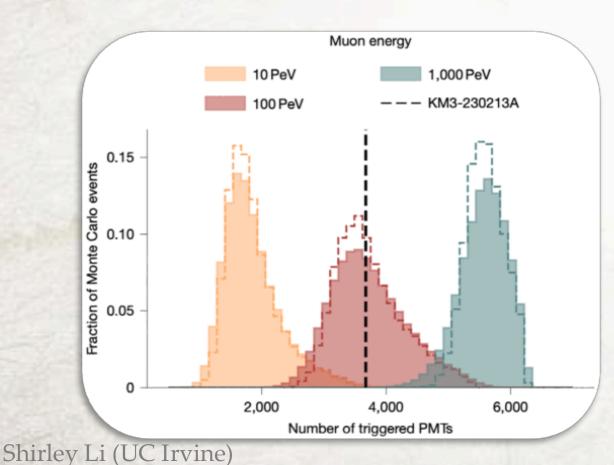

Clash of the Titans: ultra-high energy KM3NeT event versus IceCube data



Based on 2502.04508 with Pedro Machado, Daniel Naredo-Tuero, and Tom Schwemberger

Article

Observation of an ultra-high-energy cosmic neutrino with KM3NeT

 $E_{\mu} = 120^{+110}_{-60} \text{ PeV}$

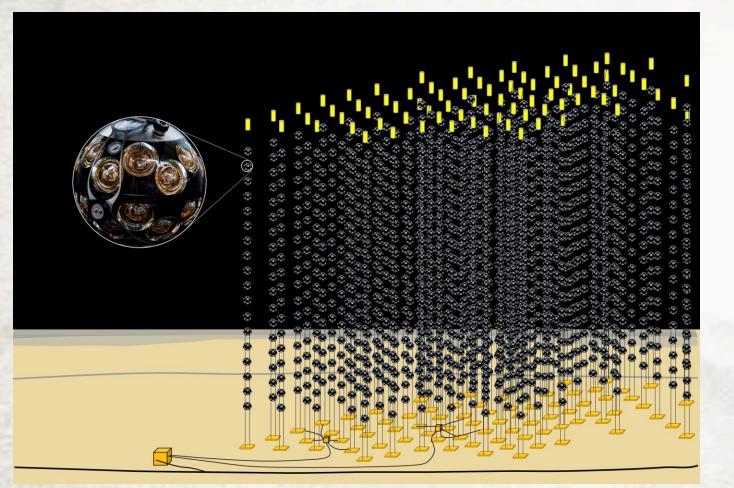
KM3-230213A

Neutrino sources

Where does KM3-230213A come from?

Shirley Li (UC Irvine)

3/28


SE-

KM3-230213A

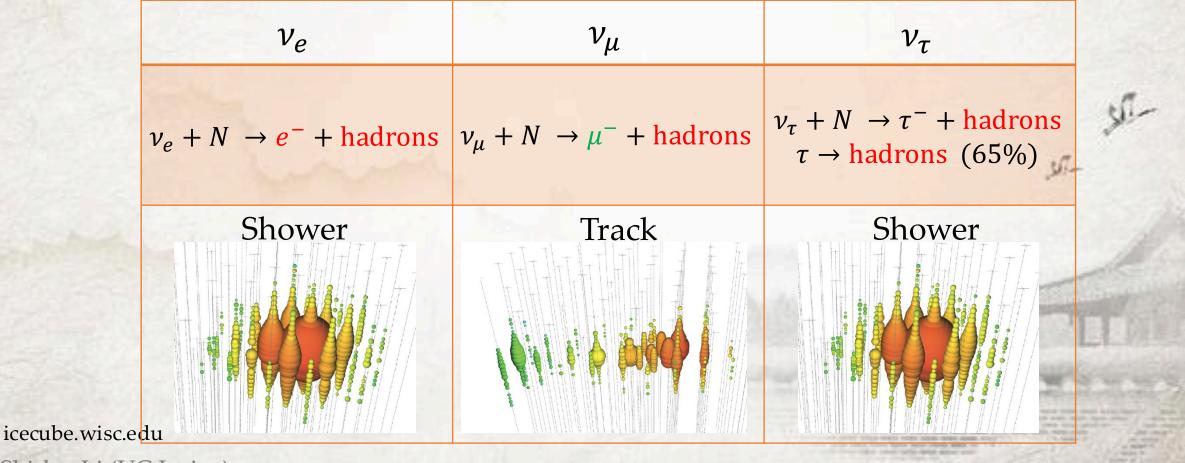
4/28

KM3NeT detector

km3net.org Shirley Li (UC Irvine)

5/28

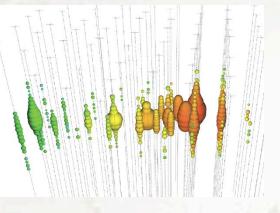
Mediterranean Sea


Under construction

Full volume 1 Gton

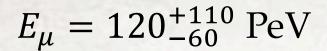
About 1/10 installed

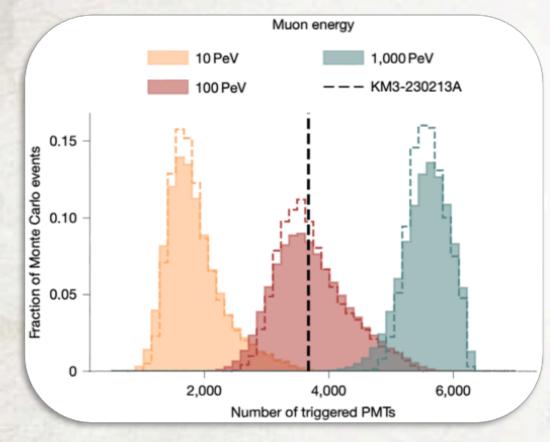
Event topology


Neutrinos produce different charged particles Note: v and \bar{v} are indistinguishable

6/28

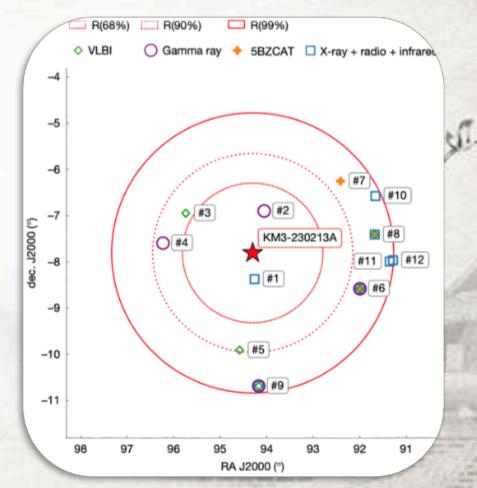
Pros and cons of different event topologies


Roughly, v_e , v_{μ} , and v_{τ} have comparable fluxes



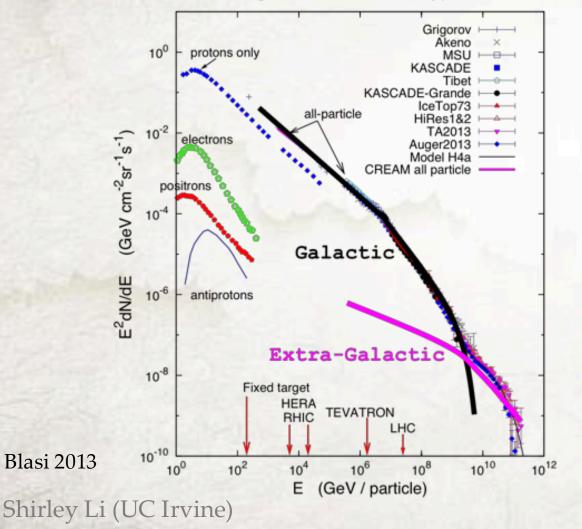
- Good angular resolution
- Bad energy resolution
- ➤ Can interact outside the detector ⇒ larger event rate Shirley Li (UC Irvine)

- Bad angular resolution
- Good energy resolution
- Cannot interact outside the detector


About KM3-230213A

 $E_{\nu} = 220 \text{ PeV most likely}$ 72-2600 PeV at 90% Shirley Li (UC Irvine)

Good pointing 0.6° above horizon


Neutrino sources

9/28

We do not understand astrophysical sources

Where and how are cosmic rays produced?

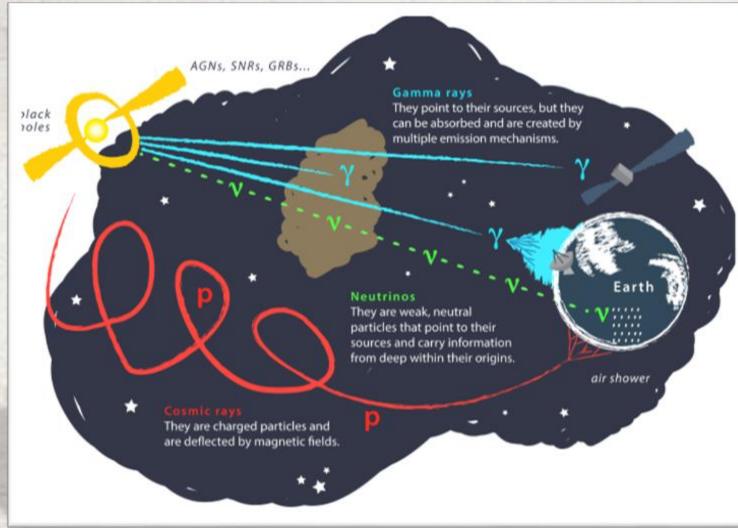
Energies and rates of the cosmic-ray particles

We have been detecting cosmic rays for over 100 years. We still do not have a good understanding of where they are produced, especially at the highest energies

10/28

The appeal of neutrinos and photons

They should also be produced at sources

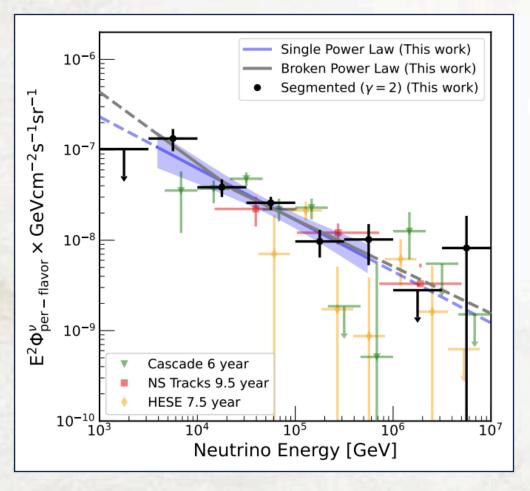

$$p + \gamma \to \Delta^+ \to \begin{cases} n\pi^+ \\ p\pi^0 \end{cases}$$

 $\pi^{+} \to \mu^{+} \nu_{\mu} \to \overline{\nu}_{\mu} e^{+} \nu_{e} \nu_{\mu}$ $\pi^{0} \to \gamma \gamma$

Can happen either

- 1. at the source neutrinos from the source
- 2. on route cosmogenic neutrinos

Neutrino astronomy



• *p*: no pointing 😥

Figure credit: J. Aguilar and J. Yang

What have we figured out about sources?

IceCube diffuse flux

IceCube 2024

Shirley Li (UC Irvine)

Measured flux Steady, isotropic – diffuse Source still unclear 13/28

What have we figured out about sources?

IceCube identified sources

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

ICECUBE COLLABORATION, MARK AARTSEN, MARKUS ACKERMANN, JENNI ADAMS, JUAN ANTONIO AGUILAR, MARKUS AHLERS, MARYON AHRENS, IMEN DAVID ALTMANN, [], AND TIANLU YUAN +321 authors Authors Info & Affiliations	<u>N AL SAMARAI,</u>
Science • 13 Jul 2018 • Vol 361, Issue 6398 • pp. 147-151 • DOI: 10.1126/science.aat2890	
± 5,125 JJ 651	CHECK ACCESS
Neutrino emission from a flaring blazar	
Neutrinos interact only very weakly with matter, but giant detectors have succeed-	0
ed in detecting small numbers of astrophysical neutrinos. Aside from a diffuse	~
background, only two individual sources have been identified: the Sun and a near-	0
by supernova in 1987. A multiteam collaboration detected a high-energy neutrino	Ô

Evidence for neutrino emission from the nearby active galaxy NGC 1068 ICECUBE COLLABORATION R. ABBASI M. ACKERMANN, J. ADAMS, J. A. AGUILAR, M. AHLERS, M. AHRENS, J. M. ALAMEDDINE, C. ALISPACH, [1] AND P. 7HELNIN Authors Info & Affiliations +376 authors SCIENCE • 3 Nov 2022 • Vol 378, Issue 6619 • pp. 538-543 • DOI: 10.1126/science.abg3395 ি CHECK ACCESS ➡ 13,735 **99** 196 Nearby active galaxy emits neutrinos 0 Observations have shown a diffuse background of high-energy neutrinos, which is known to be of extragalactic origin. However, it has been difficult to identify indi- \sim vidual sources that contribute to this background. The IceCube Collaboration re-Ô analyzed the arrival directions of astrophysical neutrinos and then searched for

Blazers seem extremely promising

Where does KM3-230213A come from?

2502.04508

- 1. IceCube diffuse flux
- 2. Cosmogenic neutrino fluxes

15/28

3. Point sources

The crust of the problem – KM3NeT vs. IceCube

How come that IceCube, running for 10 times longer and with 10 times larger size, did not see neutrinos above 10 PeV?

Before test of origin... $E_{\nu} = 72-2600$ PeV at 90%Need neutrino energy information first

Our reconstruction of neutrino energy

$$P(E_{\nu}|N_{\rm hit}) = \frac{1}{P(N_{\rm hit})} \int dE_{\mu} P(N_{\rm hit}|E_{\mu}) P(E_{\mu}|E_{\nu}) P(E_{\nu})$$

1. Prior on neutrino flux – we tested a few

Before test of origin... $E_{\nu} = 72-2600$ PeV at 90%Need neutrino energy information first

Our reconstruction of neutrino energy

$$P(E_{\nu}|N_{\rm hit}) = \frac{1}{P(N_{\rm hit})} \int dE_{\mu} P(N_{\rm hit}|E_{\mu}) P(E_{\mu}|E_{\nu}) P(E_{\nu})$$

- 1. Prior on neutrino flux we tested a few
- 2. Probability that E_{ν} gives E_{μ} , cross section, detector size, cuts all included in A_{eff}

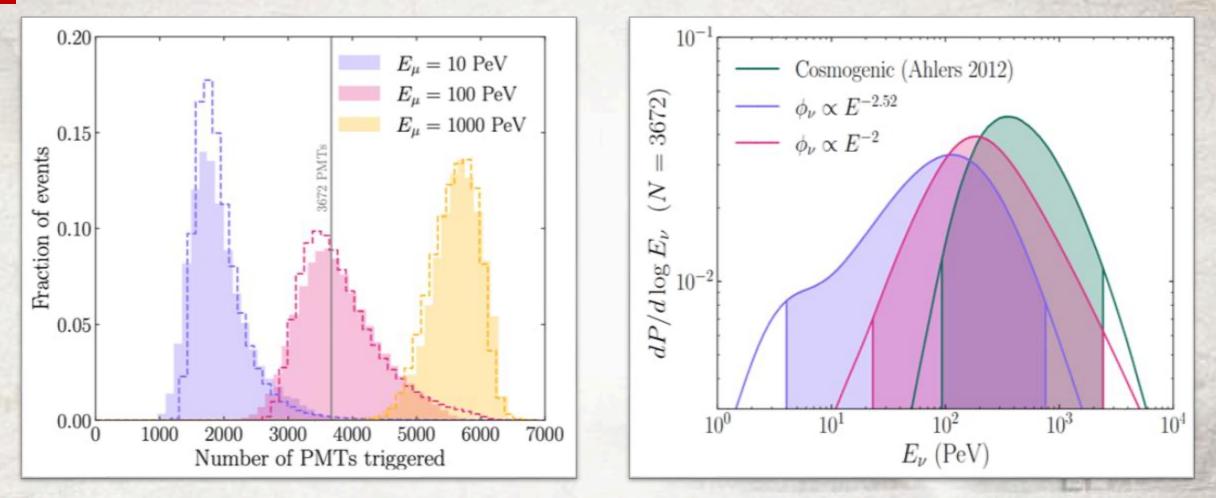
 ν interaction using MadGraph, analytic method μ dE/dx

Before test of origin... $E_{\nu} = 72-2600$ PeV at 90%Need neutrino energy information first

Our reconstruction of neutrino energy

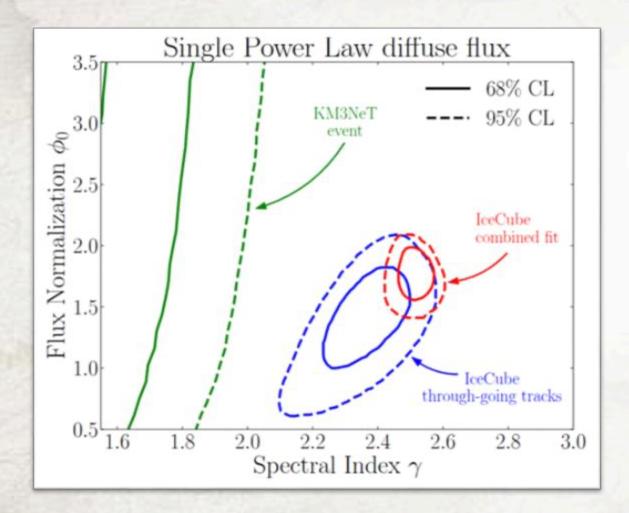
$$P(E_{\nu}|N_{\rm hit}) = \frac{1}{P(N_{\rm hit})} \int dE_{\mu} P(N_{\rm hit}|E_{\mu}) P(E_{\mu}|E_{\nu}) P(E_{\nu})$$

S.

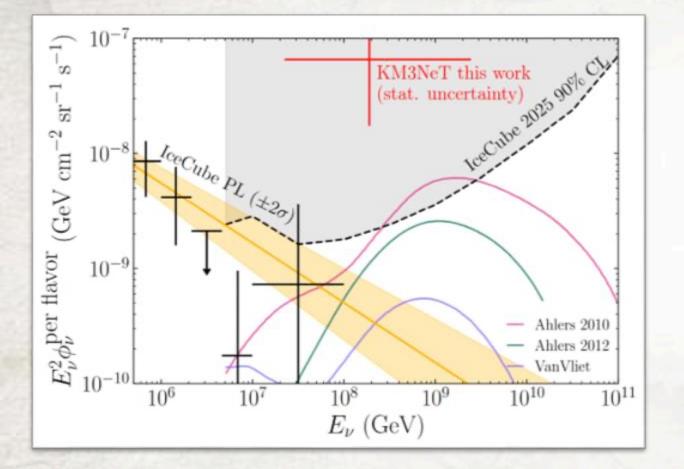

- 1. Prior on neutrino flux we tested a few
- 2. Probability that E_{ν} gives E_{μ} , cross section, detector size, cuts all included in A_{eff}

 ν interaction using MadGraph, analytic method μ dE/dx

3. Probability that E_{μ} trigger Nhit


μ dE/dx using PROPOSAL, mock photon propagation/absorption in water 2502.04508, SL with Pedro Machado, Daniel Naredo-Tuero, and Tom Schwemberger 19/28

Our reconstructed neutrino energy PDF

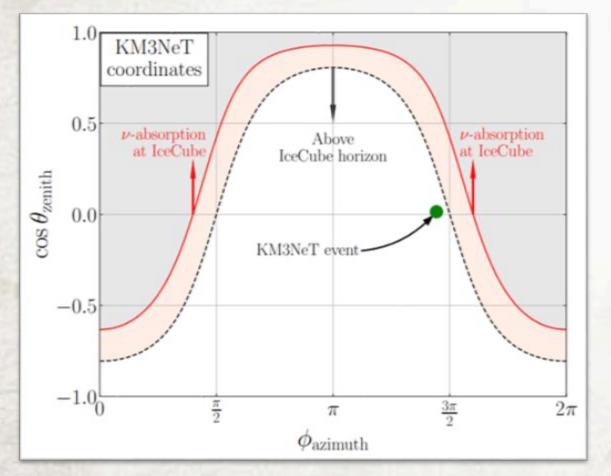

We get E_{ν} in 23-2400 PeV, for E^{-2} power-law, in very good agreement with KM3NeT 2502.04508, SL with Pedro Machado, Daniel Naredo-Tuero, and Tom Schwemberger

Test origin 1. IceCube diffuse flux

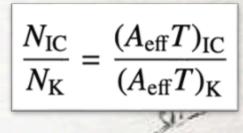
$$\mathcal{L}(\phi_0, \gamma) = \mathcal{L}_{\text{flux}}(\phi_0, \gamma) \cdot \mathcal{L}_{\text{evt}}(N_{\text{evt}}(\phi_0, \gamma))$$
$$\mathcal{L}_{\text{evt}} = N_{\text{evt}}e^{-N_{\text{ev}}}$$
$$\frac{\Gamma \text{ension:}}{3.5\sigma \text{ for combined}}$$
$$3.2\sigma \text{ for throughgoing}$$
$$For E^{-2.52}$$
$$KM3NeT \Rightarrow 75 \text{ evts at IceCube}$$
$$IceCube \Rightarrow 0.005 \text{ evts at KM3NeT}$$

Test origin 2. cosmogenic flux

Tension: Ahlers 2010: 3.6σ Ahlers 2012: 3.1σ Van Vliet 2019: 3.1σ


No good flux: $A10 \Rightarrow 0.006 \text{ evts}@\text{KM}, p_{\text{IC}}=0.3\%$ $A12 \Rightarrow 0.003 \text{ evts}@\text{KM}, p_{\text{IC}}=4.3\%$ $VV19 \Rightarrow 6.10^{-4} \text{ evts}@\text{KM}, p_{\text{IC}}=27\%$

Test origin 3. point sources Most natural guess for the tension: It is not in a direction where IceCube could have seen it background cuts 1 PeV Downgoing 10^{4} 10 PeV100 PeV1000 PeV $[m^2]$ 10^{3} $A_{\rm eff}$ 10^{2} upgoing earth attenuation $10^{1}_{-1.0}$ 0.50.0-0.5-1.0 $\cos(\theta)$


https://icecube.wisc.edu/data-releases/2018/10/all-sky-point-source-icecube-data-years-2010-2012/ 2502.04508, SL with Pedro Machado, Daniel Naredo-Tuero, and Tom Schwemberger

Test origin 3. point sources

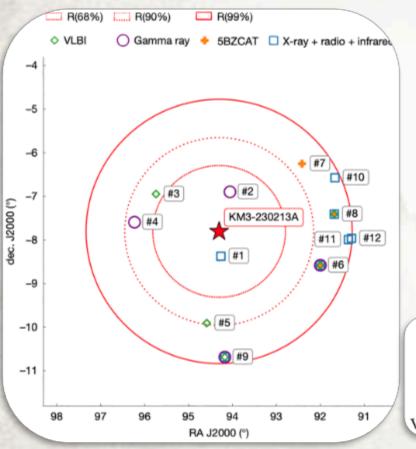
Not the case! It should be quite visible in IceCube

No specific flux:

Take the Bayes factor of getting (1,0) evts in two exp vs. getting (0,0) evts

Tension:Steady: 2.9σ Transient: 2σ

Compare to KM3NeT official numbers


The ultra-high-energy event KM3-230213A within the global neutrino landscape (The KM3NeT Collaboration)

Pierre Auger. In all cases, the observed tension between KM3NeT and other datasets is of the order of $2.5\sigma - 3\sigma$, and increased statistics are required to resolve this apparent tension and better characterise the neutrino landscape at ultra-high energies.

- 1. We used the PDF of neutrino energy; KM3NeT only used the energy window 72-2600 PeV
- 2. For the cosmogenic test, KM3NeT used an older IceCube search from 2018; we used IceCube 2025 results

Comment on the point source possibility

KM3NeT conducted a thorough search of various source catalogs!

Extragalactic neutrino sources should be dominated by active galactic nuclei, and blazars are of particular interest considering the very-high energy of KM3-230213A. To compile a census of potential blazar counterparts within the 99% confidence region of KM3-230213A, archival multiwavelength data were also explored. The following catalogues were cross-matched to investigate a possible blazar counterpart: the 4FGL-DR4 Fermi-LAT gamma-ray catalogue¹⁷, the first eROSITA X-ray catalogue²², the Wide-field Infrared Survey Explorer (WISE) optical catalogue²³, the RFC 2024b (https://astrogeo.org/rfc/) and NRAO VLA Sky Survey (NVSS)²⁴ radio catalogues and Roma-BZCAT²⁵. Four

Characterizing Candidate Blazar Counterparts of the Ultra-High-Energy Event KM3-230213A

O. ADRIANI,^{1, 2} S. AIELLO,³ A. ALBERT,^{4, 5} A. R. ALHEBSI,⁶ M. ALSHAMSI,⁷ S. ALVES GARRE,⁸ A. AMBROSONE,^{9, 10} F. AMELI,¹¹ M. ANDRE,¹² L. APHECETCHE,¹³ M. ARDID ⁽⁰⁾,¹⁴ S. ARDID,¹⁴ J. AUBLIN,¹⁵ F. BADARACCO,^{16, 17} L. BAILLY-SALINS,¹⁸ Z. BARDAČOVÁ,^{19, 20} B. BARET,¹⁵ A. BARIEGO-QUINTANA,⁸ Y. BECHERINI,¹⁵ M. BENDAHMAN,¹⁰ F. BENFENATI GUALANDI,^{21, 22} M. BENHASSI,^{23, 10} M. BENNANI,¹⁸ D. M. BENOIT,²⁴ E. BERBEE,²⁵ E. BERTI,¹ V. BERTIN,⁷ P. BETTI,¹ S. BIAGI,²⁶ M. BOETTCHER,²⁷ D. BONANNO,²⁶ S. BOTTAI,¹ A. B. BOUASLA,²⁸ J. BOUMAAZA,²⁹

26/28

No source was confirmed

Other work examining KM3-230213A

Examining a particular source or flux

Emergence of a neutrino flux above 5 PeV and implications for ultrahigh-energy cosmic rays

Marco S. Muzio ^{1*}. Tianlu Yuan ¹ and Lu Lu ¹

KM3-230213A: An Ultra-High Energy Neutrino from a Year-Long Astrophysical Transien

Andrii Neronov^{1,2}, Foteini Oikonomou³, Dmitri Semikoz¹ ¹Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France ²Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland ar ³Institutt for fusikk. NTNU. Trondheim. Norway

The blazar PKS 0605-085 as the origin of th ultra high energy neutrino event

Timur A. Dzhatdoev^{1,2*}

Evoking new physics

Possible origin of the KM3-230213A neutrino event from dark matter decay

Debasish Borah,^{1, 2, *} Nayan Das,^{1,†} Nobuchika Okada,^{3,‡} and Prantik Sarmah^{4,§}

¹Department of Physics, Indian Institute of Technology Guwahati, Assam 781039, India ²Pittsburgh Particle Physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA ³Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487, USA ⁱtute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of Ch

Neutron portal to ultra-high-energy neutrinos

tavo F. S. Alves,^{1,*} Matheus Hostert,^{2,†} and Maxim Pospelov^{3,4,‡} le Física, Universidade de São Paulo, C.P. 66.318, 05315-970 São Paulo, I epartment of Physics & Laboratory for Particle Physics and Cosmology,

Does the 220 PeV Event at KM3NeT Point to New Physics?

Vedran Brdar ⁽⁾ ¹, ^{*} and Dibya S. Chattopadhyay ⁽⁾ ¹, [†]

¹Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA

Conclusions

We do not know the origin of KM3-230213A

All steady sources lead to a 2.9-3.6σ tension between KM3-230213A and IceCube

A low tension is only achieved if it comes from a transient source

This is very likely the first observation of a new ultrahigh energy neutrino source

We need more observations!

28/28