimental acceptance for different currents:

$$N(K \to \pi \nu \nu) = \left(\mathrm{BR}(K \to \pi \nu \bar{\nu})_{\mathrm{SM}} A_{\mathrm{SM}} + \mathrm{BR}(K \to \pi \nu \nu)_{\mathrm{LNV}} A_{\mathrm{LNV}} \right) N_K$$

$$BR(K \to \pi \nu \bar{\nu})_{SM} + \left(\frac{A_{LNV}}{A_{SM}}\right) \times \sum_{i \le j=1}^{3} BR(K \to \pi \nu_i \nu_j)_{LNV} < 3.35 \times 10^{-10} \quad \frac{A_{LNV}}{A_{SM}} = 0.41$$

36

Putting pieces together

1st generation couplings

\mathcal{O}	$1/\Lambda^2_{K \to \pi \nu \nu}$	$\sum_{i} \Lambda_{iisd}^{E949}$ [TeV]	m_{ν}	$\Lambda^{m_{\nu}}$ [TeV]
1^{y_d}	$\frac{v^3}{\Lambda^5}$	2.4	$\left rac{y_d}{16\pi^2} rac{v^4}{\Lambda^3} ight $	11.6
3b	$\frac{v}{\Lambda^3}$	11.5	$\frac{y_d}{16\pi^2}\frac{v^2}{\Lambda}$	5.2×10^4
$3b^{H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	5.7	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330
5	$\frac{1}{16\pi^2}\frac{v}{\Lambda^3}$	2.6	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	330
10	$\frac{1}{16\pi^2}\frac{y_ev}{\Lambda^3}$	0.8	$\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	9.6×10^{-4}
11b	$rac{1}{16\pi^2}rac{y_dv}{\Lambda^3}$	0.8	$\frac{y_d^2}{\left(16\pi^2\right)^2} \frac{v^2}{\Lambda}$	$8.9 imes 10^{-3}$
14b	$\frac{1}{16\pi^2} \frac{y_u v}{\Lambda^3}$	2.9	$\frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	4.1×10^{-3}
66	$f(\Lambda) \frac{v}{\Lambda^3}$	5.1	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330

Sensitivity to different flavors than most constraining $0\nu\beta\beta$!

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$\mathrm{BR}_{\mathrm{future}}^{\mathrm{NA62}} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$

Similar analysis for charged final states

\mathcal{O}	$1/\Lambda^2_{M^+ \to \ell_i^+ \bar{\nu}_j}$	$\Lambda_{\mu eus}$ [TeV]	$\Lambda_{\mu eud}$ [TeV]	$m_{ u}$	$\Lambda^{m_{\nu}}$ [TeV]
3a	$\frac{v}{\Lambda^3}$	2.2	1.7	$rac{y_d g^2}{(16\pi^2)^2}rac{v^2}{\Lambda}$	69
$3a^{H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	1.3	1.1	$\frac{y_d g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} f(\Lambda)$	0.4
4a	$\frac{v}{\Lambda^3}$	2.2	1.7	$\frac{y_u}{16\pi^2}\frac{v^2}{\Lambda}$	2.4×10^4
$4a^{H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	1.3	1.1	$\frac{y_u}{16\pi^2}\frac{v^2}{\Lambda}f(\Lambda)$	150
$4b^{\dagger}$	$\frac{v}{\Lambda^3}$	2.2	1.7	$\frac{y_u g^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	33
$4b^{\dagger H^2}$	$f(\Lambda)rac{v}{\Lambda^3}$	1.3	1.1	$\left rac{y_u g^2}{\left(16\pi^2 ight)^3} rac{v^2}{\Lambda} ight.$	0.2
6	$f(\Lambda)rac{v}{\Lambda^3}$	1.3	1.1	$\frac{y_u}{(16\pi^2)^2}\frac{v^2}{\Lambda}$	150
7	$\frac{v^3}{\Lambda^5}$	0.8	0.7	$\frac{y_e g^2}{\left(16\pi^2\right)^2} \frac{v^2}{\Lambda} f(\Lambda)$	0.6
8	$\frac{v}{\Lambda^3}$	2.2	1.7	$\frac{y_e y_d y_u g^2}{(16\pi^2)^2} \frac{v^4}{\Lambda^3}$	4.3×10^{-4}
8^{H^2}	$f(\Lambda)rac{v}{\Lambda^3}$	1.3	1.1	$\frac{y_e y_d y_u g^2}{(16\pi^2)^2} \frac{v^4}{\Lambda^3} f(\Lambda)$	7.9×10^{-5}
11a	$\frac{1}{16\pi^2}\frac{y_dv}{\Lambda^3}$	0.2	0.1	$\frac{y_d^2 g^2}{(16\pi^2)^3} \frac{v^2}{\Lambda}$	1.2×10^{-5}
12a	$\frac{1}{16\pi^2} \frac{y_u v}{\Lambda^3}$	0.6	0.5	$\frac{y_u^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	1.9×10^{-3}
$12b^*$	$\frac{1}{16\pi^2}\frac{y_u v}{\Lambda^3}$	0.7	0.6	$\left \begin{array}{c} rac{y_u^2 g^2}{\left(16\pi^2 ight)^3} rac{v^2}{\Lambda} \end{array} ight $	2.6×10^{-6}
13	$\frac{1}{16\pi^2} \frac{y_e v}{\Lambda^3}$	0.2	0.2	$\left(rac{y_e y_u}{(16\pi^2)^2} rac{v^2}{\Lambda} ight)$	4.5×10^{-4}
14a	$\frac{1}{16\pi^2} \frac{(y_u + y_d)v}{\Lambda^3}$	0.6	0.5	$rac{y_u y_d g^2}{\left(16\pi^2 ight)^3}rac{v^2}{\Lambda}$	5.6×10^{-6}
16	$\frac{1}{16\pi^2} \frac{y_e v}{\Lambda^3}$	0.1	0.1	$\frac{y_d y_u g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda}$	7.4×10^{-9}
19	$\frac{1}{16\pi^2}\frac{y_d v}{\Lambda^3}$	0.1	0.1	$\frac{y_e y_u y_d^2 g^2}{(16\pi^2)^3} \frac{v^4}{\Lambda^3}$	2.4×10^{-6}
20	$\frac{1}{16\pi^2}\frac{y_u v}{\Lambda^3}$	0.5	0.4	$\frac{y_e y_u^2 y_d g^2}{\left(16\pi^2\right)^3} \frac{v^4}{\Lambda^3}$	1.8×10^{-6}

Summary

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\rm NP}$ [TeV]	$\hat{\lambda} \; [\text{TeV}]$
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$	0.213
$K^+ \to \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$	0.196
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$	0.178
$B^+ \to \pi^+ \nu \nu$	BR < 1.4×10^{-5} [52]	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.4$	0.174
$B^+ \to K^+ \nu \nu$	$BR < 1.6 \times 10^{-5} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.4$	0.174
$B^0 \to \pi^0 \nu \nu$	$BR < 9 \times 10^{-6} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.5$	0.174
$B^0 \to K^0 \nu \nu$	$BR < 2.6 \times 10^{-5} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.3$	0.174
$K^+ \to \mu^+ \bar{\nu}_e$	BR $< 3.3 \times 10^{-3}$ [32]	\mathcal{O}_{3a}	$\Lambda_{\mu esu} > 2.4$	0.174
$\pi^+ \to \mu^+ \bar{\nu}_e$	BR < 1.5×10^{-3} [32]	\mathcal{O}_{3a}	$\Lambda_{\mu eud} > 1.9$	0.174
$\pi^0 \to \nu \nu$	$BR < 2.9 \times 10^{-13} [78]$	\mathcal{O}_{3b}	$\Lambda_{\nu\nu u d} > 3.4$	0.174
0 uetaeta	$T_{1/2}^{^{136}\text{Xe}} \ge 1.07 \times 10^{26} \text{ yrs} [79]$	\mathcal{O}_{3b}	$\Lambda_{eeud} > 330$	3.5
$\mu^- \to e^+$	$R_{\mu^-e^+}^{\dot{\mathrm{Ti}}} < 1.7 \times 10^{-12} \ [80]$	\mathcal{O}_{14b}	$\Lambda_{\mu eud} > 0.01$	0.174

Bright future perspective – B-meson constraints still in LHC reach. Could imply strong lepton asymmetry washout^{*}).

*) If LNV interaction is confirmed.

Outlook: Leptoquarks

UV complete example: Leptoquarks I

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + \mu S_1 H^{\dagger \alpha} \tilde{R}_{2\alpha} - g_1^{ik} \bar{L}_{i\alpha} i \sigma_2^{\alpha\beta} \tilde{R}_{2\beta}^* \overline{d}_k^c - g_2^{jn} Q_n^{\alpha} L_j^{\beta} \epsilon_{\alpha\beta} S_1 - g_3^{jn} \overline{u}_n^c e_j S_1 + \text{h.c.}$$
Cata, Mannel (2019)
$$\tilde{R}_2 \in 3, 2, 1/6, \qquad \tilde{R}_2 - 1 + \frac{1}{3}$$

$$S_1 \in \overline{3}, 1, 1/3 \qquad S_1 - 1 - \frac{1}{3}$$

$$\mathcal{L}_{7D} = \underbrace{\frac{\mu g_1^{ik} g_2^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c Q_n^{\mu} L_j^{\nu} \epsilon_{\alpha\beta} \epsilon_{\mu\nu}}_{O_{3b}^{(7)}} + \underbrace{\frac{\mu g_1^{ik} g_3^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c Q_n^{\mu} L_j^{\nu} \epsilon_{\alpha\beta} \epsilon_{\mu\nu}}_{O_{3b}^{(7)}} + \underbrace{\frac{\mu g_1^{ik} g_2^{jn}}{m_{\tilde{R}_2}^2 m_{\tilde{S}_1}^2} L_i^{\alpha} H^{\beta} d_k^c u_n^c e_j^c \epsilon_{\alpha\beta}}_{O_{3b}^{(7)}} + \underbrace{\frac{1}{A_{ijkn}^3} O_{3b}^{(7)}}_{V_L^i} + \underbrace{\frac{1}{A_{ijkn}^3} O_{8}^{(7)}}_{V_L^i} + \underbrace{\frac{1}{A_{ijkn$$

UV complete example: Leptoquarks II

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} + \mu S_1 H^{\dagger \alpha} \tilde{R}_{2\alpha} - g_1^{ik} \bar{L}_{i\alpha} i \sigma_2^{\alpha\beta} \tilde{R}_{2\beta}^* \overline{d}_k^c - g_2^{jn} Q_n^{\alpha} L_j^{\beta} \epsilon_{\alpha\beta} S_1 - g_3^{jn} \bar{u}_n^c e_j S_1 + \text{h.c.}$$

$$(m_{\nu})_{i} = \sum_{j} \frac{3\sin(2\theta)g^{2}V_{cd}\tilde{g}_{1}^{id}\tilde{g}_{2}^{jc}U_{ji}}{512\pi^{4}}m_{d}I(m_{\mathrm{LQ}_{1}}^{2}, m_{\mathrm{LQ}_{2}}^{2}, m_{W}^{2})$$

 $(m_{\nu})_i \approx 0.08 eV$

A contribution of Leptoquarks to rare kaon decays would imply a non-trivial flavour pattern to explain smallness of neutrino masses.

Conclusions

- Majorana neutrino masses might be based on higher dimensional LNV operators (e.g. dim-7)
- Strongest limit comes from **0vββ decay**, but first generation only
- Rare kaon decays into same sign charged final states (dim-9) only weakly constrained
- Rare kaon decays into neutrino final states (dim-7) sets competitive limits (beyond first generation only)
 BUT no final conclusion of LNV interaction
- There is a **potential to disentangle** a vector from a scalar current in rare kaon decay experiments
- An observation of LNV in this range can imply **strong lepton-asymmetry washout**
- UV complete example: leptoquarks

Thank you for your attention!

