HEAVY AXION/'MASSLESS' UP FROM PARTIAL COMPOSITENESS

HiDDeN ITN webinar

Rick Sandeepan Gupta IPPP Durham, UK

Based on: RSG, Khoze & Spannowsky (2020)

THE STRONG CP PROBLEM

$$m_{ij}^u \bar{u}_i u_j + m_{ij}^d \bar{u}_i u_j - \frac{g_s^2 \hat{\theta}_{QCD}}{32\pi^2} G \tilde{G}$$

Neutron EDM bounds:

$$\theta_{QCD} = \hat{\theta}_{QCD} + \operatorname{Arg}(\det(m_u m_d)) < 10^{-10}$$

Why is the strong CP phase so close to 0?

Pendelbury et al (2015)

BUT SM NOT CP INVARIANT

$$m_{ij}^u \bar{u}_i u_j + m_{ij}^d \bar{u}_i u_j - \frac{g_s^2 \hat{\theta}_{QCD}}{32\pi^2} G\tilde{G}$$

Same SM fermion mass matrix has another physical phase, the CKM phase which is non-zero:

$$\theta_{CKM} = \operatorname{Arg}(\det(m_u m_d - m_d m_u)) \approx 1.2 \text{ radians}$$

NEW U(I): AXION & MASSLESS UP SOLUTIONS

Introduce new abelian symmetry. This freedom allows us to rotate away this phase

If the up is massless chiral transformation can rotate away strong CP phase

A new U(1), the Peccei-Quinn symmetry, is introduced. This is spontaneously broken in the UV. We have the new term involving the goldstone boson, the axion,

$$\frac{g_s^2\phi}{32\pi^2 f}G\tilde{G}$$

At high scales this allows us to rotate away the strong CP phase by the shift symmetry from the (non-linearly realised) U(1)

$$\frac{\phi}{f} \to \frac{\phi}{f} + \theta_{QCD}$$

AXION POTENTIAL

QCD non perturbative effects break the shift symmetry and give the axion a potential:

$$V(\phi) = -m_u f_\pi^3 \cos\left(\frac{\phi}{f} - \theta_{QCD}\right)$$

Axion stabilises such that:

$$\frac{\phi}{f} - \theta_{QCD} = 0$$

thus solving strong CP problem

Vafa-Witten (1984)

NELSON-BARR MECHANISM

- In a third class of solutions CP (or P) is assumed to be a symmetry of nature and CKM phase is generated at some high scale via spontaneous breaking of CP
- The RG flow of θ_{QCD} due θ_{CKM} to is negligible keeping θ_{QCD} within experimental bounds at low scales.

Nelson (1984) Barr (1984) Babu & Mohapatra (1990)

STRONG CP PROBLEM SOLUTIONS

Axion
Clear low-energy signature
Massless up

Nelson-Barr type solutions

LOW ENERGY PREDICTIONS

Unlike the NB solution, the axion and massless up have unambiguous low energy predictions

I. An axion with a mass and coupling related in a precise way giving the QCD axion band

2. A massless up quark. seemingly ruled out by lattice data

Alexandrou et al (2020)

ASSUMPTION BEHIND LOW ENERGY PREDICTIONS

This relies on the assumption that QCD non-perturbative effects turn on only in the IR.

How robust is this assumption ?

Can we modify QCD in the UV and change these predictions ?

SMALL INSTANTONS CAN ENHANCE AXION MASS

Axion potential arises from closing all the lines.

SMALL INSTANTONS CAN REVIVE MASSLESS UP SOLUTION

- Up mass can be 0 in the deep UV.
- Up mass is then generated additively entirely from instanton effects.
- In the deep UV one can use chiral rotation to remove θ_{QCD} .

SMALL INSTANTONS CAN REVIVE MASSLESS UP SOLUTION

instanton Up mass from QCD 19d yn ~ Jøssedt kg Jyt (Assame Dacs rotated to mass terms]

• Up mass has the right phase such that final value of $\theta_{QCD}=0$. Possible also with IR QCD instantons but disfavoured.

Kaplan & Manohar (1986) Choi, Kim & Sze(1988) Banks, Nir & Seiberg (1994) Agrawal & Howe (2017)

SMALL INSTANTONS CAN REVIVE MASSLESS UP SOLUTION

Up mass from QCD instanton $\partial_{aCD} = \operatorname{Arg} \operatorname{Det} \left[\underbrace{\operatorname{Vuld}}_{y_{n}} \right]_{y_{n}} \underbrace{f_{y_{s}}}_{y_{s}} \underbrace{f_{y_{s}}}_{c_{s}} \underbrace{f_{y_{s}}}_{t_{s}} \underbrace{f_{y_{s}}}$

• Up mass has the right phase such that final value of $\theta_{QCD}=0$. Possible also with IR QCD instantons but disfavoured.

> Kaplan & Manohar (1986) Choi, Kim & Sze(1988) Banks, Nir & Seiberg (1994) Agrawal & Howe (2017)

MASSLESS UP IS MORE CHALLENGING

Axion mass enhancement depends on ratio of scales

• Up Yukawa, dimensionless and independent of UV scale $y_u \sim K_S K_f \sim No$ enhancement

OVERCOMING SMALL INSTANTON SUPPRESSION FACTORS

The small instanton contribution in SM is suppressed because of :

I. Smallness of strong coupling (Kg)

2. Smallness of SM Yukawa (Kg)

OVERCOMING STRONG COUPLING SUPPRESSION

RELATION TO SM FLAVOUR PUZZLE

- In theories that address SM flavour puzzle there may be no small parameters in the UV
- Eg: Froggatt-Nielsen model, Partial Compositeness have only O(1) parameters in the UV.

We will now show that *almost* all Ingredients for 'massless' up solution already present in partial compositeness models. Same ingredients raise axion mass if it is present. These effects can be *almost* automatic

FLAVOUR FROM PARTIAL COMPOSITENESS

- Each fermion has a composite partner. The Higgs is a composite state
- These composite states map to operators in a strongly coupled theory in the UV
- Can be motivated by extra-dimensional constructions

Kaplan (1991) Contino & Pomarol (2004)

FLAVOUR FROM PARTIAL COMPOSITENESS

$$\lambda_{uL}^{ij} = \text{diag}\left[y_{uL}, y_{cL}, y_{tL}\right]$$
$$\mu \frac{dy_f}{d\mu} = (d_F - 5/2)y_f$$
$$y_f(m_\star) = y_f(M) \left(\frac{m_\star}{M}\right)^{d_F - 5/2}$$

- Large anomalous dimensions of the operators lead to running and exponential suppression.
- Anarchic O(I) UV structure can give rise to SM mass and mixing hierarchies

UV COMPLETION OF PARTICLE COMPOSITENESS

- We want a UV completion for the strong sector
- We follow the well-known construction of Ferretti (2014).
- We add some new states so that we have partners for all SM fermions and not just the top as in Ferretti (2014).
- No new ingredients apart from what is required to realise partial compositeness.

PARTICLE CONTENT AND SYMMETRY BREAKING

Contains EW group

Ferretti (2014) Gupta, Khoze and Spannowsky (2020)

PARTICLE CONTENT AND SYMMETRY BREAKING

New flavour symmetry (will be crucial)

Ferretti (2014) Gupta, Khoze and Spannowsky (2020)

PARTICLE CONTENT AND SYMMETRY BREAKING

Condensate: $\langle v \rangle$

$$\begin{split} \langle \psi^p \psi^q \rangle &\sim \delta^{pq} f_{\psi}, \ \langle \chi_u^{p,i} \tilde{\chi}_u^{p,j} \rangle \sim \delta^{ij} f_{\chi_d} \\ \langle \chi_d^{p,i} \tilde{\chi}_d^{p,j} \rangle &\sim \delta^{ij} f_{\chi_d} \end{split}$$

TeV Scale

$$\frac{SU(5) \times SU(3) \times SU(3)' \times SU(3)_F^4 \times U(1)^4}{SO(5) \times SU(3)_c \times SU(3)_F^2 \times U(1)_X \times U(1)_B}$$

All potential Goldstone Bosons all of which get a mass upon introduction of explicit breaking terms as we will see.

FERMIONIC PARTNERS

$$\mathcal{O}_{uL}^{c,i} = (\chi_u \psi \chi_u)^i \qquad \mathcal{O}_{uR}^i = (\bar{\chi}_u \bar{\psi} \tilde{\chi}_u)^i \mathcal{O}_{dL}^{c,i} = (\chi_d \psi \chi_d)^i \qquad \mathcal{O}_{dR}^i = (\bar{\chi}_d \bar{\psi} \tilde{\chi}_d)^i,$$

Up sector partners:

$$egin{aligned} (5,3)_{2/3} & \downarrow \ & (3,2,2)_{2/3} + (3,1,1)_{2/3} & \downarrow \ & (3,2)_{7/6} + (3,2)_{1/6} + (3,1)_{2/3} & \downarrow \ & \downarrow \ & 3_{5/3} + 3 imes 3_{2/3} + 3_{-1/3} \end{aligned}$$

LAGRANGIAN

$$\mathcal{L}_{k} = -i(\bar{\chi}_{u}^{i} \mathcal{D} \chi_{u}^{i} + \bar{\chi}_{d}^{j} \mathcal{D} \chi_{d}^{j} + \bar{\tilde{\chi}}_{u}^{i} \mathcal{D} \tilde{\chi}_{u}^{i} + \bar{\tilde{\chi}}_{d}^{j} \mathcal{D} \tilde{\chi}_{d}^{j} + \bar{\psi} \mathcal{D} \psi) \qquad \text{Kinetic terms}$$

$$\mathcal{L}_{mix} = \frac{\lambda_{u_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_R}-5/2}} u_R^{c,i} U_R^j + \frac{\lambda_{u_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_L}-5/2}} q_L^i U_L^{c,j} \\ + \frac{\lambda_{d_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_R}-5/2}} d_R^{c,i} D_R^j + \frac{\lambda_{d_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_L}-5/2}} q_L^i D_L^{c,j} \end{bmatrix}$$
Partial Compositeness

$$\mathcal{L}_{new} = m_0 e^{i\theta_m} \psi_0 \psi_0 + \frac{g_{4\psi} e^{i\theta_g}}{\Lambda^2} (\bar{\psi}_{-+} \bar{\sigma}_\mu \psi_0) (\bar{\psi}_{+-} \bar{\sigma}^\mu \psi_0)$$

LAGRANGIAN

$$\mathcal{L}_{k} = -i(\bar{\chi}_{u}^{i} \mathcal{D} \chi_{u}^{i} + \bar{\chi}_{d}^{j} \mathcal{D} \chi_{d}^{j} + \bar{\tilde{\chi}}_{u}^{i} \mathcal{D} \tilde{\chi}_{u}^{i} + \bar{\tilde{\chi}}_{d}^{j} \mathcal{D} \tilde{\chi}_{d}^{j} + \bar{\psi} \mathcal{D} \psi) \qquad \text{Kinetic terms}$$

$$\mathcal{L}_{mix} = \frac{\lambda_{u_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_R}-5/2}} u_R^{c,i} U_R^j + \frac{\lambda_{u_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_L}-5/2}} q_L^i U_L^{c,j} + \frac{\lambda_{d_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_R}-5/2}} d_R^{c,i} D_R^j + \frac{\lambda_{d_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_L}-5/2}} q_L^i D_L^{c,j} + \frac{\lambda_{d_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_L}-5/2}} q_L^i D_L^{c,j}$$

Give masses to all goldstones

$$\mathcal{L}_{new} = m_0 e^{i\theta_m} \psi_0 \psi_0 + \frac{g_{4\psi} e^{i\theta_g}}{\Lambda^2} (\bar{\psi}_{-+} \bar{\sigma}_\mu \psi_0) (\bar{\psi}_{+-} \bar{\sigma}^\mu \psi_0)$$

Important for small instanton contributions Only new ingredient

RUNNING OF STRONG COUPLING

$$\frac{dg_s}{d\log\mu} = -(11-2n_f/3)\frac{g_s^3}{16\pi^2}$$

QCD becomes strongly coupled at the M=2000 TeV scale again

•QCD instantons unsuppressed at this scale, i.e.: $\kappa_s \sim 1$

RUNNING OFTHE MIXING TERMS

'Yukawas' O(I) at UV scale M. SM mass/mixing suppressions from running

TWO SCENARIOS

- SCENARIO I: y_{uL}=0 in the deep UV and generated only additively by QCD instanton. Massless up quark solution revived
- SCENARIO II: y_{uL} non-zero but axion present. Axion becomes heavy due to instanton effects

SCENARIO I:UP MASS FROM INSTANTON

Generation of yuL by QCD instanton

SCENARIO I:UP MASS FROM INSTANTON

SCENARIO I:UP MASS FROM INSTANTON

$$Y_u(m_{\star}) \sim \frac{y_{uL}(m_{\star})y_{uR}(m_{\star})}{4\pi} \sim 1.5 \times 10^{-5} \kappa_s \left(\frac{g_{4\psi}}{16\pi^2}\right)^3$$

This value was obtained by using IR values of SM Yukawa as boundary conditions

Up Yukawa may be reproduced in the non-perturbative limit for all couplings.

STRONG CP SOLUTION

- DEEP UV: Chiral rotation of u_L can remove θ_{QCD}
- BELOW SMALL INSTANTON SCALES: y_{uL} has just the right phase to give $\theta_{QCD}=0$

$$\begin{aligned} \theta_{QCD}(M) &= & \operatorname{Arg}(y_{uL}^* y_{uR}^* \prod_{f=d,s,c,b,t} y_{fL}^* y_{fR}^*) \\ &= & \operatorname{Arg}(\prod_{f=u,d,s,c,b,t} |y_{fL}|^2 |y_{fR}|^2) = 0. \end{aligned}$$

SCENARIO II: HEAVY AXION FROM INSTANTONS

We must close all lines to obtain axion potential.

SCENARIO II: HEAVY AXION FROM INSTANTONS

Gupta, Khoze and Spannowsky (2020)

OTHER PHASES/CONTRIBUTIONS ?

- Extended set ups lead to new phases usually
- Are there other phases or other ways of closing 't Hooft vertex?
- If yes this will lead to new contributions to up Yukawa/axion potential misaligned in phase. Will give a non-zero θ_{QCD}

OTHER PHASES ?

$$\begin{aligned} \mathcal{L}_{k} &= -i(\bar{\chi}_{u}^{i}\not{D}\chi_{u}^{i} + \bar{\chi}_{d}^{j}\not{D}\chi_{d}^{j} + \bar{\chi}_{u}^{i}\not{D}\tilde{\chi}_{u}^{i} + \bar{\chi}_{d}^{j}\not{D}\tilde{\chi}_{d}^{j} + \bar{\psi}\not{D}\psi) \end{aligned} \begin{bmatrix} 1 \\ 2 \\ \mathcal{L}_{mix} &= \frac{\lambda_{u_{R}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_{R}} - 5/2}} u_{R}^{c,i} U_{R}^{j} + \frac{\lambda_{u_{L}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_{L}} - 5/2}} q_{L}^{i} U_{L}^{c,j} \\ &+ \frac{\lambda_{d_{R}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_{R}} - 5/2}} d_{R}^{c,i} D_{R}^{j} + \frac{\lambda_{d_{L}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_{L}} - 5/2}} q_{L}^{i} D_{L}^{c,j} \\ &+ \frac{\lambda_{d_{R}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_{R}} - 5/2}} d_{R}^{c,i} D_{R}^{j} + \frac{\lambda_{d_{L}}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_{L}} - 5/2}} q_{L}^{i} D_{L}^{c,j} \end{aligned}$$

- 1. First, the phase θ_m can be rotated away by $\psi_0 \rightarrow \psi_0 e^{-i\theta_m/2}$ which redefines θ_g, θ_R and θ' .
- 2. Next, the phase θ_g associated to $g_{4\psi}$ can be rotated to λ_{uL}^{ij} and λ_{dL}^{ij} by making the transformation $\psi_{-+} \rightarrow \psi_{-+} e^{i\theta_g}$. This also redefines θ' .
- 3. Then θ' can be eliminated by an equal rotation of all χ_i and $\tilde{\chi}_i$, which also redefines θ_{QCD} .
- 4. Finally θ_R can be eliminated by an equal but opposite rotation of the χ_i relative to the $\tilde{\chi}_i$.

All CP phases can be rotated to mixing terms

MFV REALISATION

$$\begin{aligned} \mathcal{L}_{mix} &= \frac{\lambda_{u_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_R}-5/2}} u_R^{c,i} U_R^j + \frac{\lambda_{u_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{U_L}-5/2}} q_L^i U_L^{c,j} \\ &+ \frac{\lambda_{d_R}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_R}-5/2}} d_R^{c,i} D_R^j + \frac{\lambda_{d_L}^{ij}}{4\pi} \frac{1}{\Lambda^{d_{D_L}-5/2}} q_L^i D_L^{c,j} \end{aligned}$$

$$\lambda_{uR,dR}^{ij} \sim y_{uR,dR} \; e^{i\theta_R} \delta^{ij}$$

$$\begin{split} Y_{u}^{ij} &\sim \frac{\lambda_{uL}^{ik} \lambda_{uR}^{kj}}{4\pi} \sim \lambda_{uL}^{ij} y_{uR} \\ Y_{d}^{ij} &\sim \frac{\lambda_{dL}^{ik} \lambda_{dR}^{kj}}{4\pi} \sim \lambda_{dL}^{ij} y_{dR} \end{split}$$

Only two phases as in SM: $\bar{\theta}_{QCD} = \theta_{QCD} + \operatorname{ArgDet} [\lambda_u \lambda_d]$ $\theta_{CKM} = \operatorname{ArgDet} [\lambda_u \lambda_d - \lambda_d \lambda_u]$

Redi & Wulzer (2014)

CKM PHASE ONLY OTHER PHASE

- What about contribution of CKM phase to running of θ_{QCD} in SM
- In SM this is 7 loop suppressed.
- In this model it is even more suppressed !
- Our model is secretly an NB model!

CONCLUSIONS

- Strong CP problem solutions such as massless up solution and axion solution have clear low energy predictions
- These predictions assume QCD instantons are important only in the IR
- Small instantons can become important in some scenarios
- This happens automatically in partial compositeness yielding heavy axion/ 'massless' up solution