Neutrino physics with the XENONnT experiment

Federica Pompa

Supervisors: Prof. Gabriella Sartorelli Dr. Marco Selvi Dr. Pietro Di Gangi

Alma Mater Studiorum – Università di Bologna Dipartimento di Fisica e Astronomia

ESRs webinar - 14/12/2020

Outline

XENONnT

- What is it?
- Setup description
- Different kind of research

Supernova neutrino detection

 XENONnT detection efficiency (Inverse Beta Decay channel)

XENONnT

Current state

Neutrinoless double beta decay

- Electronic recoil background
- XENONnT sensitivity

XENONnT

8 t total Xe \rightarrow 5.9 t in the TPC

- top array: 253 PMTs
- bottom array: 241 PMTs

- neutron Veto: 120 PMTs
- muon Veto: 84 PMTs

XENONnT: not only a Dark Matter detector

detect Supernova neutrinos through interactions on protons in Gd-doped water of the Vetoes;

 search for the forbidden Standard Model neutrinoless double beta decay ($\beta\beta0\nu$) of ¹³⁶Xe isotope.

Supernova neutrino detection

- SN of mass $M = 27 M_{\odot}$ in LS220 Equation of State;
- distance from the Earth: 10 kpc.
 <u>https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/.</u>

- IBD interactions in Gd-doped water at 0.2% mass concentration: $\overline{\nu}_e + p \longrightarrow n + e^+$;
- neutrons energy capture on Gd: γ cascade of $\simeq 8 \,\mathrm{MeV}$.

Monte Carlo simulation with XENONnT GEANT4 code:

 \Box 10⁵ events generated uniformly in water:

□ muon Veto volume: 611 m³;

 \Box neutron Veto volume: 53 m³.

□ primary particle and energy spectrum:

- $e^+: E_{e^+} = E_{\overline{\nu}_e} 1.8 \,\mathrm{MeV}$
- n: $E_n = 1 \, \mathrm{keV}$

GEANT4 automatically generates the emission of Čerenkov photons, their transport in water and their detection on PMTs.

Total detection efficiency of neutron and muon Vetoes:

Total detection efficiency of neutron and muon Vetoes:

Supernova neutrino detection

Supernova neutrino detection

Supernova neutrino detection

Total energy in water

Positrons

Neutrons

Neutrinoless double beta decay

Energetic Region of interest (ROI): [2.35, 2.55] MeV

Federica Pompa

Neutrinoless double beta decay

Electronic recoil (ER) background induced by the radioactive contaminations of materials around the TPC

 γ rays producing a single scatter in the fiducial volume, releasing energy in ROI

Monte Carlo simulations of ⁶⁰Co, ²³⁸U and ²³²Th decays:

- \Box ²³⁸U \longrightarrow ²³⁰Th , ²²⁶Ra \longrightarrow ²⁰⁶Pb
- \Box ²³²Th \longrightarrow ²²⁸Ac , ²²⁸Th \longrightarrow ²⁰⁸Pb

- ⁶⁰Co (Cryostat)
- ²³²Th (Cryostat)
- ²³⁸U (Cryostat)
- ²³²Th (Pmt)
- ²³⁸U (Pmt)

Reduced background

Federica Pompa

Neutrinoless double beta decay

Se

 M_{fv} = 1.6 t

> M_{fv} = 1.6 t super-ellipsoid volume; > b = 2.1 × 10⁻³ (kg keV yr)⁻¹ in ROI.

> After 5 yr:
$$S^{0\nu}$$
 = 4.2 × 10²⁵ yr

Federica Pompa

Neutrinoless double beta decay

> M_{fv} = 1.6 t super-ellipsoid volume; > b = 2.1 × 10⁻³ (kg keV yr)⁻¹ in ROI.

> After 5 yr: $S^{0\nu}$ = 4.2 × 10²⁵ yr

Federica Pompa

Neutrinoless double beta decay

XENONnT: current state

XENONnT is almost ready!

- Neutron Veto (entirely designed and built by the Bologna group);
- ✓ TPC and Cryostat;
- Water tank: work in progress...

XENONnT will start taking data soon!

Conclusions

- ✓ High detection efficiency from muon and neutron Vetoes can be obtained for both the products of IBD interactions of Supernova electron antineutrinos. *O*(100) events can be detected with the next Supernova explosion.
- After five years of livetime, XENONnT will achieve a sensitivity for neutrinoless double beta decay comparable with the best current limits. We need to wait for next generation experiments to explore region of parameters not yet observed.

"This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN"

Backup slides

Federica Pompa

Backup slides

Dual-phase TPC working principle

Federica Pompa

Backup slides

Dark Matter VS Neutrino search search

Dark Matter VS Neutrino search

Federica Pompa

Backup slides

ER background spectra

$$\sigma_E = E\left(\frac{a_1}{\sqrt{E}} + a_2\right)$$
$$a_1 = 30.98\sqrt{keV}$$
$$a_2 = 0.37$$

Federica Pompa

Backup slides