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FIG. 3. The mass range of allowed DM candidates, comprising both particle candidates and primordial
black holes. Mass ranges are only approximate (in order of magnitude), and meant to indicate general
considerations.

possible by mass and spin. Fig. 3 gives a compact summary of the landscape and the main tourist
spots - we will visit each below.

A brief aside on MOND. — MOdified Newtonian Dynamics (MOND) is a framework for modified
gravity on galactic scales [8], originally put forth as an alternative to dark matter. A specific
relativistic theory is needed to obtain predictions during the early universe. Assuming no additional
matter content, popular candidates such as TeVeS [9] give a notably worse fit to CMB and large
scale structure data compared to ⇤CDM [10, 11]. A recent analysis of Milky Way rotation curve
and stellar kinematics data is also in tension with MOND [12].

A Bosons vs. fermions and the WDM limit

The keV mass scale is a special scale which, roughly speaking, demarcates thermally-produced
DM (which could be either a fermion or boson) from nonthermally-produced bosonic DM. There are
two separate arguments here: first, a fermion DM candidate must have mass greater than O(keV)

in order to be consistent with observations of galaxies, and second, DM that is thermally produced
from the SM bath must also have mass greater than O(keV) to be consistent with observations of
large scale structure.

Using observations of the kinematics of stars in galaxies, a general statement can be made about
the spin of a potential DM candidate. Galaxies reside inside dark matter halos, gravitationally
bound overdensities that extend well beyond the typical radius for the stellar component of the
galaxy. As a simple example, we can model this halo as an object that underwent gravitational
collapse and is now virialized. Except close to the baryonic disk, the gravitational potential is
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Detecting sub-GeV dark matter
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Status of the Low-mass (GeV-scale) Dark Matter Searches

 27

Future improvement relies on suppression of known/unknown background with a 
reasonable large target mass.

Discovery Limits due to CEvNS 
(Ruppin, Billard et al.)

XENON1T 
S1+S2

XENON1T 
S2-Only

DarkSide-50 S2-Only

CRESST-III

Figure from talk by Kaixuan Ni at DPF 2019

Motivation

Kozaczuk 2

Direct detection of dark matter has motivated many experimental efforts

Conventional channel: 2 à 2 dark matter – nucleus scattering 

From Schumann, 1903.03026

c

q

Traditional approach to direct 
detection of dark matter: 

DM-nucleus scattering

 for sub-GeV DMENR ≤
2m2

χ v2

mN



Electron recoils

4

electron; it is also well below current phonon detection thresholds. As a result, DM masses below a
few hundred MeV escape detection no matter how large their cross section.

� �

p p-q

e- e-

N + N +X X *{ }
Figure 3. The scattering of a DM particle with a bound electron. The DM transfers momentum ~q to the target, exciting it
from the ground state X to an excited state X⇤, which can be either a higher-energy bound state or an ionized state.

Now consider a DM particle colliding directly with a bound electron, exciting it to a higher
energy level or an unbound state, as illustrated in Fig. 3. The kinematics are very different from those
of a nuclear recoil. Firstly, being in a bound state, the electron does not have definite momentum –
in fact it may have arbitrarily high momentum (albeit with low probability). This breaks the direct
relation between recoil energy and momentum transfer given in Eq. (3.1). The energy transferred to
the electron, �Ee, can still be related to the momentum lost by the DM, ~q, via energy conservation:

�Ee = ��E� ��EN = �
|m�~v � ~q|2

2m�
+

1

2
m�v

2
�

q2

2mN
= ~q · ~v �

q2

2µ�N

. (3.2)

Here the �EN term accounts for the fact that the whole atom also recoils. In practice this term is
small, which also allows us to replace µ�N with m�. We thus define

Ee ⌘ �Ee = ��E� (3.3)

as the energy transferred to the electron.3 Since an arbitrary-size momentum transfer is now possible,
the largest allowed energy transfer is found by maximizing �Ee with respect to ~q, giving

�Ee 
1

2
µ�Nv

2
'

1

2
eV ⇥

⇣ m�

MeV

⌘
. (3.4)

This shows that all the kinetic energy in the DM-atom collision is (in principle) available to excite the
electron. For a semiconductor with an O(eV) bandgap, ionization can be caused by DM as light as
O(MeV).

What is the likelihood of actually obtaining a large enough q to excite the electron? This brings
us to the second major difference compared to DM-nuclear scattering: the electron is both the lightest
and fastest particle in the problem. The typical velocity of a bound electron is ve ⇠ Ze↵↵, where
Ze↵ is 1 for outer shell electrons and larger for inner shells. This is much greater than the typical DM

3We emphasize that Ee is the energy transferred to the electron, not its kinetic energy. Some of this energy goes
to overcoming the binding energy. As we will discuss further in §5, in semiconductors the remaining energy is rapidly
redistributed by secondary scattering processes, which can produce further electron-hole pairs.

– 10 –

Essig, Mardon, Volansky 2011; 
Essig, Fernandez-Serra, Mardon, 

Soto, Volansky, Yu 2015

e- in materials are not free or isolated particles

Opportunity: constrained by available energy 
eigenstates rather than free-particle kinematics. 

Complication: need to know eigenstates and 
wavefunctions in a many-body system.
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~ 10 eV}} ~eV

sub-eV gap in 
superconductor, 

Dirac material, etc 
[Hochberg, Pyle, Zhao, Zurek 2015 

Dirac: 1708.08929, 1910.02091, etc]

(Xe)Ge, Si

Electronic band structure

Single or few e- thresholds achieved 
by a number of experiments!  

[DAMIC, SENSEI, SuperCDMS]

Opportunity: constrained by available energy 
eigenstates rather than free-particle kinematics.



When calculating rates, we assume a Maxwell-Boltzmann distribution with a sharp cutoff (we
describe this in more detail, and give analytic formulas for ⌘(vmin), in Appendix B). The requirement
of energy conservation is captured by vmin(q, Ee), the minimum speed a DM particle requires in order
for the electron to gain an energy Ee with momentum transfer q (note that Ee was also denoted as
�Ee in §3.1). This is given by

vmin(q, Ee) =
Ee

q
+

q

2m�
. (3.12)

Figure 4. Scissor corrected band structure for silicon (left) and germanium (right) as calculated with Quantum

ESPRESSO [69] with a very fine k-point mesh. The horizontal dashed line indicates the top of the highest valence band. The
four bands below the horizontal dashed line are the valence bands while the bands above the dashed line are the conduction
bands. We also show the density-of-states (DOS) as a function of the energy for a very fine k-point mesh (blue) and for our
243 k-point mesh (red). A Gaussian smearing of 0.15 eV was used to generate a smooth function.

Differential rate. As we show in Appendix A.4, the differential electron scattering rate in a semi-
conductor target (with the approximation of a spherically symmetric DM velocity distribution) can be
written as

dRcrystal

d lnEe
=

⇢�
m�

Ncell �e ↵

⇥
m2

e

µ2
�e

Z
d ln q

✓
Ee

q
⌘
�
vmin(q, Ee)

�◆
FDM(q)2

��fcrystal(q, Ee)
��2 , (3.13)

where ⇢� ' 0.4 GeV/cm3 is the local DM density, Ee is the total energy deposited, and Ncell =

Mtarget/Mcell is the number of unit cells in the crystal target. (Mcell = 2 ⇥ mGe = 145.28 amu =

135.33 GeV for germanium, and Mcell = 2 ⇥ mSi = 56.18 amu = 52.33 GeV for silicon.)
We have written this in such a way that the first line gives a rough estimate of the rate, about
29 (11) events/kg/day for silicon (germanium) for ⇢� = 0.4 GeV/cm3, m� = 100 MeV, and �e '

– 13 –

χ

Semiconductor target
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Essig, Mardon, Volansky 2011; 
Essig, Fernandez-Serra, Mardon, 

Soto, Volansky, Yu 2015

dσ
d3kdω

∝ σ̄e F2
med(k)∑

ℓ,ℓ′ 
∑
p,p′ 

|⟨p′ , ℓ′ |eik⋅r |p, ℓ⟩ |2

× f 0(ωp,ℓ)(1 − f 0(ωp′ ,ℓ′ )) δ(ω + ωp,ℓ − ωp′ ,ℓ′ )

Wavefunction overlap{

Sum over occupied bands  and Bloch 
momentum  to excited state 

ℓ
p |p′ , ℓ′ ⟩

Rate to create electron-hole pairs:

ω

k

Complication: need to know eigenstates and 
wavefunctions in a many-body system.
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Figure 2. Prospects for Benchmark Models: Selected
95% C.L. exclusion reach for the DAMIC (green curves)
and SuperCDMS-silicon (dark red curves) experiments,
compared with other constraints for the benchmark mod-
els discussed in §2. White regions are unconstrained, while
thick blue curves illustrate possible predictive mechanisms
for generating the DM abundance. Top: DM interacting
via a massive dark photon (FDM(q) = 1), for complex-
scalar DM with freeze-out abundance (left), and Dirac-
fermion DM with asymmetric abundance (right). Bottom:

DM interacting via an ultralight dark photon (FDM(q) =

(↵me/q)
2), with an abundance generated by freeze-in. The

DAMIC and SuperCDMS projections assume 100 g-year
and 10 kg-years background-free exposures, with 2- and 1-
electron thresholds, respectively, in a silicon target. See text
for details.

electron-recoil DM constraint set with XENON10 data [31]. The black curve labelled “Current
NR Constraints” shows constraints from conventional nuclear-recoil searches from [3, 75, 76].
Some measurements only constrain ✏ as a function of mA0 . Among these, we only show the
strongest constraints, which are a BaBar search for e+e� ! � + invisible [49, 51, 52] as well
as electroweak precision tests (EWPT) [77, 78]; however, to guide the eye, we also show the
“favored” 2�-region for which the A0 can explain the discrepancy between the measurement
and SM prediction for the muon anomalous magnetic moment, aµ [79]. We translate these
into the �e versus m� plane by using the constraint on ↵D from either perturbativity [80] or �
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Plot from Essig, Fernandez-Serra, 
Mardon, Soto, Volansky, Yu 2015
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Semiconductor target



All dielectrics
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Today: how to think about DM scattering in all these materials in terms of 
dielectric response, and how that led us to identify and calculate new effects.

57 

 
Figure 4-7: Open parameter space for galactic dark matter scattering off electrons that can be probed with 
advanced detectors with demonstrated or near-term technologies (solid lines) and with either medium-term 
(dashed lines) to longer-term (dotted lines) R&D.  The readout technique is indicated in parentheses below the 
target material.  Dark matter interacting with electrons through a heavy mediator is assumed. 
 

 
Figure 4-8: Open parameter space for galactic dark matter scattering off electrons that can be probed with 
advanced detectors with demonstrated or near-term technologies (solid lines) and with either medium-term 
(dashed lines) to longer-term (dotted lines) R&D.  The readout technique is indicated in parentheses below the 
target material.  Dark matter interacting with electrons through either a heavy mediator an ultralight mediator is 
aƐƐƵŵed͘  The ŽƌaŶge ƌegiŽŶƐ ;ůabeůůed ͞KeǇ MiůeƐƚŽŶe͟Ϳ ƉƌeƐeŶƚ a ƌaŶge Žf ŵŽdeů eǆaŵƉůeƐ iŶ ǁhich daƌk ŵaƚƚeƌ 
obtains the observed relic abundance from its thermal contact with Standard Model particles (regions are as in 
͞US Cosmic Visions͟ report, Ref. 8. 

From Basic Research Needs Report: 
“Dark Matter Small Projects New Initiatives”

Now many papers studying 
different targets, proposed 

experiments, and new 
experiments in development.



Outline
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Dark matter scattering as dielectric response  

Implications for DM-electron scattering 

The Migdal effect in semiconductors



Linear response
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Dielectric response 
 — response of E fields* 

Susceptibility 

 — response of electron number density

ϵ−1(ω, k)

χ(ω, k)

* Some technicalities: consider only longitudinal response; neglect crystal periodicity 

Pines and Nozieres, Theory of Quantum Liquids; 
Girvin and Yang, Modern Condensed Matter Physics



Dielectric response
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Eext

Eind
∇ ⋅ E = 4π ρext

ϵ

E = Eext
ϵ

E(ω, k) = ϵ−1(ω, k) Eext(ω, k)

E(r, ω) = ∫ d3r′ ϵ−1(r, r′ , ω) Eext(r′ , ω)

More generally:



Susceptibility
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ρind = ρext
ϵ

− ρextInduced charge density*:

Linear response to a perturbation:

H = − en(r) Φext(r) = − e∫ d3k n−k
4πρext(k)

k2

χ(ω, k) = −i
V ∫

∞

0
dt eiωt ⟨[nk(t), n−k(0)]⟩

ρind = − enind = χ
4πe2

k2 ρext

* Assume dominated by electrons
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1
ϵ(ω, k) = 1 + 4πe2

k2 χ(ω, k)

Induced charge is related to amount of screening:

H = − en(r) Φext(r) n n

k, ω 2

n n

k, ω

Im ( )

Fluctuation-dissipation [Optical] theorem
Spectrum of 
fluctuations DissipationS(ω, k) = 2

(1 − e−βω) Im (−χ(ω, k))

n n

k, ω 2
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= k2

2παem(1 − e−βω) Im ( −1
ϵ(ω, k) ) Energy Loss 

Function (ELF)

1
ϵ(ω, k) = 1 + 4πe2

k2 χ(ω, k)

Induced charge is related to amount of screening:

n n

k, ω 2

Fluctuation-dissipation [Optical] theorem

S(ω, k) = 2
(1 − e−βω) Im (−χ(ω, k))

H = − en(r) Φext(r)



15

dσ
d3kdω

∝ σ̄e F2
med(k) S(ω, k) ∝ σ̄e F2

med(k) Im ( −1
ϵ(ω, k) )

Charge 
fluctuations

Energy Loss 
Function (ELF)

DM-electron scattering

nk, ω
gχ

χ
ge

H = − e∫ d3k nk
gχgeeik⋅r

k2 + m2
V

Implications { 1. Screening effects for vector and scalar mediators
2. Many approaches to calculate or measure ϵ
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Vector interactions are screened

An, Pospelov, Pradler 2013, 2014 
Hochberg, Pyle, Zhao, Zurek 2015

Interaction basis: ge Vμēγμe

AA

V A  ΠVA = ge

e
ΠAA

 ΠAAIn-medium mass 
and mixing terms

ΠAA(ω, k) = k2(1 − ϵ(ω, k))

In-medium (longitudinal) 
scattering amplitude: 

∼ 1
ϵ(ω, k)

gχge

k2 + m2
V
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dσ
d3kdω

∝ σ̄e F2
med(k) Im ( −1

ϵ(ω, k) )
∝ σ̄e F2

med(k) Im ϵ(ω, k)
|ϵ(ω, k) |2

Proportional to DM-electron 
scattering form factor in 

the independent-electron 
approximation (RPA)

Im ϵRPA(ω, k) = 4π2αem

Vk2 ∑
ℓ,ℓ′ 

∑
p,p′ 

|⟨p′ , ℓ′ |eik⋅r |p, ℓ⟩ |2

× f 0(ωp,ℓ)(1 − f 0(ωp′ ,ℓ′ )) δ(ω + ωp,ℓ − ωp′ ,ℓ′ )
 screening for vector 

mediators considered in 
superconductors, Dirac materials. 

Not included in signal rates for 
semiconductors. Assumed to be 

absent for scalar mediators.

|ϵ(ω, k) |2
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Screening of scalars

ϕ AL

 

ΠϕA = ge

e
Π0μ

AAεL
μ

In-medium 
mixing

In-medium scattering amplitude 
In the non-relativistic limit: 

Hardy and Lasenby 2016 
Gelmini, Takhistov, Vitagliano 2020

∼ 1
ϵ(ω, k)

gχge

k2 + m2
ϕ

Mixing of scalar mediator with SM photon?

Interaction basis: geϕēe



Vector and scalar mediators
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2

parametrizes the rate at which excitations are emitted or
absorbed by the system:

Im �(!,k) = �
1

2
(1 � e

��!)S(!,k). (3)

Here the dynamic structure factor is defined as

S(!,k) ⌘
2⇡

V

X

i,f

e
��Ei

Z
|hf |n�k|ii|

2
�(! + Ei � Ef ) (4)

with � = 1/kBT and Z the partition function of the sys-
tem. Eq. (4) should remind the reader of Fermi’s golden
rule, and S(!,k) is directly proportional to the di↵eren-
tial DM-electron scattering rate. Using the relationship
between the susceptibility and dielectric response

1

✏(!,k)
= 1 +

4⇡↵em

k2
�(!,k), (5)

we can write the structure factor as

S(!,k) =
k
2

2⇡↵em

1

1 � e��!
Im


�1

✏L(!,k)

�
. (6)

This relation is well known in the condensed matter lit-
erature, see e.g. [37].

In the remainder of this paper we explore the con-
sequences of this relationship for dark matter electron
scattering. The main di↵erence with previous works
in the literature is essentially that, writing the ELF as
Im(✏(!,k))/|✏(!,k)|2, we see that a screening factor of
1/|✏(!,k)|2 is included inside the dynamic structure fac-
tor. Previous works studying DM scattering in semicon-
ductors [3, 22, 24] primarily considered the approxima-
tion |✏(!,k)|2 ⇡ 1. Since the DM scattering rate is dom-
inated by k >

⇠ keV, this assumption is not unreasonable,
but with detailed calculations we find that screening can
a↵ect the rate by a factor of a few in Si and Ge. In ad-
dition, while the importance of accounting for screening
has been well understood for vector mediators, screening
for scalar-mediated scattering was only pointed out more
recently in Ref. [38] (see also Ref. [39] for discussion of
in-medium e↵ects for scalars). In this work, we put scalar
and vector mediated scattering on the same footing and
show how they lead to identical response functions. We
also show how scattering form factors discussed in the
literature relate to the dielectric response, and perform
detailed calculations of the screening e↵ect in semicon-
ductor targets relevant for current low-threshold experi-
ments.

In the following section, we show how the DM-electron
scattering rate relates to the dynamic structure factor or
ELF. In section III, we discuss di↵erent ways to deter-
mine the dielectric function and thus the ELF, including
the details of our DFT calculations for semiconductors.
In section IV we present the implications for DM scatter-
ing in semiconductors and superconductors. We conclude
in section V.

II. DM-ELECTRON SCATTERING AS

DIELECTRIC RESPONSE

The most common models which predict dark matter-
electron scattering involve a scalar or vector mediator
which couple respectively to the electron number density
and the electron current. In the nonrelativistic limit, the
leading interactions of the mediator are the same for both
cases:

� L � g���̄� + ge�ēe ! g��n� + ge�n

�L � g�Vµ�̄�
µ
� + geVµē�

µ
e ! g�V0n� + geV0n (7)

since scattering via the 0th component of the vector dom-
inates. Here n� and n are respectively DM and elec-
tron number densities. This makes is it manifest that
in the non-relativistic limit the scalar and vector media-
tors ought to give identical rates, up to the rescaling of
the coupling constants. Note that the vector here could
represent a kinematically-mixed dark photon in the in-
teraction basis, or another vector.

Given the similarity in these interactions, we can thus
consider a general mediator with coupling to electrons ge

and coupling to the DM g�. We will write the mass of
the mediator as mV , although it could also be a scalar.
The coupling between the electron density perturbation
nk and the external potential to the DM is then given by

Hext =

Z
d
3k

(2⇡)3
nk ⇥

✓
g�gee

ik·x

k2 + m
2
V

◆
. (8)

where the term in the parentheses represents the external
and thus unscreened potential due to the DM (where x
is DM position). In this basis, all in-medium corrections
will be included in S(!,k), as the propagator itself re-
ceives no corrections. In the particle physics literature
the interaction term in (8) is often written in terms of
the total potential felt by the electrons, especially so in
the context of a kinetically mixed dark photon mediator.
In this basis the propagator receives a multiplicative cor-
rection of the form 1/✏(!, k), and one defines a di↵erent
structure factor, without the screening factor. The ap-
proaches are equivalent. However by working with the
external rather than the total potential, the parallel be-
tween the scalar and the vector mediator in (7) is more
manifest.

Evaluating the Hamiltonian in (8) between initial and
final DM states of momentum pi and pf , respectively,
as well as initial and final electron fluid states |ii, |fi, we
find the matrix element

M =
g�ge

V (k2 + m
2
V )

hf |n�k|ii�pi�pf ,k (9)

where in the continuum limit we can write the Kronecker
delta function as a Dirac delta function, �pi�pf ,k =
(2⇡)3/V ⇥ �(pi � pf � k). We now use Fermi’s Golden
rule, and sum over initial states |ii weighted by e

��Ei/Z,
as well as over final states. Inserting a factor of unity as

2

parametrizes the rate at which excitations are emitted or
absorbed by the system:
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1

2
(1 � e

��!)S(!,k). (3)
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with � = 1/kBT and Z the partition function of the sys-
tem. Eq. (4) should remind the reader of Fermi’s golden
rule, and S(!,k) is directly proportional to the di↵eren-
tial DM-electron scattering rate. Using the relationship
between the susceptibility and dielectric response
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�
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This relation is well known in the condensed matter lit-
erature, see e.g. [37].

In the remainder of this paper we explore the con-
sequences of this relationship for dark matter electron
scattering. The main di↵erence with previous works
in the literature is essentially that, writing the ELF as
Im(✏(!,k))/|✏(!,k)|2, we see that a screening factor of
1/|✏(!,k)|2 is included inside the dynamic structure fac-
tor. Previous works studying DM scattering in semicon-
ductors [3, 22, 24] primarily considered the approxima-
tion |✏(!,k)|2 ⇡ 1. Since the DM scattering rate is dom-
inated by k >

⇠ keV, this assumption is not unreasonable,
but with detailed calculations we find that screening can
a↵ect the rate by a factor of a few in Si and Ge. In ad-
dition, while the importance of accounting for screening
has been well understood for vector mediators, screening
for scalar-mediated scattering was only pointed out more
recently in Ref. [38] (see also Ref. [39] for discussion of
in-medium e↵ects for scalars). In this work, we put scalar
and vector mediated scattering on the same footing and
show how they lead to identical response functions. We
also show how scattering form factors discussed in the
literature relate to the dielectric response, and perform
detailed calculations of the screening e↵ect in semicon-
ductor targets relevant for current low-threshold experi-
ments.

In the following section, we show how the DM-electron
scattering rate relates to the dynamic structure factor or
ELF. In section III, we discuss di↵erent ways to deter-
mine the dielectric function and thus the ELF, including
the details of our DFT calculations for semiconductors.
In section IV we present the implications for DM scatter-
ing in semiconductors and superconductors. We conclude
in section V.

II. DM-ELECTRON SCATTERING AS

DIELECTRIC RESPONSE

The most common models which predict dark matter-
electron scattering involve a scalar or vector mediator
which couple respectively to the electron number density
and the electron current. In the nonrelativistic limit, the
leading interactions of the mediator are the same for both
cases:

� L � g���̄� + ge�ēe ! g��n� + ge�n

�L � g�Vµ�̄�
µ
� + geVµē�

µ
e ! g�V0n� + geV0n (7)

since scattering via the 0th component of the vector dom-
inates. Here n� and n are respectively DM and elec-
tron number densities. This makes is it manifest that
in the non-relativistic limit the scalar and vector media-
tors ought to give identical rates, up to the rescaling of
the coupling constants. Note that the vector here could
represent a kinematically-mixed dark photon in the in-
teraction basis, or another vector.

Given the similarity in these interactions, we can thus
consider a general mediator with coupling to electrons ge

and coupling to the DM g�. We will write the mass of
the mediator as mV , although it could also be a scalar.
The coupling between the electron density perturbation
nk and the external potential to the DM is then given by

Hext =
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d
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(2⇡)3
nk ⇥
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where the term in the parentheses represents the external
and thus unscreened potential due to the DM (where x
is DM position). In this basis, all in-medium corrections
will be included in S(!,k), as the propagator itself re-
ceives no corrections. In the particle physics literature
the interaction term in (8) is often written in terms of
the total potential felt by the electrons, especially so in
the context of a kinetically mixed dark photon mediator.
In this basis the propagator receives a multiplicative cor-
rection of the form 1/✏(!, k), and one defines a di↵erent
structure factor, without the screening factor. The ap-
proaches are equivalent. However by working with the
external rather than the total potential, the parallel be-
tween the scalar and the vector mediator in (7) is more
manifest.

Evaluating the Hamiltonian in (8) between initial and
final DM states of momentum pi and pf , respectively,
as well as initial and final electron fluid states |ii, |fi, we
find the matrix element

M =
g�ge

V (k2 + m
2
V )

hf |n�k|ii�pi�pf ,k (9)

where in the continuum limit we can write the Kronecker
delta function as a Dirac delta function, �pi�pf ,k =
(2⇡)3/V ⇥ �(pi � pf � k). We now use Fermi’s Golden
rule, and sum over initial states |ii weighted by e

��Ei/Z,
as well as over final states. Inserting a factor of unity as

Non-relativistic scattering ( ) is dominated by 
scattering through Yukawa potential

k ≫ ω

H = − e∫ d3k nk
gχgeeik⋅r

k2 + m2
V

DM-electron scattering via vector or scalar 
mediators is identical in the nonrelativistic limit
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ϵRPA(ω, k) = 1 + 4παem

Vk2 lim
η→0 ∑

ℓ,ℓ′ 
∑
p,p′ 

|⟨p′ , ℓ′ |eik⋅r |p, ℓ⟩ |2 f 0(ωp′ ,ℓ′ ) − f 0(ωp,ℓ)
ω + ωp,ℓ − ωp′ ,ℓ′ + iη

Leading order polarization assuming 
independent electron response

Random-phase approximation (RPA):

Can be evaluated analytically in free degenerate electron gas with 
Fermi momentum  and plasma frequency  pF ωp = 4παemne/me

3

We can apply Fermi’s golden rule with second-order
perturbation theory to compute the cross section for
DM–nucleus inelastic scattering. We take the initial ions
to be in a ground state of a harmonic crystal potential.
Following the impulse approximation, we use plane waves

for intermediate and final states. Meanwhile, the electron
states are treated as Bloch states. The details of the
calculation are provided in Appendix A, with the final
result:
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⇥
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|✏KK(k, !)|2
⇥

4⇡
2
↵

V

X

pe

|[pe + k|e
ir·K

|pe]⌦|
2

|k + K|2
(f(pe) � f(pe + k)) �(!pe+k � !pe � !)

| {z }
Im [✏KK(k, !)]

where qN and pf are the final ion and DM momentum,
respectively, and k+K is the momentum deposited to the
electrons. V is the volume of the crystal. We sum over all
initial and final electron states pe and pe+k, weighted by
the occupation numbers f , and where band indices have
been suppressed. The electronic wavefunction overlaps
[pe + k|e

ir·K
|pe]⌦ are performed over the unit cell. The

form factor F encodes the details of the ion ground state,
and for a harmonic crystal it is given by

F (pi � pf � q) ⌘

✓
4⇡

mN !̄

◆3/4

e

�|pi�pf�q|2

2mN !̄ (4)

where !̄ is an oscillator frequency, averaged with respect
to the density of states D(!) and the thermal Bose factor,
with typical value !̄ ⇠ !ph.

In (3), the bracketed quantity can be rewritten in terms
of the imaginary part of the dielectric function in the ran-
dom phase approximation, Im [✏KK(k, !)]. Then we can
write Im [✏KK(k, !)]/|✏KK(k, !)|2 = Im [�1/✏KK(k, !)],
which is the energy loss function (ELF) governing en-
ergy loss of charged particles in a material. Physically,
the ion-electron interaction in the inelastic process can be
encapsulated in the same ELF as ions passing through a
material. Since the ELF is a well-measured and calcu-
lated quantity in many materials, this provides a useful
starting point for numerical evaluations of (3).

In the soft limit |k+K| ⌧ |qN |, the cross section fac-
torizes as in (1), and the form factor F only modifies the
elastic recoil cross section. Then the di↵erential ioniza-
tion probability is

dP
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=

(4⇡Zion↵)2

!4V

X

pe

Z
d
3k

(2⇡)3
|vN · k|

2

k4

|[pe + k|pe]⌦|
2

|✏(k, !)|2

⇥ (f(pe) � f(pe + k)) �(!pe+k � !pe � !) (5)

=
4↵

2
Z

2
ion

!4

Z
d
3k

(2⇡)3
|vN · k|

2

k2
Im

✓
�1

✏(k, !)

◆
. (6)

with vN ⌘ qN/mN . This simplified formula is only valid
for k in the first Brillouin zone, see Appendix A for the

full expressions used in our numerical results. Eq. (6) was
also derived in [6], but that work did not account for the
ion ground state or electron momentum transfers outside
of the first BZ, since it was focused on long-wavelength
plasmons. Furthermore, [6] used an analytic approxima-
tion for ✏(k, !) near the plasmon pole. In the results
below, we will study the impact of accounting for the ion
ground state and use numerical calculations of ✏(k, !)
valid away from the plasmon resonance. Before doing so,
we clarify the relation of this process with the atomic
Migdal e↵ect.
Comparison with atomic Migdal e↵ect — In

Migdal’s original calculation [7, 8] for an atomic tar-
get, the ground state of the electron cloud (|ii) is first
boosted to the rest frame of the moving nucleus |ii !

e
imevN ·

P
� r� |ii. He then computes the overlap with the

excited states hf |

Mif = hf | e
imevN ·

P
� r� |ii ⇡ ime hf |vN ·

P
�r� |ii (7)

where � runs over all the electrons in the atom. The tran-
sition probabilities |Mif |

2 can then be evaluated with
known atomic wave functions, and it was found that sin-
gle ionizations dominate for sub-GeV dark matter [3].

To demonstrate the connection with the semiconduc-
tor Migdal e↵ect derived above, we instead rewrite (7)
using the following operator identity: hf |

P
� r� |ii =

�ihf |
P

� p� |ii/me! = ihf |
P

� [p� , H0]|ii/me!
2, where

again ! = Ef � Ei is the total energy deposited and H0

the electron Hamiltonian. We assume a non-relativistic3

Hamiltonian such that the H0 is a sum of kinetic terms,
Coulomb interaction terms between electrons, and the
Coulomb interaction of the electrons with the nucleus.
Then the commutator

P
� [p� , H0] will be proportional

3
Relativistic corrections can be important for inner shell electrons,

but the rate is dominated by the non-relativistic outer shells.

Emission  absorption−
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ELF in Silicon
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FIG. 1. The ELF evaluated with GPAW and the Mermin oscillator method, as implemented in chapidif. When a measurement
is available, it is overlaid as well. For k = 0 the Si and Ge data are taken from respectively [49] and [46]. At finite k for
Si the measured ELF is taken from the Weissker et al. dataset [48]. The Mermin oscillators were fit to optical (k = 0) data
[46, 47]; the Weissker et al. data for finite k values is independent and not included in this fit. The discrepancy at high !
is due to the fact the GPAW calculation only includes the lowest 70 bands in computing the ELF, and hence does not capture
the dielectric response for ! >⇠ 70 eV. Note that for DM with maximum speed of ⇠ 750 km/s, only the phase space with
k >⇠ 4 keV ⇥ !/(10 eV) contributes to DM-electron scattering. The sharp plasmon resonance in the first two columns therefore
does not contribute to the scattering rate. Those panels are meant only as a validation of our methods.

such as the susceptibility �GG0(q, !) and the polarizabil-
ity PGG0(q, !) can be related to their counterparts com-
puted in the simpler Kohn-Sham system by requiring the
change in charge density in response to a small change in
the external potential (in the full system) and the e↵ec-
tive potential (in the KS system) to be the same.

We are ultimately interested in the microscopic dielec-
tric function, which is related to the polarizability by [51]

✏GG0(q, !) = �GG0 �
4⇡↵em

|q + G| |q + G0|
PGG0(q, !). (22)

In the random phase approximation, the polarizability is
approximated with the KS susceptibility PGG0(q, !) ⇡

�
KS
G,G0(q, !) (see Appendix A), and thus

✏GG0(q, !) ' �GG0 �
4⇡↵em

|q + G| |q + G0|
�
KS
GG0(q, !) (23)

which, neglecting the o↵-diagonal pieces, is simply the
Lindhard dielectric function of Eq. (14) computed with
KS wavefunctions and extended to momenta k = q + G
outside the 1BZ (see also Eq. (B1)). By solving for the
susceptibility in the relatively simple KS system, one ar-
rives at an approximation for the full microscopic dielec-
tric function.

There exist several DFT tools to compute the KS sus-
ceptibility, and hence the RPA dielectric response. We

use the public code GPAW [52, 53] for this purpose and
focus on Si and Ge semiconductors. First, the KS wave-
functions are computed. This is done at zero tempera-
ture, using a plane-wave basis with a cuto↵ of Ecut = 500
eV, corresponding to |k| <

⇠ 22 keV. The Brillouin zone is
sampled using a gamma-centered Monkhorst-Pack grid
with 8 ⇥ 8 ⇥ 8 k points for Si, while for Ge we use a
12 ⇥ 12 ⇥ 12 grid. The finer grid for Ge was chosen to
improve convergence of the results with respect to the
grid spacing. Seventy bands are included for each spin.
The KS wavefunctions are computed using the TB09
exchange-correlation functional [54], and a scissor cor-
rection is applied to match the experimentally measured
Si and Ge bandgaps at T = 0. Note that the 3d electrons
in Ge are treated as part of the frozen core, in contrast
to e.g. [3].

Next, the longitudinal dielectric matrix is computed
in the RPA using (23) for all q 2 1BZ sampled by the
Monkhorst-Pack grid. We will work in an approxima-
tion where we neglect the directional dependence of the
response, as well as the o↵-diagonal components of the
dielectric matrix. To this end, we define an angular-
averaged dielectric function

✏(!, k) ⌘
1

N(k)

X

q,G

✏GG(!,q)�k,|q+G| (24)

where N(k) ⌘
P

q,G �k,|q+G|, the q sum runs over all
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FIG. 1. The ELF evaluated with GPAW and the Mermin oscillator method, as implemented in chapidif. When a measurement
is available, it is overlaid as well. For k = 0 the Si and Ge data are taken from respectively [49] and [46]. At finite k for
Si the measured ELF is taken from the Weissker et al. dataset [48]. The Mermin oscillators were fit to optical (k = 0) data
[46, 47]; the Weissker et al. data for finite k values is independent and not included in this fit. The discrepancy at high !
is due to the fact the GPAW calculation only includes the lowest 70 bands in computing the ELF, and hence does not capture
the dielectric response for ! >⇠ 70 eV. Note that for DM with maximum speed of ⇠ 750 km/s, only the phase space with
k >⇠ 4 keV ⇥ !/(10 eV) contributes to DM-electron scattering. The sharp plasmon resonance in the first two columns therefore
does not contribute to the scattering rate. Those panels are meant only as a validation of our methods.

such as the susceptibility �GG0(q, !) and the polarizabil-
ity PGG0(q, !) can be related to their counterparts com-
puted in the simpler Kohn-Sham system by requiring the
change in charge density in response to a small change in
the external potential (in the full system) and the e↵ec-
tive potential (in the KS system) to be the same.

We are ultimately interested in the microscopic dielec-
tric function, which is related to the polarizability by [51]

✏GG0(q, !) = �GG0 �
4⇡↵em

|q + G| |q + G0|
PGG0(q, !). (22)

In the random phase approximation, the polarizability is
approximated with the KS susceptibility PGG0(q, !) ⇡
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G,G0(q, !) (see Appendix A), and thus
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KS
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which, neglecting the o↵-diagonal pieces, is simply the
Lindhard dielectric function of Eq. (14) computed with
KS wavefunctions and extended to momenta k = q + G
outside the 1BZ (see also Eq. (B1)). By solving for the
susceptibility in the relatively simple KS system, one ar-
rives at an approximation for the full microscopic dielec-
tric function.

There exist several DFT tools to compute the KS sus-
ceptibility, and hence the RPA dielectric response. We

use the public code GPAW [52, 53] for this purpose and
focus on Si and Ge semiconductors. First, the KS wave-
functions are computed. This is done at zero tempera-
ture, using a plane-wave basis with a cuto↵ of Ecut = 500
eV, corresponding to |k| <

⇠ 22 keV. The Brillouin zone is
sampled using a gamma-centered Monkhorst-Pack grid
with 8 ⇥ 8 ⇥ 8 k points for Si, while for Ge we use a
12 ⇥ 12 ⇥ 12 grid. The finer grid for Ge was chosen to
improve convergence of the results with respect to the
grid spacing. Seventy bands are included for each spin.
The KS wavefunctions are computed using the TB09
exchange-correlation functional [54], and a scissor cor-
rection is applied to match the experimentally measured
Si and Ge bandgaps at T = 0. Note that the 3d electrons
in Ge are treated as part of the frozen core, in contrast
to e.g. [3].

Next, the longitudinal dielectric matrix is computed
in the RPA using (23) for all q 2 1BZ sampled by the
Monkhorst-Pack grid. We will work in an approxima-
tion where we neglect the directional dependence of the
response, as well as the o↵-diagonal components of the
dielectric matrix. To this end, we define an angular-
averaged dielectric function
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where N(k) ⌘
P

q,G �k,|q+G|, the q sum runs over all

DFT-based calculation

Phenomenological approach
X-ray scattering

GPAW: Mortensen, Hansen, Jacobsen 2005; 
Enkovaara, Rostgaard, Morstensen + 2010; 
Mermin approach: Vos and Grande 2021 
X-ray: Weissker et al. 2010
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FIG. 2. E↵ect of screening on di↵erential rate spectrum in Si and Ge semiconductors, for an example DM mass of 10 MeV and
cross section �̄e = 10�38 cm2. The bottom panel shows the ratio of the unscreened rate over the screened rate.

1BZ points sampled by the Monkhorst-Pack grid and and
the G sum over all reciprocal lattice vectors up to the
plane wave cuto↵ momentum. This quantity can then
be used as an approximation to the full dielectric func-
tion in the ELF, Im(�1/✏(!,k)) ' Im(�1/✏(!, k)). This
approach neglects so-called “local field e↵ects” (LFEs),
since the o↵-diagonal components of the dielectric matrix
are dropped altogether.

In practice, some information about the o↵-diagonal
components of the dielectric matrix can be included by
replacing ✏GG ! 1/(✏�1

GG). This is known as the “inclu-
sion of LFEs” in the literature. Using this quantity in the
ELF results in a better fit to experiment (see e.g. [48] and
Fig. 1), since at low momentum transfer this procedure
amounts to averaging out the e↵ects of the o↵-diagonal
components of the dielectric matrix [51]. Approximat-
ing the loss function with ✏(!, k) with or without LFEs
does not make a substantial di↵erence in the experimen-
tal sensitivity to DM-electron scattering presented in the
next section. We include local field e↵ects except where
stated otherwise, so that the loss function predicted by
GPAW more closely matches experimental results.

The results computed by GPAW for the ELF in Si and
Ge are illustrated in Fig. 1 for various values of k. We
see that generally the DFT results agree well with both
experimental results (where available) and the Mermin
approach described in the previous subsection. The dis-
crepancies at large ! are due to the fact that GPAW only
includes the lowest 70 bands in computing the loss func-
tion, so does not yield reliable results above ⇠ 70 eV for
Si and Ge.

IV. IMPLICATIONS FOR DM-ELECTRON

SCATTERING

To show the impact of screening, we now evaluate the
scattering rate in example dielectric materials. We will
consider the ‘massless mediator’ limit where mV ⌧ ↵me

with FDM (k) = (↵me)2/k
2 and the ‘massive mediator’

limit where mV � ↵me with FDM (k) = 1. As discussed
before, the results here apply for both vector and scalar
mediators.

Our main results focus on Si and Ge semiconductors,
which are used in a number of direct detection experi-
ments. We use ✏(!,k) computed in the DFT framework
as described in the previous section, taking as our default
the RPA dielectric function including local field e↵ects.
Again, there is only a small di↵erence in rate whether
local field e↵ects are included or not, and we show an
explicit comparison in Fig. 5 in Appendix B. The Mer-
min oscillator determination of ✏(!,k) also gives compa-
rable results as long as we do not consider ! too close
to the band gap, which is reasonable for background-
limited experiments. The results with the Mermin oscil-
lator method are given in Appendix C. For the DM ve-
locity distribution, we assume the Standard Halo Model
with vesc = 500 km/s, velocity dispersion v0 = 220 km/s,
and Earth velocity ve = 240 km/s.

Fig. 2 shows the impact of screening on the di↵erential
rate spectrum, for an example DM mass of 10 MeV. Here
the unscreened rate (dashed lines) is obtained by writing
the ELF as Im(✏(!,k))/|✏(!,k)|2 and taking |✏(!,k)|2 !

1. The screening e↵ects are most noticeable for lower
energy deposition !, since in that case there is a larger
contribution from lower momentum transfers where the
screening is largest. Scattering at large ! is dominated by
large k, with negligible screening. Similarly, we see that
the e↵ect of screening is larger for the massless mediator

Implications for DM-electron scattering

Unscreened:  Im ( −1
ϵ(ω, k) ) → Im (ϵ(ω, k))
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FIG. 3. Comparison of cross section sensitivity. The solid lines show the 95% CL reach with kg-yr exposure for scalar or vector
mediated interactions, and account for screening. The dashed lines show the reach if the screening is not included. Following
the standard convention, we assume zero background down to single electron sensitivity for Si and Ge. For the Al lines, we
assume an energy range of 10 meV < ! <1 eV, and also zero background. In the left panel, the unscreened Al reach is many
orders of magnitude stronger and is not shown on the plot.

FIG. 4. Ratio of the screened rate to the unscreened rate, for di↵erent thresholds corresponding to 1, 2 and 3 electrons. We
use Q = 1 + b(! � Eg)/"c where for Si Eg = 1.11 eV, " = 3.6 eV and for Ge Eg = 0.67 eV, " = 2.9 eV, following Ref. [3].

case, since the DM form factor FDM (k) enhances the rate
from lower k values.

We show the corresponding e↵ect on the DM mass
and cross section reach in Fig. 3. The solid lines show
the reach for scalar and vector mediators, accounting
for screening e↵ects. We assume kg-year exposure, zero
background, and 95% CL projected reach to match with
the convention in the literature. The threshold is set
by the electron band gap. For m�

>
⇠ 10 MeV, there

is roughly a factor of (1.4) 2.5 suppression in the total
rate for (massive) massless mediators. The ratio becomes
larger near threshold in m�, since for those points the
rate is restricted to ! near the band gap, where screen-
ing is more important. The screening e↵ect is therefore
reduced somewhat with higher thresholds in !, as shown
in Fig. 4. For instance, the threshold to detect 2 electron-

hole pairs is roughly 4.7 eV (3.6 eV) in Si (Ge). Setting
this as the threshold, we find a screening suppression
instead of 2–2.1 for massless mediators and m�

>
⇠ 10

MeV. For massive mediators the dependence on the en-
ergy threshold is smaller.

The O(1) screening e↵ects we find for Si and Ge align
with our expectations for semiconductors with eV-scale
electron band gaps, and it is therefore interesting to com-
pare with a lower gap material where the screening is
much stronger. We also show in Fig. 3 the reach in a
metal, taking Al as an example. Such targets have been
proposed to be used in their superconducting phase as
low-threshold dark matter detectors [16, 17, 26, 55]. We
thus consider sensitivity to electron recoils in the energy
range 10 meV – 1 eV, such that the material can still
be approximated with the dielectric response of a metal.

Metal/superconductor: large screening, but also 
massive gains in rate at low momentum
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dσ
d3kdω

∝ σ̄e F2
med(k) Im ( −1

ϵ(ω, k) )
DM-electron scattering is determined by the 

energy loss function (ELF) 

Account for screening effects (scalar and vector 
mediators) and many-body physics to desired 

accuracy. Effects in semiconductors impact 
sensitivity of current/upcoming experiments
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The Migdal effect in semiconductors
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Challenges of low-energy nuclear recoils

? ?

Lower the heat threshold
• Detectors in development to reach 

~eV scale thresholds and lower 
• Search for single phonon excitations 

with sub-eV thresholds

Search for rare inelastic 
processes where electron recoil 

accompanies nuclear recoil

• Bremsstrahlung  
• Migdal effect 

χ + N → χ + N + γ
χ + N → χ + N + e−
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At low energies, many-body effects in the material can become important and 
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• Phonons

• Migdal effect
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Boost initial state to frame 
of moving nucleus:
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|ii ! eimevN ·
P

� r� |ii

3

We can apply Fermi’s golden rule with second-order
perturbation theory to compute the cross section for
DM–nucleus inelastic scattering. We take the initial ions
to be in a ground state of a harmonic crystal potential.
Following the impulse approximation, we use plane waves

for intermediate and final states. Meanwhile, the electron
states are treated as Bloch states. The details of the
calculation are provided in Appendix A, with the final
result:
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where qN and pf are the final ion and DM momentum,
respectively, and k+K is the momentum deposited to the
electrons. V is the volume of the crystal. We sum over all
initial and final electron states pe and pe+k, weighted by
the occupation numbers f , and where band indices have
been suppressed. The electronic wavefunction overlaps
[pe + k|e

ir·K
|pe]⌦ are performed over the unit cell. The

form factor F encodes the details of the ion ground state,
and for a harmonic crystal it is given by

F (pi � pf � q) ⌘
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e
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where !̄ is an oscillator frequency, averaged with respect
to the density of states D(!) and the thermal Bose factor,
with typical value !̄ ⇠ !ph.

In (3), the bracketed quantity can be rewritten in terms
of the imaginary part of the dielectric function in the ran-
dom phase approximation, Im [✏KK(k, !)]. Then we can
write Im [✏KK(k, !)]/|✏KK(k, !)|2 = Im [�1/✏KK(k, !)],
which is the energy loss function (ELF) governing en-
ergy loss of charged particles in a material. Physically,
the ion-electron interaction in the inelastic process can be
encapsulated in the same ELF as ions passing through a
material. Since the ELF is a well-measured and calcu-
lated quantity in many materials, this provides a useful
starting point for numerical evaluations of (3).

In the soft limit |k+K| ⌧ |qN |, the cross section fac-
torizes as in (1), and the form factor F only modifies the
elastic recoil cross section. Then the di↵erential ioniza-
tion probability is
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with vN ⌘ qN/mN . This simplified formula is only valid
for k in the first Brillouin zone, see Appendix A for the

full expressions used in our numerical results. Eq. (6) was
also derived in [6], but that work did not account for the
ion ground state or electron momentum transfers outside
of the first BZ, since it was focused on long-wavelength
plasmons. Furthermore, [6] used an analytic approxima-
tion for ✏(k, !) near the plasmon pole. In the results
below, we will study the impact of accounting for the ion
ground state and use numerical calculations of ✏(k, !)
valid away from the plasmon resonance. Before doing so,
we clarify the relation of this process with the atomic
Migdal e↵ect.
Comparison with atomic Migdal e↵ect — In

Migdal’s original calculation [7, 8] for an atomic tar-
get, the ground state of the electron cloud (|ii) is first
boosted to the rest frame of the moving nucleus |ii !

e
imevN ·

P
� r� |ii. He then computes the overlap with the

excited states hf |

Mif = hf | e
imevN ·

P
� r� |ii ⇡ ime hf |vN ·

P
�r� |ii (7)

where � runs over all the electrons in the atom. The tran-
sition probabilities |Mif |

2 can then be evaluated with
known atomic wave functions, and it was found that sin-
gle ionizations dominate for sub-GeV dark matter [3].

To demonstrate the connection with the semiconduc-
tor Migdal e↵ect derived above, we instead rewrite (7)
using the following operator identity: hf |

P
� r� |ii =

�ihf |
P

� p� |ii/me! = ihf |
P

� [p� , H0]|ii/me!
2, where

again ! = Ef � Ei is the total energy deposited and H0

the electron Hamiltonian. We assume a non-relativistic3

Hamiltonian such that the H0 is a sum of kinetic terms,
Coulomb interaction terms between electrons, and the
Coulomb interaction of the electrons with the nucleus.
Then the commutator

P
� [p� , H0] will be proportional

3
Relativistic corrections can be important for inner shell electrons,

but the rate is dominated by the non-relativistic outer shells.

Transition probability |ℳif |
2 Nucleus recoils with velocity vN

Electrons have to ‘catch up’ to recoiling nucleus

Small probability for “shake-off” electron, but allows low-energy 
nuclear recoil to be above the e- recoil threshold
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Bremsstrahlung calculation
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χ + N → χ + N + e−

Usual DM-nucleus scattering

Form factor accounting  
for multiphonon response 

in a harmonic crystal
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Differential probability of ion to excite an electron

treating  as nucleus with tightly bound core 
electrons.  Valid for .

N
10 MeV ≲ mχ ≲ 1 GeV
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clearly visible. For comparison, the dotted curves show the atomic Migdal rate computed in Ref. [3] for Si and Ge atoms.

We could have instead swapped the order of q and qN in-
tegration and imposed a cuto↵ on q, but we find that the
two procedures yield similar results for m� & 50 MeV.
The DM velocity integral proceeds as before, only with

vmin =
q

2(! + E
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N )/m�. The result for the rate is then
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In Fig. 5 we showed that the impulse approximation
starts to break down for q/

p
2!phmN . 3. To esti-

mate the size of the uncertainty associated with this ap-
proximation, we calculate the rate for both E

th
N = 4!ph

and E
th
N = 9!ph, which is equivalent to restricting

the phase space to respectively q/
p

2!phmN > 2 and

q/
p

2!phmN > 3 in the free particle limit. The di↵erence

is shown by the shaded bands in Fig. 2. For m� . 50
MeV, the rate is dominated by the phase space corre-
sponding to E

th
N < 9!ph, as is evident by the diverg-

ing uncertainty bands. Here the impulse approximation
ceases to be reliable and we chose not to extrapolate our
results to this regime.

In Fig. 6 we show the di↵erential rate for m� = 100
MeV for Si and Ge under di↵erent cuts and assumptions.
First, one observes that the free ion and impulse approx-
imations are essentially identical for this mass point. To
isolate the contribution from the plasmon pole in partic-
ular, we also plot the rate with a k < 2.5 keV cut, which
reveals the plasmon enhancement around ! ⇡ 20 eV. The
separation between the blue and the green curves how-
ever shows that this contribution is highly subleading as
compared to the high k, o↵-resonance part of the ELF.
Finally, in orange we show the rate for the Migdal e↵ect
in atomic Si or Ge, using the results of [3]; this case cor-
responds to the collision of the DM with a single, isolated
Si or Ge atom, and is clearly a poor approximation for
the rate in semiconductors.

Appendix D: Semiclassical derivation of atomic
Migdal e↵ect

In the main text, we interpreted the Migdal e↵ect as
electronic transitions due to the potential of a recoiling
nucleus. Here we provide a semiclassical derivation of
the Migdal e↵ect in atoms that reinforces this interpre-
tation by remaining in the lab frame. A similar approach
has been used in calculating the Migdal e↵ect for nuclear
decay processes [59, 60].

In the semiclassical approach, the nucleus motion is
treated classically and the electron degrees of freedom
only depend parametrically on the nucleus positions (also

Full rate in semiconductors

Rate in semiconductors is much larger due to 
lower gap for excitations.
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1 kg-year exposure, with Q > 2 (similar to proposed experiments)

The Migdal effect in semiconductors can enhance 
sensitivity to nuclear recoils from sub-GeV dark matter
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FIG. 2. (Left) Electron recoil spectrum in Si and Ge from the Migdal e↵ect in semiconductors, assuming DM–nucleon cross
section of 10�38 cm2 and DM mass 100 MeV. The di↵erential rate is translated into total number of electron-hole pairs created
(Q) using Eq. 5.1 of Ref. [34]. (Right) Expected 95% CL sensitivity to DM–nucleon cross section �n assuming a heavy mediator
and 1 kg-year of exposure. We take Q � 2 and zero background, corresponding to an upper limit of 3.6 events. The red line is a
90% CL limit obtained using the recent upper limit on the 2-electron rate from SENSEI [22], while the shaded region includes
bounds from XENON1T [20], LUX [19], CRESST III [35] and CDEX [36], as well as a recast of XENON10 [37], XENON100 [38],
and XENON1T [39] data in terms of the Migdal e↵ect [17]. For comparison, we show a projection for the Migdal e↵ect in
Xenon (dotted line) from Ref. [17]. In both panels, the shaded bands are an estimate of the theoretical uncertainty due to the
impulse approximation, obtained by varying the threshold on EN from 4!ph to 9!ph. See Appendix C for more details.
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Appendix A: Derivation of Migdal rate in
semiconductors

The derivation of the Migdal e↵ect for semiconductors
is complicated by the spatial delocalization of the valence
electrons. As a consequence, each valence electron feels
the presence of a large number of ions and their fellow
electrons in the crystal. The system is often described in
the single electron approximation, given by the Hamilto-
nian

H0 =
p2
e

2me
+ U(r) (A1)

where U(r) is an e↵ective, periodic potential felt by the
electron, due to the presence of the ions and the remain-
ing electrons. In general U(r) is very complicated, and
its eigenstates are typically obtained with specialized nu-
merical methods in the realm of Density Functional The-
ory (DFT). For now, we can however keep U(r) as an
abstract operator, and just work in terms of its eigen-
states as long as possible. Concretely, the eigenstates of
(A1) are Bloch wave functions

 j,k(r) =
1

p
V

uj,k(r) exp(ik · r) (A2)

where j indexes the electronic bands. Going forward, we
use |ki and |k] as shorthand for the full ( k) and Bloch

functions (uk) respectively. To keep the notation man-
ageable, the band indices j will be often be suppressed
in what follows. We quantize the system over a finite
volume V with periodic boundary conditions. The unit
cell’s volume is ⌦ and the number of cells in the crystal
is therefore N = V/⌦. We will take the infinite volume
limit only at the end of the calculation. This means that
the sampling over the first Brillouin zone (BZ) will be
a finite, discrete sum with N terms until we take the
continuum limit by sending V, N ! 1.

To treat the ion-electron interaction, we must account
for the screening from the spectator valence electrons,
which is parameterized by ✏, the frequency-dependent,
microscopic dielectric function. The dielectric function
of a material is defined by the relation

E(r,!) =

Z
d
3r0 ✏�1(r, r0,!)Eext(r

0
,!) (A3)

(Ei,pi)
(Ef ,pf ) (!, k)
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FIG. 3. Definition of kinematic variables.
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Im ( −1
ϵ(ω, k) )

The energy loss function (ELF) in dielectric materials describes 
response to any electromagnetic probe (Standard Model or DM)

Unifies approach to multiple DM mediators and target materials 

First principles calculations accounting for many-body effects 

Data-driven and experimental calibration of ELF 
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DM-electron scattering

Screening effects in semiconductors and superconductors

DM-nucleus scattering: the Migdal effect
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First derivation & calculation of Migdal effect 
in semiconductors


