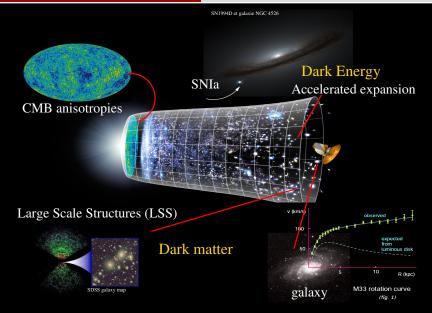
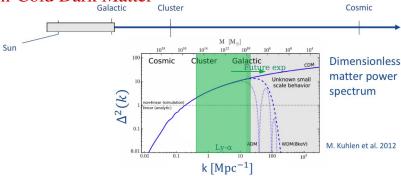
Freeze-in, SuperWIMP and Primordial Black Holes sources of Non Cold Dark Matter

Laura Lopez Honorez

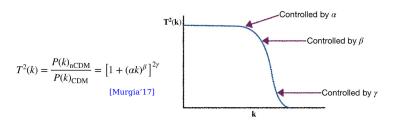


inspired by JCAP 08 (2020) 045 and JCAP 03 (2022) 03 in collaboration with I. Baldes, Q. Decant, J. Heisig and D.C. Hooper.

HiDDeN ITN Network Webinars

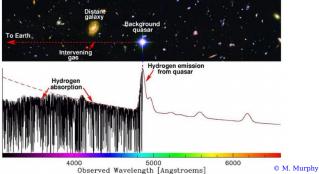


The Quest to determine the Composition of our Universe



80% of the matter content is made of Dark Matter

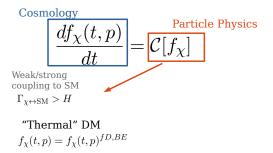
- Thermal WDM free-streaming from overdense to underdense regions \rightsquigarrow Smooth out inhomegeneities for $\lambda \leq \lambda_{FS} \sim \int v/adt$
- Effects P(k) and T(k) generalized to Non-Cold DM see e.g. [Bode'00, Viel'05, Murgia'17], includes NCDM free-streaming and collisional damping.

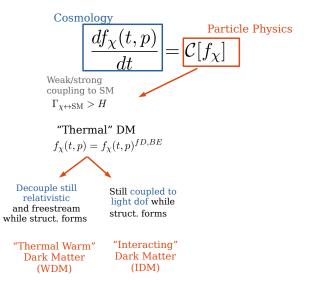


[Courtesy DC Hooper]

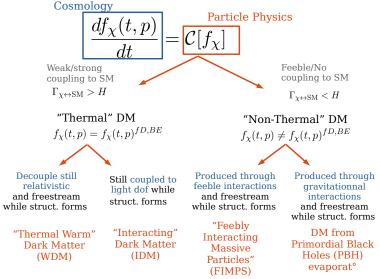
- Thermal WDM free-streaming from overdense to underdense regions \rightsquigarrow Smooth out inhomegeneities for $\lambda \lesssim \lambda_{FS} \sim \int v/adt$
- Effects P(k) and T(k) generalized to Non-Cold DM see e.g. [Bode'00, Viel'05, Murgia'17], includes NCDM free-streaming and collisional damping.

5/30

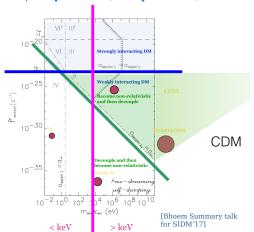



- Thermal WDM free-streaming from overdense to underdense regions \sim Smooth out inhomegeneities for $\lambda \lesssim \lambda_{FS} \sim \int v/adt$
- Effects P(k) and T(k) generalized to Non-Cold DM see e.g. [Bode'00, Viel'05, Murgia'17], includes NCDM free-streaming and collisional damping.
- Thermal WDM against Lyman- α forest data: absorption lines along line of sights to distant quasars probe smallest structures $\rightsquigarrow m_{\rm WDM}^{\rm thermal} > 1.9-5.3 \text{ keV}$

see e.g. [Viel'05, Yeche'17, Palanque-Delabrouille'19, Garzilli'19]

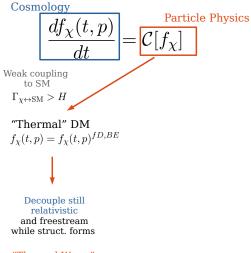

5/30

 $\frac{df_{\chi}(t,p)}{dt} = \frac{\mathcal{C}[f_{\chi}]}{\mathcal{C}[f_{\chi}]}$



Classification

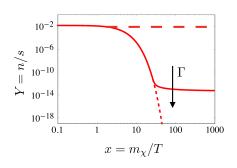
(astro-ph/0012504, astro-ph/0410591)


6/30

Reminder: Thermal WDM as Free-streaming DM

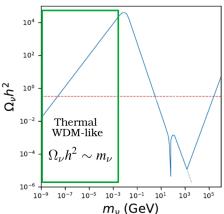
7/30

NCDM as thermal WDM



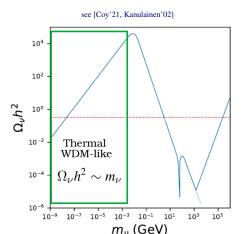
"Thermal Warm" Dark Matter (WDM)

Thermal WDM freeze-out


$$\frac{df_{\chi}}{dt} = \mathcal{C}_{ann}[f_{\chi}] \quad \rightsquigarrow \quad n_{\chi} \propto \frac{g_{*,S}^{0}}{g_{*,S}(T_{D})}$$

- DM annihilation driven freeze-out
- χ chem. & kin. equilibrium
- DM decouples while relativistic: $x_D = m_B/T_D$ and $x_D < 3$
- $\Omega_{\chi} h^2 = 0.12 \frac{g_{\chi}^{(n)} m_{\chi}}{6 \, \text{eV}} \frac{g_{*,S}^0}{g_{*,S}(T_D)}$

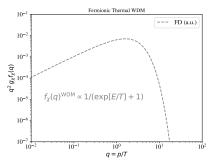
Thermal WDM abundance



$$\Omega_{\chi}h^2 = 0.12 \frac{g_{\chi}^{(n)} m_{\chi}}{6 \,\text{eV}} \frac{g_{*,S}^0}{g_{*,S}(T_D)}$$

• Illustrative case of SM neutrinos (2 dof) $T_D \sim \text{MeV}$, i.e. $g_{*,S}(T_D) = 10.75$ $\leadsto \sum_{\nu} m_{\nu} \sim 10 \text{ eV}$ for all DM (Excluded!!)

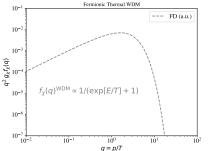
Thermal WDM abundance

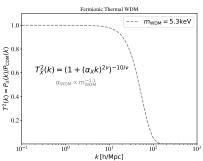

$$\Omega_{\chi}h^2 = 0.12 \frac{g_{\chi}^{(n)} m_{\chi}}{6 \,\text{eV}} \frac{g_{*,S}^0}{g_{*,S}(T_D)}$$

• Illustrative case of SM neutrinos (2 dof) $T_D \sim \text{MeV}$, i.e. $g_{*,S}(T_D) = 10.75$ $\leadsto \sum_{\nu} m_{\nu} \sim 10 \text{ eV}$ for all DM (Excluded!!)

• Thermal WDM candidate (fermion w/ 2 dof) needs $g_{*,S}(T_D) \sim 1000 \times (m_\chi/\text{keV})$ for all DM i.e. for few keV DM $g_{*,S}(T_D) \gg g_{SM}^{tot} \sim 100$

Thermal WDM: exponential cut in P(k) at small scales


see also [Bode'00, Viel'05]

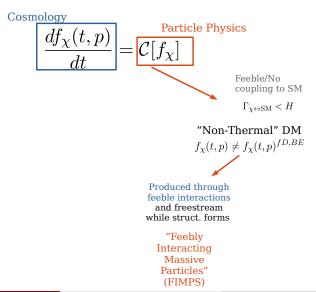


• Thermal WDM is in kinetic equilibrium thanks to fast elastic scatterings with thermal plasma: $\frac{d}{dt}f_{\chi} = C_{el}[f_{\chi}] \leadsto f_{\chi} \propto f_{\chi}^{eq}(q)$

Thermal WDM: exponential cut in P(k) at small scales

see also [Bode'00, Viel'05]

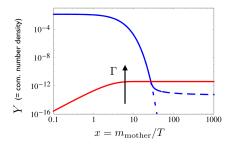
- Thermal WDM is in kinetic equilibrium thanks to fast elastic scatterings with thermal plasma: $\frac{d}{dt}f_{\chi} = C_{el}[f_{\chi}] \leadsto f_{\chi} \propto f_{\chi}^{eq}(q)$
- Evolve f_{χ} up to 1st order pert. (w/ Boltzmann code as e.g. CLASS): Transfer function $T(k) = (1 + (\alpha_{\text{WDM}} k)^{2\nu})^{-5/\nu}$ with $\nu = 1.12$ [Viel'05]


Free-streaming scale: $\alpha_{\text{WDM}} \sim 0.045 \left(\frac{m_{\text{WDM}}}{\text{keV}}\right)^{-1.11} \text{Mpc}/h$

FIMPs as Free-streaming DM

see arXiv:2111.09321

NCDM as a FIMP



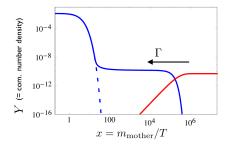
Non-termal FIMP from Freeze-in

see also [McDonald '02; Covi'02; Choi'05; Asaka'06; Frère'06; Petraki'08; Hall'09; etc]

$$\frac{df_{\chi}}{dt} = \mathcal{C}_{B \to \chi}[f_{\chi}] \quad \rightsquigarrow \quad n_{\chi} \propto \Gamma_{B \to \chi}$$

$$\rightsquigarrow$$
 $n_\chi \propto \Gamma_{B \to \chi}$

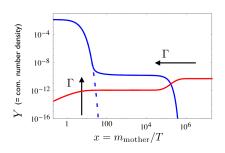
- Freeze-in from B decays
- $\bullet \chi$ decoupled
- B in chem. & kin. equilibrium
- $\bullet \ \Omega_{\gamma} h^2 \propto \Gamma_{B \to \gamma} M_D / m_B^2 \sim R_{\Gamma}$
- $\Omega_{\rm v}h^2=0.12 \rightsquigarrow \lambda_{\rm v} \lesssim 10^{-8}$
- $x = m_B/T$ and $x_{\rm FI} \sim 3$


Careful: late decay (SW), production via scattering, early matter dominated era (T_R small), non renormalisable operators and thermal corrections for ultra-relativistic DM not taken into account.

Zero χ initial abundance assumed.

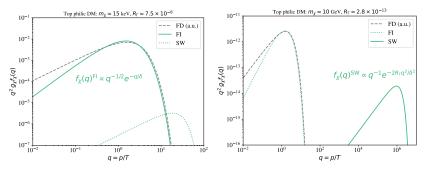
Non-termal FIMP from superWIMP

see also [Covi '99 ;Feng '03]


$$\frac{df_{\chi}}{dt} = \mathcal{C}_{B \to \chi}[f_{\chi}] \quad \rightsquigarrow \quad n_{\chi} \propto n_{B}^{\text{FO}}$$

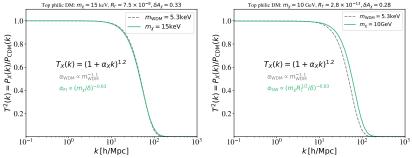
- superWIMP from late B decays
- χ decoupled
- B chem. decoupled
- $\Omega_{\chi} h^2 = m_{\chi}/m_B \times \Omega_B h^2|_{FO}$ if $B \to A_{SM} A'_{SM}$ not open
- $x = m_B/T$ and $x_{SW} \sim R_{\Gamma}^{-1/2} > 3$

FIMPs from FI & superWIMP


Careful: both SW and FI contributions are always present for production via *B* decays!!

- χ decoupled
- χ population slowly builds up from B before and after FO.
- $\bullet \ \Omega_{\chi} h^2 = \Omega_{\chi} h^2 |_{\mathrm{FI}} + \Omega_{\chi} h^2 |_{\mathrm{SW}}$

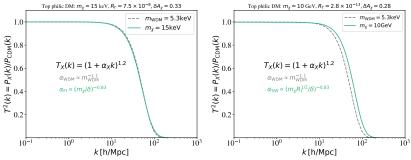
Pure FI & SW: WDM-like


see also [Jedamzik'05, Heeck'17, Boulebnane'17, Kamada'19, Baumholzer'19, Ballesteros'20, d'Eramo'20, etc]

• Contrarily to "usual" WDM, FIMPs are non-thermaly produced. Distribution $f_{\chi} \propto q_{\star}^{-\alpha} \exp(-q_{\star}^{\beta})$ with $\alpha = \frac{1}{2}, 1$ and $\beta = 1, 2$ for FI, SW.

Pure FI & SW: WDM-like

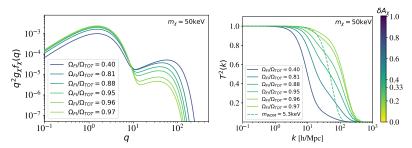
see also [Jedamzik'05, Heeck'17, Boulebnane'17, Kamada'19, Baumholzer'19, Ballesteros'20, d'Eramo'20, etc]



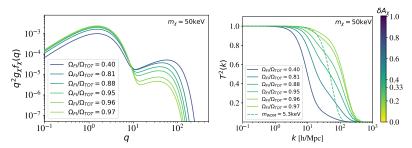
- Contrarily to "usual" WDM, FIMPs are non-thermaly produced. Distribution $f_{\chi} \propto q_{\star}^{-\alpha} \exp(-q_{\star}^{\beta})$ with $\alpha = \frac{1}{2}$, 1 and $\beta = 1, 2$ for FI, SW.
- Using CLASS: Pure FI/SW transfer functions similar to thermal WDM. \rightsquigarrow Breaking scales ($m_B \gg m_A, m_\chi, T_{\text{prod}} > T_{\text{EW}}$) [Decant, Heisig, Hooper,LLH'21]

$$\alpha_{\text{FIMP}} \sim \begin{cases} 0.164 \times (m_\chi/\text{keV})^{-0.833} \, \text{Mpc/h} & \text{for FI,} \\ 0.0542 \times (m_\chi/\text{keV} \times (R_\Gamma)^{-1/2})^{-0.833} \, \text{Mpc/h} & \text{for SW}, \end{cases}$$

Pure FI & SW: WDM-like


see also [Jedamzik'05, Heeck'17, Boulebnane'17, Kamada'19, Baumholzer'19, Ballesteros'20, d'Eramo'20, etc]

- Contrarily to "usual" WDM, FIMPs are non-thermaly produced. Distribution $f_{\chi} \propto q_{\star}^{-\alpha} \exp(-q_{\star}^{\beta})$ with $\alpha = \frac{1}{2}$, 1 and $\beta = 1, 2$ for FI, SW.
- Using CLASS: Pure FI/SW transfer functions similar to thermal WDM. ightharpoonup Lyman-lpha lower mass bound ($m_B \gg m_A$, $T_{\rm prod} > T_{\rm EW}$) [Decant, Heisig, Hooper,LLH'21]


$$m_{\chi} \gtrsim \begin{cases} 15 \text{ keV} & \text{for FI,} \\ 3.8 \text{ keV} \times (R_{\Gamma})^{-1/2} & \text{for SW,} \end{cases}$$
 for $m_{\text{WDM}}^{\text{Ly}-\alpha} > 5.3 \text{ keV}$

Mixed FI & SW: significant deviations from WDM

• Mixed FI-SM $q^2 f_{\chi}$ is multimodal $\rightsquigarrow T^2(k) = P_{\text{FIMP}}(k)/P_{\text{CDM}}(k)$ can significantly deviate from e.g. WDM, α, β, γ param. or CDM+WDM

Mixed FI & SW: significant deviations from WDM

- Mixed FI-SM $q^2 f_{\chi}$ is multimodal $\rightsquigarrow T^2(k) = P_{\text{FIMP}}(k)/P_{\text{CDM}}(k)$ can significantly deviate from e.g. WDM, α, β, γ param. or CDM+WDM
- We use the area criterion [Murgia'17] measuring the relative $P_{1D}(k)$ deviation over $0.5h/\mathrm{Mpc} < k < 20h/\mathrm{Mpc}$: $\delta A_\chi < \delta A_{\mathrm{WDM}}^{ly-\alpha} = 0.33$ for $m_{\mathrm{WDM}}^{\mathrm{Ly}-\alpha} > 5.3$ keV see also [Schneider'16] and e.g. [D'Eramo'20, Egana-Ugrinovic'21.Dienes'21]

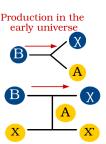
Illustrative framework: minimal extension of SM

Dark matter χ coupled to dark B and SM A through Yukawa-like interactions

$$\mathcal{L} \subset \lambda_{\chi} \chi A_{SM}B$$

- Dark sector (Z_2 odd): $m_B > m_\chi$
- B is $SU(3) \times SU(2) \times U(1)$ charged
 - fast $B^{\dagger}B \leftrightarrow SM$ SM through gauge interactions at early time
 - B is produced at colliders today

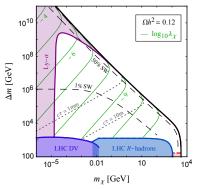
Illustrative framework: minimal extension of SM

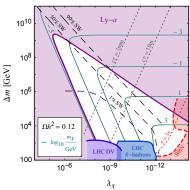

Dark matter χ coupled to dark B and SM A through Yukawa-like interactions

$$\mathcal{L} \subset \lambda_{\chi} \chi A_{SM}B$$

- Dark sector (Z_2 odd): $m_B > m_\chi$
- B is $SU(3) \times SU(2) \times U(1)$ charged
 - fast $B^{\dagger}B \leftrightarrow SM SM$ through gauge interactions at early time
 - B is produced at colliders today
- Minimal scenarios:

$oldsymbol{A}_{ ext{ iny SM}}$	Spin DM	Spin B	Interaction	Label
$\psi_{\scriptscriptstyle \mathrm{SM}}$	0	1/2	$ar{\psi}_{ ext{SM}}\Psi_{B}\phi$	$\mathcal{F}_{\psi_{\scriptscriptstyle{\mathrm{SM}}}\phi}$
	1/2	0	$ar{\psi}_{\scriptscriptstyle{ ext{SM}}}\chi\Phi_{B}$	$\mathcal{S}_{\psi_{\scriptscriptstyle{ ext{SM}}}\chi}$
$F^{\mu u}$	1/2	1/2	$\bar{\Psi}_B \sigma_{\mu\nu} \chi F^{\mu\nu}$	$\mathcal{F}_{F\chi}$
Н	0	0	$H^\dagger \Phi_B \phi$	$\mathcal{S}_{H\phi}$
11	1/2	1/2	$\bar{\Psi}_B \chi H$	$\mathcal{F}_{H\chi}$

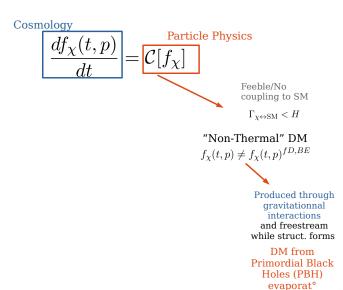

[Calibbi, D'Eramo, Junius, LLH, Mariotti 21]



Cosmo-Particles complementarity

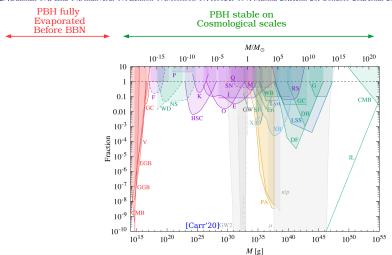
see also e.g. [Hall'09; Co'15; Hessler'16; d'Eramo'17, Buchmueller'17; Brooijmans'18; Belanger'18; No'19; Garny'18; Calibbi'18,21; etc]

Topphilic FIMP :
$$\mathcal{L} \subset \mathcal{L}_K - \frac{m_{\chi}}{2} \bar{\chi} \chi - m_{\phi} \phi^{\dagger} \phi - \lambda_{\chi} \phi \bar{\chi} t_R + h.c.$$

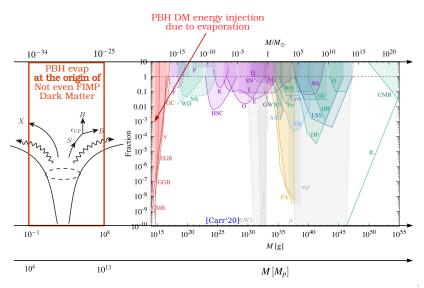

- Topphilic DM: Parameter space cornered by particle (DV + R-hadron searches at LHC for top-philic) and cosmology (Lyman-α, BBN) probes.
- Lyman- α forest data probe DM over a large range of λ_{χ} , complementary to BBN for $m_{\chi} \sim$ few 100 GeV.

DM from evaporating PBH as free streaming DM

see JCAP 08 (2020) 045



NCDM from PBH evaporation

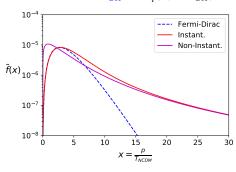

PBH and Dark Matter

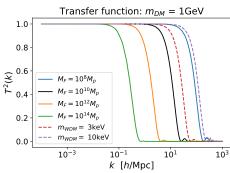
see also e.g. [Bauman'07,Fujita'14,Allahverdi'17, Lennon'17,Morrison'17, Hooper'19+, Masina'20,Keith'20, Gondolo'20,Bernal'20+]

PBH and Dark Matter

see also e.g. [Bauman'07,Fujita'14,Allahverdi'17, Lennon'17,Morrison'17, Hooper'19+, Masina'20,Keith'20, Gondolo'20,Bernal'20+]

NCDM from PBH evaporation

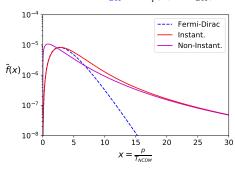

PBHs may be light enough to decay via **Hawking radiation** at an early enough epoch to avoid all previous constraints.

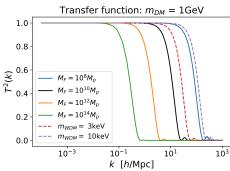

- DM particles (and SM) will be produced from PBH evaporation given gravitational interactions (not even FIMPs needed).
- For $m_{DM} < T_{BH}^{init} = M_p^2/(8\pi M_{BH}^{init})$, behave as non-thermal NCDM.

NCDM from PBH evaporation

PBHs may be light enough to decay via **Hawking radiation** at an early enough epoch to avoid all previous constraints.

- DM particles (and SM) will be produced from PBH evaporation given gravitational interactions (not even FIMPs needed).
- For $m_{DM} < T_{BH}^{init} = M_p^2/(8\pi M_{BH}^{init})$, behave as non-thermal NCDM.

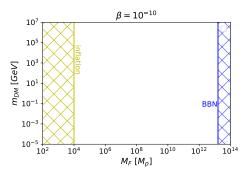



For
$$T(k) = (1 + (\alpha_{PBH}k)^{2\nu})^{-5/\nu}$$
 we get $\alpha_{PBH} \propto m_{DM}^{-0.83} \times (M_{BH}^{init})^{0.42}$

NCDM from PBH evaporation

PBHs may be light enough to decay via **Hawking radiation** at an early enough epoch to avoid all previous constraints.

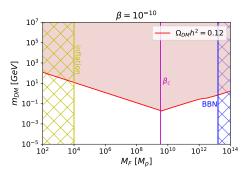
- DM particles (and SM) will be produced from PBH evaporation given **gravitational interactions** (not even FIMPs needed).
- For $m_{DM} < T_{BH}^{init} = M_p^2/(8\pi M_{BH}^{init})$, behave as non-thermal NCDM.


Lyman- α bound: $m_{\rm DM}^{\rm PBH} \geq 2\,{\rm GeV} \times \left(M_{\rm BH}^{\rm init}/(10^{10}M_p)\right)^{1/2}$ [for $m^{\rm Ly-\alpha} > 3\,{\rm keV}$ and $\beta > \beta_c$]

PBH generation: during radiation domination (after inflation) an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass. [Zeldovich & Novikov; Hawking; Carr & Hawking]

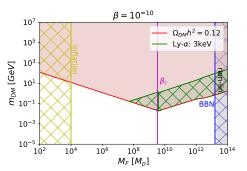
$$M_{BH}^{init} \equiv M_F = M_{horiz} = \gamma \rho_{tot} \times 4\pi/(3H_F^3)$$

PBH generation: during radiation domination (after inflation) an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass. [Zeldovich & Novikov; Hawking; Carr & Hawking]


$$M_{BH}^{init} \equiv M_F = M_{horiz} = \gamma \rho_{tot} \times 4\pi/(3H_F^3)$$

- PBH formed after inflation: $t_F > t_{infl} \rightarrow M_F > 10^4 M_p$
- PBH evaporate before BBN: $t_{\rm ev} < t_{BBN} \rightarrow M_F < 2 \times 10^{13} M_p$

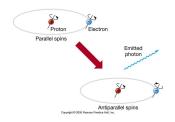
PBH generation: during radiation domination (after inflation) an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass. [Zeldovich & Novikov; Hawking; Carr & Hawking]


$$M_{BH}^{init} \equiv M_F = M_{horiz} = \gamma \rho_{tot} \times 4\pi/(3H_F^3)$$

- PBH formed after inflation: $t_F > t_{infl} \rightarrow M_F > 10^4 M_p$
- PBH evaporate before BBN: $t_{\rm ev} < t_{BBN} \rightarrow M_F < 2 \times 10^{13} M_p$
- DM abundance depends on the initial BH fraction: $\beta \equiv \rho_{\text{PBH}}/\rho_{\text{tot}}|_{t_F} \leq 1$

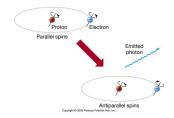
PBH generation: during radiation domination (after inflation) an initially large density perturbation at sufficiently small scale can collapse to form a PBH with mass of order the horizon mass. [Zeldovich & Novikov; Hawking; Carr & Hawking]

$$M_{BH}^{init} \equiv M_F = M_{horiz} = \gamma \rho_{tot} \times 4\pi/(3H_F^3)$$

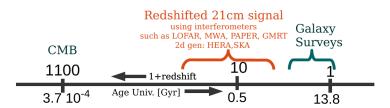

- PBH formed after inflation: $t_F > t_{infl} \rightarrow M_F > 10^4 M_p$
- PBH evaporate before BBN: $t_{\rm ev} < t_{BBN} \rightarrow M_F < 2 \times 10^{13} M_p$
- DM abundance depends on the initial BH fraction: $\beta \equiv \rho_{\text{PBH}}/\rho_{\text{tot}}|_{t_F} \leq 1$

Lyman- α bound: NCDM account for all the DM if $\beta \lesssim 5 \times 10^{-7}$ and $m_{\rm DM} \gtrsim 2 \, {\rm MeV}$.

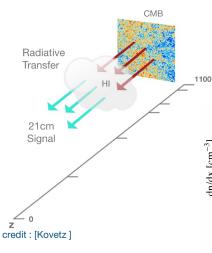
Future constraints on Non-Cold Dark Matter?



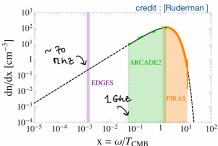
21 cm Cosmology

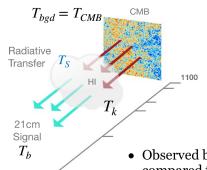

Transitions between the two ground state energy levels of neutral hydrogen HI
 21 cm photon (ν₀ = 1420 MHz)

21 cm Cosmology



- Transitions between the two ground state energy levels of neutral hydrogen HI


 → 21 cm photon (ν₀ = 1420 MHz)
- 21 cm photon from HI clouds during dark ages & EoR redshifted to $\nu \sim 100$ MHz \rightarrow new cosmology probe


21 cm in practice

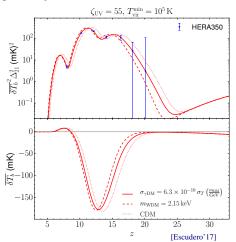
• 21cm signal observed as CMB spectral distortions

21 cm in practice

- 21cm signal observed as CMB spectral distortions
- The spin temperature (= excitation T of HI) charaterises the relative occupancy of HI gnd state

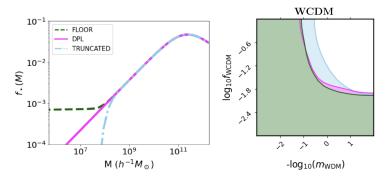
$$n_1/n_0 = 3\exp(-h\nu_0/k_B T_S)$$

Observed brightness of a patch of HI compared to CMB at $\nu = \nu_0/(1+z)$


$$\delta T_b \approx 27 mK x_{HI} (1+\delta) \sqrt{\frac{1+z}{10}} \left(1 - \frac{T_{CMB}}{T_S}\right)$$

credit: [Kovetz]

Delayed 21cm features for Non-CDM


see also [Sitwell'13, Escudero'18, Schneider'18, Safarzadeh'18, LLH'18, Muñoz'20, Schneider'22, Giri'22, etc]

Halo suppression can lead to delayed astro processes giving rise to reionization or 21cm features. Stronger delay for WDM than IDM.

Forecast SKA constraints on WDM+CDM

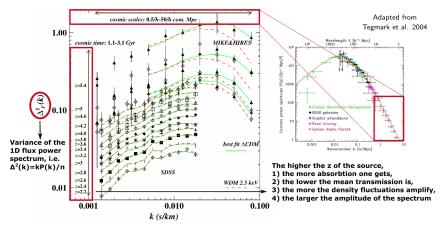
[Giri'22] (MCMC analysis): For low minimum virial mass ($T_{vir}^{min} < 10^4 \text{K}$) and in the case that minihaloes are populated with stars, stringent constraints can be obtained on e.g. 100% WDM: up to $m_{\text{WDM}} < 15 \text{ keV}$.

For $T_{vir}^{min} \sim 10^4$ K it will be difficult to distinguish between an inefficient source models and a universe filled with NCDM.

Conclusion

Non CDM can be free-steaming (focus of today's talk) and/or experiencing collisional damping and give rise to suppressed stucture formation at small scales.

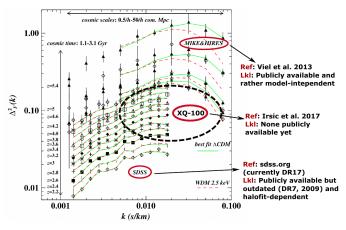
- NCDM is not necessarily thermal WDM and can have a mass much larger than few keV.
- Multiple NCDM production mechanisms can give rise to the same/similar features in Cosmology observations. Lyman- α forest data can probe a large parts of the DM parameter space.
- Complementary observations are necessary to pin point the DM nature.
- Future radio telescopes (21cm Cosmology) might put stringent constraints on NCDM and distinguish between NCDM scenarios (but this might depend on T_{vir}^{min} [Giri'22])


Thank you for the invitation and for your attention!!

Backup

Lyman- α forest

Absorption lines produced by the inhomogeneous IGM along different line of sights to distant quasars: a fraction of photons is absorbed at the Lyman- α wave-length (corresponding to $\lambda_{\alpha} \sim 121$ nm), resulting in a depletion of the observed spectrum at a given frequency ($\lambda_{abs} < \lambda_{\alpha}$).


- Allows us to trace neutal hydrogen clouds, i.e. smallest structures
- Provides a tracer of the matter power spectrum at high redshifts (2 < z < 6) and small scales ($0.5 \ h/\text{Mpc} < k < 20 \ h/\text{Mpc}$).
- IGM modelling requires nonlinear evolution: this needs N-body hydrodynamical simulations. Computational expensive and only available for few benchmark models.

Adapted from Viel et al. 2013

1/25

Matteo Lucca

Adapted from Viel et al. 2013 5/2

Matteo Lucca

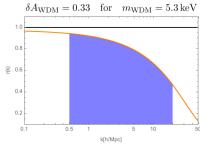
Area criterium [Schneider 2016, Murgia, Merle, Viel, Totzauer, Schneider 2017]

Consider ratio of ID power spectra, computed with CLASS

$$r(k) = \frac{P_{1D}^X(k)}{P_{1D}^{\text{CDM}}(k)} \quad \text{with} \quad P_{1D}^X(k) = \int_k^\infty dk' \, k' \, P_X(k') \,,$$

• Compute area under the curve

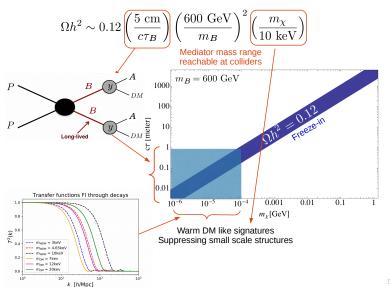
$$A_X = \int_{\mathbf{k}_{\min}}^{k_{\max}} dk' \, r(k')$$

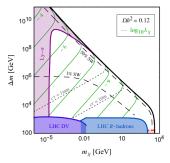

and

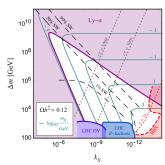
$$\delta A_X = \frac{A_{\rm CDM} - A_X}{A_{\rm CDM}}$$

• For freeze-in ($\delta = 1$):

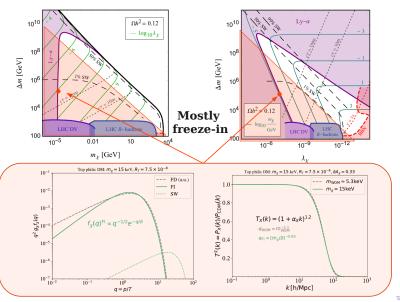
$$m_{\rm FI} > 15.3 \, {\rm keV}$$

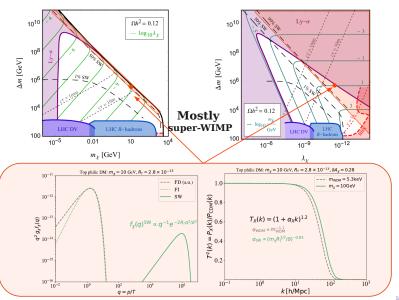

Suitable for mixed scenario

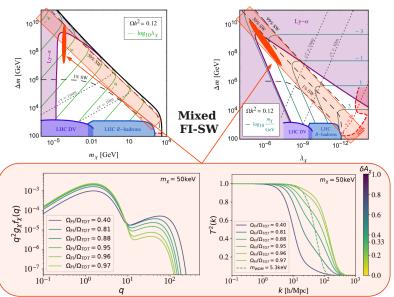



[see also D'Eramo, Lenoci, 2020; Egana-Ugrinovic, Essig, Gift, LoVerde 2021]

FIMPs: LLPs and NCDM


e.g. [Hall'09, Co'15, Hessler'16, d'Eramo'17, Heeck'17, Boulebnane'17, Brooijmans'18, Garny'18, Calibbi'18, No'19, Belanger 18, etc]





$$\mathcal{L} \subset \mathcal{L}_K - \frac{m_{\chi}}{2} \bar{\chi} \chi - m_{\phi} \phi^{\dagger} \phi - \lambda_{\chi} \phi \bar{\chi} t_R + h.c.$$

PBH evaporation and Greybody factors

BH temperature and Evaporation see [Hawking 74-75, Bardeen 1973, Page 1976 & Mc Gibbon 1990]

$$T_{\mathrm{BH}} = rac{M_p^2}{8\pi M_{\mathrm{BH}}} \quad \mathrm{and} \quad rac{dN_j}{dt dE} = rac{g_j}{2\pi} rac{\Gamma_j(E, M_{\mathrm{BH}})}{\exp\left(E/T_{\mathrm{BH}}\right) \pm 1} \,,$$

where $\Gamma_j(E, M_{\rm BH})$ are spin and energy dependent greybody factors. We use the high energy limit $\Gamma_j \to 27E^2M_{\rm BH}^2/M_p^4$.

$$\begin{array}{l} \frac{dM_{\rm BH}}{dt} = -\sum_{j} \int_{0}^{\infty} E \frac{dN_{j}}{dt dE} dE = -e_{T} \frac{M_{\rm B}^{4}}{M_{\rm BH}^{2}} \,, \\ N_{j} = -\int_{t_{F}}^{\tau} dt \int_{0}^{\infty} dE E \frac{dN_{j}}{dt dE} = g_{j} \frac{81 \zeta(3)}{4096 \pi^{4} e_{T}} \frac{M_{F}^{2}}{M_{P}^{2}} \end{array}$$

with a lifetime $\tau = \frac{1}{3e_T} \frac{M_F^3}{M_p^4}$.

Including the full treatment of the greybody factors [Mc Gibbon 1990], our e_T is approximatively twice as large as the correct \tilde{e}_T for dM/dt. This implies that we underestimated τ by a factor of 2. The corrected $\tilde{\Omega}_{DM}(t_0)$ to differ from $\Omega_{DM}(t_0)$ by a factor $1.8 \times X'_{DM}$ for $\beta < \beta_c$ and a factor $1.3 \times X'_{DM}$ for $\beta > \beta_c$. It would also imply a strengthening of the Ly- α bounds obtained by $\sim 25\%$ aside from the shift in the peak velocity to higher velocities that would strengthen this bound even further.

This is really the end