## Two Higgs Doublet Solutions to the Strong CP Problem

Based on 2506.13853 and 2407.14585

Bea Noether
in collaboration with
Lawrence Hall, Claudio Andrea Manzari, and Quentin Bonnefoy

Berkeley LITP, LBNL

October 22, 2025



### Outline

- Introduction
- 2 The Framework and Scalar Sector
- Yukawa Couplings and CP Conservation
- 4 Radiative Corrections to  $\bar{ heta}$
- Two Illustrative Models
- 6 Experimental Signals
- Conclusion

## The Strong CP Problem

- Absence of P and C violation in strong interactions
- ullet Quantified by dimensionless parameter  $ar{ heta}$
- ullet Experimental bound from neutron EDM:  $ar{ar{ heta}} \leq 10^{-10}$

### Two Sources of $\bar{\theta}$ in the Standard Model

1. QCD Lagrangian CP-odd term:

$$heta_{
m QCD} rac{g_s^2}{32\pi^2} G_a^{\mu
u} ilde{G}_{a,\mu
u}$$

2. Yukawa matrix phase:

$$ar{ heta} = heta_{ ext{QCD}} + \operatorname{arg} \det \Big( y^u y^d \Big)$$

#### The Puzzle

These contributions from different SM sectors have no reason to cancel!

## This Work: Multi-Higgs Solution

#### Framework

Multi-Higgs doublet extensions with CP and flavor symmetry  $G_{HF}$ , both softly broken only in scalar potential

### Previous work [Hall et al. 2024]:

- ullet Found many  $G_{HF}$  giving realistic masses/mixing with  $ar{ heta}=0$  at tree-level
- Radiative contributions vanish if second Higgs mass ≫ EW scale

#### Question Not Addressed

What is the lower bound on the second Higgs doublet mass scale?

### Main Results

- **9 Proof:** Large class of 2HDM have *no one-loop corrections to*  $\bar{\theta}$ , regardless of second Higgs doublet mass
- **② Two-loop corrections:** Present two models with  $ar{ heta}^{(2)}$  well below experimental limit
- **Surprising result:** In all 2HDM with Abelian flavor symmetry:

All neutral FCNC are CP conserving

- Open Phenomenology:
  - $\bullet$  Neutral meson CP bounds: 20 TeV ightarrow 1 TeV
  - Rich signals at colliders

## The Multi-Higgs Mechanism

#### Additions to SM

N Higgs doublets with CP and flavor symmetry  $G_{HF}$ , both softly broken in scalar potential only

#### How It Works

- Phases in scalar potential transferred with opposite signs to up/down Yukawa
- Flavor symmetry dictates Yukawa texture with zeros
- **3** Results in: realistic masses, CKM angles, and  $arg \det(y^u y^d) = 0$

 $\Rightarrow$  Strong CP problem solved at tree level

**Focus:** Two Higgs doublets with discrete  $\mathbb{Z}_N$  flavor symmetry

### Scalar Potential

### Most General with Softly Broken CP

$$V = \mu_{11} \Phi_1^{\dagger} \Phi_1 + \mu_{22} \Phi_2^{\dagger} \Phi_2 + \mu_{12} (e^{i\alpha} \Phi_2^{\dagger} \Phi_1 + \text{h.c.})$$

$$+ \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + 2\lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)$$

$$+ 2\lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1)$$

All parameters real. CP softly broken by phase  $\alpha \neq 0$ .

### Flavor Symmetry Constraint

Requiring  $G_{HF}$  softly broken:  $\lambda_5 = \lambda_6 = \lambda_7 = 0$ 

CP and  $G_{HF}$  only explicitly broken by mixed mass term  $\mu_{12}$ 



## Vacuum and Higgs Basis

#### Vacuum

$$\langle \Phi_1 \rangle = rac{v_1}{\sqrt{2}} egin{pmatrix} 0 \ 1 \end{pmatrix}$$

$$\langle \Phi_2 \rangle = \frac{v_2}{\sqrt{2}} \begin{pmatrix} 0 \\ e^{i\theta} \end{pmatrix}$$

Minimization:  $\theta = \alpha$ 

## Higgs Basis

Change to basis where  $H_1$  has all vev:

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \end{pmatrix} = U \begin{pmatrix} H_1 \\ H_2 \end{pmatrix}$$

where U involves  $\beta$  with  $\tan \beta = v_2/v_1$ 

### **Key Property**

Using minimization conditions, scalar potential in Higgs basis is CP preserving!

## Physical Spectrum

### Mass Eigenstates

- Charged:  $H^+$  (mass eigenstate)
- **CP-odd neutral:**  $I^0$  (mass eigenstate)
- **CP-even neutral:**  $H^0$ ,  $R^0$  mix  $\rightarrow h$  (125 GeV), H (heavy)

No mixing between CP-odd and CP-even (CP is conserved in Higgs basis)

Mixing angle  $\alpha$  between CP-even states:

$$\sin \alpha \simeq \cos \beta \sin \beta$$
 (quartic couplings)  $\frac{v^2}{M^2}$ 

## Yukawa Couplings in Two Bases

#### Flavor Basis

$$\mathcal{L}_Y = q^i x_{ij}^{lpha} ar{u}^j \Phi_{lpha} + q^i ilde{x}_{lpha ik} ar{d}^k \Phi^{*lpha} + ext{h.c.}$$

Flavor symmetry: entries with non-zero charges vanish, zero-charge entries are real

### Higgs Basis

 $H_1$  couplings:

 $H_2$  couplings:

$$v^{u,d} = x^{u,d} U_{*1}$$

$$z^{u,d} = x^{u,d} U_{*2}$$

Give quark masses

**FCNC** interactions

Flavor symmetry ensures:  $\left| \operatorname{arg} \det \left( y^u y^d \right) = 0 \right|$  Solves strong CP at tree-level

## Example: Yukawa Texture

$$y^{u} = \begin{pmatrix} x_{11}U_{11} & x_{12}U_{11} & x_{13}U_{21} \\ x_{21}U_{21} & x_{22}U_{21} & 0 \\ 0 & 0 & x_{33}U_{11} \end{pmatrix}$$

$$y^d = \begin{pmatrix} \tilde{x}_{11} U_{11}^* & 0 & 0 \\ 0 & \tilde{x}_{22} U_{21}^* & \tilde{x}_{23} U_{21}^* \\ \tilde{x}_{31} U_{21}^* & \tilde{x}_{32} U_{11}^* & \tilde{x}_{33} U_{11}^* \end{pmatrix}$$

$$\det(y^{u}) = (x_{11}x_{22} - x_{12}x_{21})x_{33}U_{11}^{2}U_{21} \qquad \det(y^{d}) = (\tilde{x}_{11}\tilde{x}_{22}\tilde{x}_{33} - \tilde{x}_{11}\tilde{x}_{23}\tilde{x}_{32}) \times U_{11}^{*2}U_{21}^{*3}$$

$$\Rightarrow \boxed{\arg\det(y^{u}y^{d}) = 0}$$

11 / 43

## CP Conservation in Neutral Higgs Interactions

#### Main Result

For discrete  $\mathbb{Z}_N$  flavor symmetry: quark field rephasing allows Yukawa interactions of all neutral scalars to conserve CP

#### The Phase Basis

There exists a basis where all  $y^{u,d}$ ,  $z^{u,d}$  are real:

$$\bar{y}^{u,d} = P^{u,d} y^{u,d} P^{\bar{u},\bar{d}}, \quad \bar{z}^{u,d} = P^{u,d} z^{u,d} P^{\bar{u},\bar{d}}$$

where P are diagonal phase matrices

**CP violation sources:** (1) CKM matrix, (2) Charged Higgs couplings only (CKM phase permitted by  $P^u \neq P^d$ )



### **Proof Sketch**

**Key observation:**  $y_{ij}^{u,d}$  and  $z_{ij}^{u,d}$  have same phase, same zero pattern

- **1** All neutral Higgs couplings can be made real **iff**  $y^{u,d}$  can be made real
- If not possible, must have rephasing-invariant with imaginary part
- **3** Relevant invariants:  $y_{11}y_{22}y_{12}^*y_{21}^*$  and  $y_{11}y_{22}y_{33}y_{12}^*y_{23}^*y_{31}^*$
- **9 Proven:** If either  $\text{Im} \neq 0$ , then  $\det(y) \neq 0$  requires multiple monomials of  $\Phi_{\alpha} \Rightarrow \bar{\theta} \neq 0$  at tree-level
- Contradicts GHF restrictions
- ... Phase basis exists where all neutral couplings real

13 / 43

## Phenomenological Impact

### **Neutral Meson Mixing**

Naive expectation: CP violation bound from  $\epsilon_{\mathcal{K}} \sim 10^5$  TeV

With approximate  $U(1)^9$  flavor: Bound  $\sim 20$  TeV

Our result: All neutral scalars conserve CP

- No tree-level contribution to  $\epsilon_K$ !
- ullet Bounds only from CP-conserving mixing:  $\sim 1 \text{ TeV}$

#### **Bottom Line**

TeV-scale second Higgs doublet is phenomenologically viable and testable!

## The Challenge

- ullet Tree-level:  $ar{ heta}=0$
- Experimental:  $\bar{\theta} \leq 10^{-10}$
- Radiative corrections could spoil solution!

#### What to Check

Corrections to quark mass matrices:

$$ar{ heta}pprox {
m arg} \det(m_u m_d) \ + {
m Im} \ {
m Tr}(m_u^{-1}\delta m_u \ + m_d^{-1}\delta m_d)$$

## Phase Basis Advantage

Phases only in:

- CKM matrix
- Charged Higgs couplings
- ⇒ Vastly reduces diagrams to check!

### SM Baseline

Ellis-Gaillard (1978): corrections  $\geq$  3-loops,  $\bar{ heta} \sim 10^{-16}$ 

## One-Loop: Charged Boson Exchange

### Result After Using Unitarity

$$\delta y^{u} = \frac{y^{d}y^{d\dagger}y^{u}}{16\pi^{2}}\log\left(\frac{m_{2}^{2}}{m_{1}^{2}}\right) + \frac{\tilde{x}_{\alpha}\tilde{x}^{\dagger\beta}x^{\alpha}}{16\pi^{2}}U_{\beta1}\left[1 + \frac{1}{\epsilon} + \log\left(\frac{\mu^{2}}{m_{2}^{2}}\right)\right]$$

### Why It Vanishes

First term:  $y^d y^{d\dagger} y^u = \text{Hermitian } \times y^u \Rightarrow$  no contribution

**Second term:**  $\tilde{x}_{\alpha}\tilde{x}^{\dagger\beta}x^{\alpha}$  has:

- Same flavor charges
- Same pattern of zeros
- Real non-zero entries

Pattern for tree-level arg det = 0 survives!

## One-Loop: The Complete Result

#### Main Result

No one-loop contributions to  $\bar{\theta}$  from charged boson exchange!

Holds for any Abelian  $G_{HF}$  ensuring  $arg det(y^u y^d) = 0$  at tree-level

#### Neutral Scalars

- Scalar potential in Higgs basis (= phase basis) is CP-conserving
- All quartic couplings real
- All neutral scalar Yukawa couplings real in phase basis
- ullet  $\Rightarrow$  One-loop diagrams with neutral scalar exchange cannot induce CP violation

### **Key Point**

Vanishing holds independently of mass scale of second Higgs doublet!

## Two-Loop Contributions

- Many diagrams at two loops
- Phases from CKM and charged Higgs
- Work in phase basis

#### General Form

$$\mathcal{M}=rac{\mathcal{A}}{(16\pi^2)^2}(1+rac{1}{\epsilon}+f)$$

A: flavor (5 Yukawas)  $f(m_1, m_2)$ : mass function

### Result Using Unitarity

Finite and divergent pieces don't change det phases

## Mass-Dependent Part

- ullet Estimate assuming  $f\sim 1$
- Check in specific models

## **Finding**

Contributions naturally small:  $ar{ heta} < 10^{-10}$ 

## Model I with $\mathbb{Z}_3$

#### **Features:**

- Realistic quark masses and CKM
- $\bullet$   $\bar{\theta}=0$  at tree-level
- No 1-loop corrections (proven)

#### Requirements for realistic dets:

$$|x_{21}U_{21}| \lesssim y_u/|V_{us}| \approx 5 \times 10^{-5}$$
  
 $|\tilde{x}_{32}U_{11}| \lesssim y_s/|V_{cb}| \approx 0.01$ 

## Two-Loop

$$ar{ heta} \simeq 10^{-10} ilde{ ilde{x}}_{31} c \sin 3 heta$$

$$c = 3 \sin \beta$$
 or  $-2 \cos \beta$ 

From hierarchies:

$$\tilde{x}_{31} \ll y_b \sim 10^{-2}$$

Well below limit!



## Model II with $\mathbb{Z}_3$

#### **Features:**

- Different Yukawa texture
- Realistic masses and CKM
- $ar{ heta}=0$  at tree-level
- No 1-loop corrections

#### Naturalness expectations:

$$|x_{21}U_{21}| \sim y_u/|V_{us}|$$
  
 $|x_{31}U_{11}| \sim y_u/|V_{us}V_{cb}|$ 

## Two-Loop

$$ar{ heta} \simeq 10^{-12} imes c$$

with c = 1 or  $\cot^2 \beta$ 

## Exciting!

Since  $\cot \beta$  unknown,  $\bar{\theta}$  could be  $\sim 10^{-10}$ 

Next-gen nEDM experiments could discover signal!

## Model Comparison

|                        | Model I                                     | Model II                      |
|------------------------|---------------------------------------------|-------------------------------|
| $\mathbb{Z}_3$ charges | $(\Phi_1,\Phi_2)=(0,2)$                     | (0,1)                         |
| Tree-level $ar{	heta}$ | 0                                           | 0                             |
| One-loop $ar{	heta}$   | 0                                           | 0                             |
| Two-loop estimate      | $\sim 10^{-10} 	ilde{x}_{31} c \sin 3	heta$ | $\sim 10^{-12}c$              |
|                        | $(\tilde{x}_{31} \ll y_b)$                  | $(c=1 	ext{ or } \cot^2 eta)$ |
| Experimental           | Likely undetectable                         | Potentially observable        |
| prospect in EDMs       |                                             |                               |

### **Key Conclusions**

- Both phenomenologically viable
- Two-loop corrections calculable and controlled
- Strong CP problem unambiguously solved
- Model II: discovery potential in nEDM experiments

### Three Main Probes

Our theories solve strong CP for any mass scale of second Higgs

- ⇒ How light can it be? What signals?
  - Neutron EDM
    - Direct contributions (quark EDMs, Weinberg operator)
    - Indirect via  $\bar{ heta}$
  - Neutral Meson Mixing
    - Tree-level FCNC from neutral scalars
    - Most stringent constraints
  - Higgs Coupling Deviations
    - Mixing of 125 GeV Higgs with heavy state
    - Observable at HL-LHC and future colliders

#### Neutron EDM

#### **Direct Contributions**

#### 1-loop quark EDMs:

- Vanish in Models I, II
- Neutral Higgses don't mediate CP violation

#### 2-loop quark EDMs:

- Negligibly small
- ullet Same flavor structure as  $ar{ heta}$

#### Weinberg operator:

- Not generated at 1- or 2-loop
- CP-conserving neutral couplings

## Indirect via $ar{ heta}$

Model II:  $ar{ heta}$  could be  $\sim 10^{-10}$  for large  $\cot eta$ 

Next-gen experiments aim for 2 orders of magnitude improvement

## Discovery Potential

Could observe non-zero nEDM in coming decade!

## Neutral Meson Mixing: Setup

#### **Scalars**

- Neutral CP-even (H)
- Neutral CP-odd (I<sup>0</sup>)
- Charged  $(H^{\pm})$

## Key Advantage

All neutral scalars have real couplings

Much less constrained than typical models

No  $\epsilon_K$  bound!

#### $\Delta F = 2$ Processes

 $K, B_d, B_s, D$  mixing mediated by neutral scalars at tree-level

Most stringent: D mixing

### Comparison

- No flavor sym: ≫ TeV
- Approx  $U(1)^9$ : ~ 20 TeV
- ullet Our theories:  $\sim 1 \text{ TeV}$

### Wilson Coefficients

### Scalar Exchange Generates

$$egin{align} C_2 &\simeq -rac{(\hat{z}_{ij}^{u,d} s_lpha)^2}{4} igg(rac{1}{m_h^2} - rac{1}{m_H^2}igg) \ C_4 &\simeq -rac{\hat{z}_{ij}^{u,d} \hat{z}_{ji}^{u,d}}{2} igg(rac{s_lpha^2}{m_h^2} + rac{2-s_lpha^2}{m_H^2}igg) \ ilde{C}_2 &\simeq -rac{(\hat{z}_{ji}^{u,d} s_lpha)^2}{4} igg(rac{1}{m_h^2} - rac{1}{m_H^2}igg) \ \end{cases}$$

$$(i,j) = (12), (23), (13)$$
 for  $K/D, B_s, B_d$  mixing  $M = m_H \simeq m_I$  (approximately degenerate)

Scaled to relevant scale using matching, RG evolution, lattice matrix elements



## D Mixing Constraints

#### Model I

$$\hat{z}_{12}^{u} \simeq (\cot eta + an eta) V_{us} y_c \ \hat{z}_{21}^{u} \simeq (\cot eta + an eta) V_{us} y_u$$

 $\tilde{C}_2$  negligible

C<sub>2</sub> constraint often stronger

#### Model II

$$\hat{z}_{12}^{u} \simeq (\cot \beta + \tan \beta) \sqrt{y_{u}y_{c}}$$
  
 $\hat{z}_{21}^{u} \simeq (\cot \beta + \tan \beta) \sqrt{y_{u}y_{c}}$ 

 $\tilde{C}_2$  contributes as much as  $C_2$ 

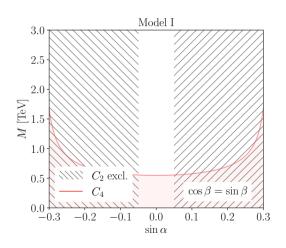
C<sub>4</sub> constraint dominant

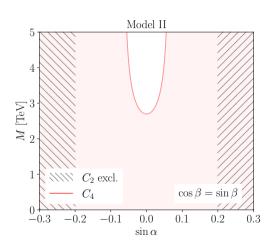
### General Expectation

Lower bound on M from FCNC:  $\sim 1$  TeV (model-dependent)

Without 20 TeV  $\epsilon_K$  bound! TeV-scale phenomenology viable.

## Meson Mixing Constraints





## Higgs Coupling Deviations

## **Effective Couplings**

$$\kappa_i^{u,d} \simeq \cos \alpha + \sin \alpha \frac{\hat{z}_{ii}^{u,d}}{\hat{y}_{ii}^{u,d}}$$

Ratio is model-dependent:  $\tan \beta$ ,  $\cot \beta$ ,  $(2 \tan \beta + \cot \beta)$ ,  $(-2 \cot \beta - \tan \beta)$ 

#### Characteristic Features

- Pattern constrained by flavor structure
- Can extract  $\tan \alpha$  and  $\tan \beta$  from multiple measurements

### Characteristic Features (cont.)

• Distinctive signatures identifying the model

### Example (Model II, small $\alpha$ )

$$\begin{aligned} |\kappa_{2,3}^u - 1| &\simeq |\kappa_3^d - 1| \\ &\simeq |\sin \alpha \tan \beta| \\ |\kappa_{1,2}^d - 1| &\simeq |\sin \alpha \cot \beta| \end{aligned}$$



## Collider Prospects

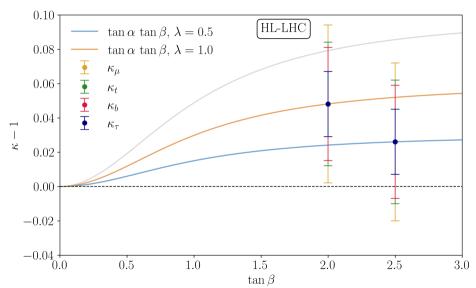
#### Current and Future Sensitivity

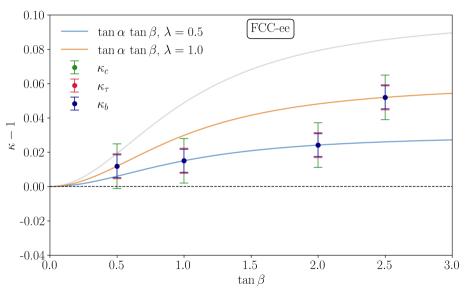
- Current LHC:  $\sim 10-30\%$  precision, not sensitive enough
- **HL-LHC:** 3-5% precision on  $\kappa_t, \kappa_b, \kappa_\tau$ 
  - $2\sigma$  signal for  $\lambda_a \sim 1$ ,  $M \sim 1$  TeV, most  $\tan \beta$
- **FCC-ee:** 1% precision on  $\kappa_b, \kappa_c, \kappa_\tau$ 
  - $5\sigma$  discovery for  $M\sim 1$  TeV, large  $\tan\beta$  range

### Flavor-Changing Decays

ATLAS/CMS bounds on  $t \rightarrow hc$ ,  $t \rightarrow hu$ : not leading constraints

Future colliders: few orders of magnitude improvement, potentially competitive with  $\Delta F=2$ 





## Summary: Theoretical Achievement

#### **Broad Class of Solutions**

Two-Higgs-doublet models with softly broken CP and Abelian flavor symmetries solve strong CP problem:

- **1** Tree-level: Constructed so  $\bar{\theta}=0$
- One-loop: Corrections necessarily vanish, independent of heavy Higgs mass
- **Two-loop:** Explicitly estimated in two models, below experimental bounds

### Key Discovery

All neutral scalar interactions conserve CP

 $\Rightarrow$  Dramatically weakens meson mixing bounds: 20 TeV  $\rightarrow$  1 TeV



## Summary: Phenomenology

### Rich Experimental Signatures

#### 1. Neutron EDM:

ullet Model II: potentially observable  $ar{ heta}$  in next-gen experiments

### 2. Meson Mixing:

- Strongest current constraints:  $M \gtrsim 1$  TeV (model-dependent)
- No  $\epsilon_K$  bound due to CP conservation

### 3. Higgs Couplings:

- Characteristic deviation patterns at HL-LHC and future colliders
- ullet 5 $\sigma$  discovery at FCC-ee for TeV-scale heavy Higgs

#### **Bottom Line**

TeV-scale phenomenology with discovery potential in coming decades!

## Why These Models Matter

#### Theoretical Virtues

- Simple: one extra Higgs doublet
- Calculable loop corrections
- Natural connection to flavor
- Less fine-tuning (low-scale UV completion)

## **Experimental Appeal**

- TeV-scale masses achievable
- Multiple complementary probes
- Distinctive signatures
- Testable predictions

The prospect of discovering these scenarios in the coming decade underscores the importance of continued exploration!

# Thank You!

Questions?

## Backup: Vacuum Minimization Details

## Minimization Conditions (for $\mu_{12} < 0$ , $v_{1,2} \neq 0$ )

$$\theta = \alpha$$

$$\mu_{11} = -\frac{v_2}{v_1}\mu_{12} - v_1^2\lambda_1 - v_2^2(\lambda_3 + \lambda_4)$$

$$\mu_{22} = -\frac{v_1}{v_2}\mu_{12} - v_2^2\lambda_2 - v_1^2(\lambda_3 + \lambda_4)$$

Given  $\mu_{12}$  and  $v=\sqrt{v_1^2+v_2^2}=$  246 GeV, last two relations constrain  $\mu_{11}$  and  $\mu_{22}$ 

## Higgs Basis Transformation

$$U = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta e^{i\theta} & \cos \beta e^{i\theta} \end{pmatrix}, \quad H_1 = \begin{pmatrix} G^+ \\ \frac{v + H^0 + iG^0}{\sqrt{2}} \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{R^0 + iI^0}{\sqrt{2}} \end{pmatrix}$$

## Backup: Full CP Conservation Proof

**Step 1:** From transformation  $y^{u,d} = x^{u,d} U_{*1}$  and  $z^{u,d} = x^{u,d} U_{*2}$ :

- ullet Each entry  $y_{ij}^{u,d}$  and  $z_{ij}^{u,d}$  differ only by column of U
- Same phase structure (up to overall *U* factor)
- Same pattern of zeros

**Step 2:** All neutral couplings real  $\Leftrightarrow y^{u,d}$  can be made real by quark rephasing

**Step 3:** If not possible, rephasing-invariant has Im part:

$$I_4 = y_{11}y_{22}y_{12}^*y_{21}^*, \quad I_6 = y_{11}y_{22}y_{33}y_{12}^*y_{23}^*y_{31}^*$$

**Step 4:** Proven: If  $\text{Im}(I_4) \neq 0$  or  $\text{Im}(I_6) \neq 0$  and  $\det(y) \neq 0$ , need multiple monomials  $\Rightarrow \bar{\theta} \neq 0$  at tree-level, contradicting  $G_{HF}$ 

... Phase basis exists. Full proof in paper's appendix C.



## Backup: One-Loop Details

### Before Using Unitarity

$$\delta y^u = \sum_{\delta} rac{ ilde{x}^{lpha} ilde{x}^{\dagger eta} x^{\gamma}}{16 \pi^2} U_{lpha \delta}^* U_{eta 1} U_{\gamma \delta} \left[ 1 + rac{1}{\epsilon} + \log \left( rac{\mu^2}{m_{\delta}^2} 
ight) 
ight]$$

where  $m_{\delta}$  are masses of two charged bosons

## After Unitarity: $\sum_{\delta}U_{\alpha\delta}^{*}U_{\gamma\delta}=\delta_{\alpha\gamma}$

$$\delta y^u = rac{ ilde{x}_{lpha} ilde{x}^{\daggereta}x^{lpha}}{16\pi^2}U_{eta 1}\left[1+rac{1}{\epsilon}+\log\left(rac{\mu^2}{m_2^2}
ight)
ight] \ +rac{y^dy^{d\dagger}y^u}{16\pi^2}\log\left(rac{m_2^2}{m_1^2}
ight)$$

Second term real contribution from charged Goldstone vs physical  $H^+$ 

## Backup: Two-Loop Diagrams

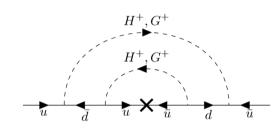


Figure: Example of a two-loop diagram that could contribute to  $\bar{\theta}$ .

#### Structure

$$\mathcal{M} = rac{\mathcal{A}}{(16\pi^2)^2}igg(1+rac{1}{\epsilon}+f( extit{ extit{m}}_1, extit{ extit{m}}_2)igg)$$

- A: product of 5 Yukawa matrices (flavor structure)
- $f(m_1, m_2)$ : dimensionless function of loop masses
- Finite and  $1/\epsilon$  pieces: don't change det phases (unitarity)
- Estimate  $f \sim \mathcal{O}(1)$  for mass-dependent part

## Backup: Quark Masses and CKM in Models

#### Model I

$$\begin{aligned} y_{u} &\approx |x_{11}U_{11}|, \quad y_{c} \approx |x_{22}U_{21}|, \quad y_{t} \approx |x_{33}U_{11}| \\ y_{d} &\approx |\tilde{x}_{11}U_{11}^{*}|, \quad y_{s} \approx |\tilde{x}_{22}U_{21}^{*}|, \quad y_{b} \approx |\tilde{x}_{33}U_{11}^{*}| \\ |V_{us}| &\approx \frac{|x_{12}U_{11}|}{y_{c}}, \quad |V_{cb}| \approx \frac{|\tilde{x}_{23}U_{21}^{*}|}{y_{b}}, \quad |V_{ub}| \approx \frac{|x_{13}U_{21}|}{y_{t}} \end{aligned}$$

### Model II

$$y_u \approx \left| \frac{x_{12} x_{21}}{x_{22}} \frac{U_{21}^2}{U_{11}} \right|, \quad y_c \approx |x_{22} U_{11}|, \quad y_t \approx x_{33} U_{11}$$
  
 $y_d \approx |\tilde{x}_{11} U_{21}^*|, \quad y_s \approx |\tilde{x}_{22} U_{21}^*|, \quad y_b \approx |\tilde{x}_{33} U_{11}^*|$ 

## Backup: Detailed Meson Mixing Bounds

### Constraints from $C_2$

$$Model I: |s_{\alpha}(\tan \beta + \cot \beta)| \lesssim 0.1$$

Model II :  $|s_{\alpha}(\cot \beta + \tan \beta)| \lesssim 0.4$ 

### Constraints from $C_4$

$$\mathrm{Model~I:}~~( aneta+\coteta)^2rac{(M/\mathrm{TeV})^2s_lpha^2+0.03}{(M/\mathrm{TeV})^2}\lesssim 0.4$$

$$\mathrm{Model~II:}~~(\cot\beta+\tan\beta)^2\frac{64(M/\mathrm{TeV})^2s_\alpha^2+2}{(M/\mathrm{TeV})^2}\lesssim 1.1$$

For Model II,  $C_4$  bound dominant. Bounds from K,  $B_d$ ,  $B_s$  are weaker.

October 22, 2025

## Backup: Higgs Coupling Table

|                | LHC ATLAS                         | HL-LHC | ILC 500 | CLIC 3000 | CEPC | FCC-ee 240 |
|----------------|-----------------------------------|--------|---------|-----------|------|------------|
|                | current                           | %      | %       | %         | %    | %          |
| $\kappa_c$     | $0.03^{+3.02}_{-0.03}$            | _      | 1.3     | 1.4       | 2.2  | 1.8        |
| $\kappa_t$     | $0.93^{+0.13}_{-0.06}$            | 3.3    | 6.9     | 2.7       | _    | _          |
| $\kappa_{b}$   | $0.89^{+0.14}_{-0.11}$            | 3.6    | 0.58    | 0.37      | 1.2  | 1.3        |
| $\kappa_{\mu}$ | $1.06^{+0.\overline{27}}_{-0.30}$ | 4.6    | 9.4     | 5.8       | 8.9  | 10         |
| $\kappa_{	au}$ | $0.92^{+0.13}_{-0.07}$            | 1.9    | 0.70    | 0.88      | 1.3  | 1.4        |

• Current: not sensitive to TeV-scale deviations

• HL-LHC:  $2\sigma$  for  $M\sim 1$  TeV,  $\lambda\sim 1$ 

• FCC-ee:  $5\sigma$  discovery with 1% precision

## Backup: Future Directions

#### **Theoretical**

- Origins of soft CP and flavor breaking
- Connection to electroweak hierarchy problem
- UV completion and string embeddings
- Extension to lepton sector (neutrino mixing challenge)

### Experimental

- nEDM: 2 orders of magnitude improvement planned
- Precision Higgs: HL-LHC, ILC, FCC-ee, CLIC, muon collider
- Flavor: D, K, B mixing improvements, LFV searches
- Direct searches: production of H,  $I^0$ ,  $H^{\pm}$