The sunny side of direct detection

Josef Pradler

Institute of High Energy Physics Austrian Academy of Sciences

Nov 16 2021 HIDDEN VIRTUAL INSTITUTE webinar

The sunny side of direct detection

- Introduction: dark matter as the key agent in cosmological structure formation
- Introduction of dark matter direct detection
- New, irreducible signal components in direct detection

Bremsstrahlung: Kouvaris, JP PRL 2016;

Migdal effect: Essig, JP, Sholapurkar, Yu PRL 2020

Solar reflection I: An, Pospelov, JP, Ritz PRL 2018

Solar reflection II: An, Nie, Pospelov, JP, Ritz PRD 2021

Dark matter: now and then

Jim Peebles, Oct 8 2019

2019 Nobel Prize "for theoretical discoveries in physical cosmology"

Early Cosmology

Predicting the cosmic microwave background

Search for origin of chemical elements => idea in the 1940's that matter passed through a hot and dense phase and all elements were made

Alpher, Bethe, Gamow 1948

Number of reactions = cross section (cm²) x flux of projectiles (1/cm²/s) x time (s)

key reaction $p + n \rightarrow d + \gamma$

per neutron ~ not too small number to make elements

~ not too large number so that significant amounts of D and light elements are left

 $\Rightarrow \langle \sigma v \rangle nt \sim 1$ at $T \sim MeV \sim 10^9 \, K$ \Rightarrow Universe filled with radiation

with $\langle \sigma v \rangle \sim const.$ yields a prediction of the required baryon density n ~ 10¹⁸/cm³

=> With an estimate of today's density n ~ 10-7/cm³ together with $T \propto 1/a(t) \propto n^{1/3}$

=> T~ 4K today's radiation temp.

HIDDeN VIRTUAL INSTITUTE webinar

Cosmological scales

Cosmological scales

Origin of structure

 $\ddot{\delta} + [\text{Pressure} - \text{Gravity}] \delta = 0$

baryons fall into the potential wells created by dark matter.

Cosmological scales

HIDDeN VIRTUAL INSTITUTE webinar

Large Scale Structure

From the CMB epoch to today

Dark Matter is the key catalyzer for formation of non-linear large scale structure

Dark Matter in the Milky Way

=> broader topic of this talk: non-gravitational detection of that fluffy cloud

Basic idea

Detection Rate = particle flux (1/cm²/sec) x cross section (cm)

W

 m_{W}, v

- substructure $(p < 10^{-4})$
- debris flow, streams

• stable on cosmological timescales

W

MN

Velocity distribution of DM in the halo

Maxwellian velocity distribution is found in Nbody simulations

Note: not all particles of arbitrary velocity can be gravitationally bound to the halo

$$f_{\rm gal}(\vec{v}) \approx \begin{cases} N \exp\left(-|\vec{v}|^2/v_0^2\right) & v < v_{\rm esc} \\ 0 & v > v_{\rm esc} \end{cases}$$

$$v_{\rm esc} \simeq 650 \, {\rm km/s}$$

• Local DM flux is $(v_{\chi} \sim 10^{-3}c)$

$$\phi_{\chi} \sim \frac{\rho_0 v_{\chi}}{m_{\chi}} \sim 10^5 \,/\mathrm{cm}^2/\mathrm{s} \, \left(\frac{100 \,\mathrm{GeV}}{m_{\chi}}\right)$$

Vogelsberger et al 2009

HIDDeN VIRTUAL INSTITUTE webinar

Simple options for dark sectors

Connecting new physics to the Standard Model

 $(H^{\dagger}H) \left(A\phi + \lambda\phi^2\right)$

"Higgs Portal" (a minimal model of DM)

LHN

"Neutrino Portal" likely realized in nature (neutrinos have mass); sterile neutrinos

"Vector Portal" kinetic mixing of abelian field strength tensors

The kinetic mixing portal

"Dark Photons"

 $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \times U(1)'$

Standard Model

=> two parameter theory: kinetic mixing strength and mass of V

Simple example

- $\chi~$ is the dark matter
- $V_{\!\mu}\,$ dark photon is the "mediator"

 $m_V \gg |\mathbf{q}|$ point-like interaction $m_V \ll |\mathbf{q}|$ "millicharged DM"

general detection principles: ionziation, scintillation, heat, ...

A summary of two decades of effort

A closer look

Nuclear kinetic recoil energy

$$E_R = \frac{\mathbf{q}^2}{2m_N} = \frac{\mu_N^2 v^2}{m_N} (1 - \cos\theta_*)$$

=> A given recoil, demands a minimum relative velocity

$$v_{\rm min} = \sqrt{\frac{m_N E_R}{2\mu_N^2}} \simeq \left(\frac{E_R}{0.5\,{\rm keV}}\right)^{1/2} \frac{1\,{\rm GeV}}{m_\chi} \times \begin{cases} 1700\,{\rm km/s} & {\rm Xenon} \\ 600\,{\rm km/s} & {\rm Oxygen} \end{cases}$$

=> if m < 1 GeV, then there are no particles bound to the Galaxy that could induce a 0.5 keV nuclear recoil on a Xenon atom!

"kinematical no-go theorem"

Direct detection low-mass frontier

Direct detection low-mass frontier

Gaining access to sub-GeV Dark Matter through nuclear recoils

Inelastic channel of photon emission from the nucleus

Maximum photon energy

$$\omega_{\rm max} \simeq \mu_N v^2 / 2 \simeq m_\chi v^2 / 2$$
$$\simeq 0.5 \, \rm keV \frac{m_\chi}{100 \, \rm MeV}$$

Key I:
$$E_{R,\max} = 4(m_\chi/m_N)\omega_{\max} \ll \omega_{\max} \quad (m_\chi \ll m_N)$$

Key II: 0.5 keV nuclear recoil is easily missed (heat losses), 0.5 keV photon is never missed!

Irreducible signal components

Example Bremsstrahlung

Irreducible signal components

Example Bremsstrahlung

Irreducible signal components

Prompt atomic response following nuclear recoil

Direct Detection using electrons

E.g. if m < 10 MeV, then there are no particles bound to the Galaxy that could ionize an outer shell Xenon electron

Scattering on hot electrons in the solar interior

Adding a "hot" tail to the Maxwellian

Single scattering limit

mean free path of DM in the sun

$$l_{\rm fp} = [n_e \langle \sigma_{\rm tot} v_r \rangle]^{-1} \bar{v}_{\chi}$$

probability of scattering $P_s \sim R_{\rm traj}/l_{\rm fp} \sim$

$$\sim
ho_{
m core}/m_p imes R_{
m traj} imes \sigma_{
m tot} imes rac{\overline{v}_e}{\overline{v}_{\chi}}$$

 $\sim rac{\sigma_{
m tot}}{10^{-38}~{
m cm}^2}$

ballpark number for solar reflection

reflected flux
$$\frac{d\Phi_{\text{reflected}}}{dE_{\chi}} = \Phi_{\text{halo}} \times \frac{F_{A_{\rho}}A_{\rho}}{4\pi(\text{A.U.})^2} \qquad A_{\rho} = \pi(4R_{\odot})^2, \int dE_{\chi}F_{A_{\rho}} = 1$$

= solid angle suppression ~ 10⁻⁴

Direct Detection of sub-MeV DM

Example model with contact interactions

UV completed through Z' where relic density is set via p-wave annihilation and safe from CMB constraints on energy injection (modulo model dependent N_{eff} contributions)

$$\mathcal{L}_{\rm int} = G_{\chi e} \times (\bar{e}\gamma^{\mu}e)(i\chi^*\partial_{\mu}\chi - i\chi\partial_{\mu}\chi^*)$$

$$\sigma_{\rm ann} v = v^2 \times \frac{G_{\chi e}^2}{12\pi} (m_e^2 + 2m_\chi^2) \sqrt{1 - \frac{m_e^2}{m_\chi^2}}$$

=> relic density requirement points to

$$\sigma_e = \frac{1}{\pi} G_{\chi e}^2 \mu_{\chi, e}^2 \to (8-9) \times 10^{-35} \,\mathrm{cm}^2 \times \frac{2\mu_{\chi, e}^2}{(2m_\chi^2 + m_e^2)v_e}$$

HIDDeN VIRTUAL INSTITUTE webinar

Validating the Monte Carlo simulation in the single scattering limit

Quantitative results for simulated fluxes

Spectra become softer for increasing cross section => reflection at larger radii

Spectra hardest for when the DM mass equals the electron mass

Simple example

- $\chi~$ is the dark matter
- $V_{\!\mu}\,$ dark photon is the "mediator"

 $m_V \gg |\mathbf{q}|$ point-like interaction $m_V \ll |\mathbf{q}|$ "millicharged DM"

general detection principles: ionziation, scintillation, heat, ...

$$N_Q = \frac{E_R}{W} = n_{\rm ion} + n_{\rm ex}$$

 $W \simeq 13.7 \,\mathrm{eV}$ $n_{\mathrm{ex}}/n_{\mathrm{ion}} = \mathrm{few} \,\%$

Given energy deposition E_R , a number of quanta N_Q is produced, distributed in electron-ion pairs and excited atoms $n_{\rm ex}$

$$N_Q = \frac{E_R}{W} = n_{\rm ion} + n_{\rm ex}$$
$$= n_{\gamma} + n_e$$

$$n_e = n_{\rm ion}(1-r), \quad n_\gamma = n_{\rm ion}r + n_{\rm ex}$$

Observable: de-excitation photons from initial and recombined excitons n_{γ} and electrons that escape recombination n_{e}

$$p_{\rm surv} \simeq \exp\left(-\frac{\Delta z}{\tau v_d}\right)$$

 $v_d \simeq 1.7 {\rm mm}/\mu {\rm s}$ $\tau > 1 {\rm s}$

Electrons are drifted in the electric field towards the liquid-gas interface; depending where they are created, attenuation occurs

$$p_{\rm surv} \sim 0.6 - 0.9$$

$$N_Q = n_{\rm ion} + n_{\rm ex}$$
$$= n_{\gamma} + n_e$$
$$= \frac{S1}{g_1} + \frac{S2}{g_2}$$

$$g_1 \simeq 0.1, \quad g_2 \simeq 10 - 50$$

An electron reaching the liquid-gas interface creates about O(10) PE (S2); it takes on average 10 scintillation photons to collect 1 PE (S1)

HIDDeN VIRTUAL INSTITUTE webinar

 $N_Q = n_{\rm ion} + n_{\rm ex}$ $= n_{\gamma} + n_e$ $= \frac{S1}{g_1} + \frac{S2}{g_2}$

e.g. PandaX

note the anti-correlation between S1 and S2

S2-only search

$$\mathsf{PDF} \quad P(S2|E_R) = \sum_{n_e^{\mathrm{surv}}} \sum_{n_e} P(S2|n_e^{\mathrm{surv}}) P(n_e^{\mathrm{surv}}|n_e) P(n_e|\langle n_e \rangle)$$

For example: $P(n_{e,\gamma}|\langle n_{e,\gamma}\rangle) = \operatorname{binom}(n_{e,\gamma}|N_Q, f_{e,\gamma})$

 $\langle n_e
angle = E_{
m dep.} Q_y$ with charge yield Qy measured or modelled

$$P(n_e^{\text{surv}}|n_e) \simeq \langle p_{\text{surv}} \rangle = 0.8$$

$$P(S2|n_e^{\text{surv}}) = \text{gauss}(S2|g_2n_{e^{\text{surv}}}, \sigma_{S2})$$

Experimental rate:
$$\frac{dR}{dS2} = \varepsilon(S2) \int dE_{R} P(S2|E_R) \frac{dR}{dE_R}$$

S2 only spectrum

Example XENON100

Contact interactions with electrons

An, Pospelov, JP, Ritz PRL 2018 An, Nie, Pospelov, JP, Ritz PRD 2021

Role of ions?

 $m_\chi \ll m_{
m nucleus}$ collisions with ions only change direction but not energy

2 options: either ions shield the hot solar core from DM, or they may turn around DM that has already entered and increase chance of further upscattering

Role of ions

An, Pospelov, JP, Ritz PRL 2018 An, Nie, Pospelov, JP, Ritz PRD 2021

Millicharged DM

Difficult/expensive to treat because of long-range interactions

=> forward scattering biased; eventually "Debye-screened

2 effects:

"hard" large-angle scatterings accelerate DM;

"soft" small-angle scatterings effectively friction/viscosity

$$x_q = \frac{q}{\sqrt{m_eT}} = \frac{\Delta v_1 m_{\chi}}{\sqrt{m_eT}} > \frac{\zeta v_1 m_{\chi}}{\sqrt{m_eT}}$$

43

Millicharged DM

$$Q_{\rm eff} = e_D \kappa / e$$

Millicharged DM

Cosmological limits

Similar sensitivity from cosmology

Nguyen et al arXiv:2107.12380

Buen-Abad et al arXiv:2107.12377v1

10¹

 m_{χ} [MeV]

10²

10³

N_{eff} (CMB)

Direct Detection

 $f_{\chi} = 100\%$

10⁵

 $f_{\rm v} = 1\%$

 10^{4}

CMB+BAO

 10^{-1}

10⁰

Reflection of DM from the Corona

Sensitivity to large couplings? (where particles don't enter the sun)

Reflection of DM from the Corona

Sensitivity to large couplings? (where particles don't enter the sun)

Solar corona dilute, but hot!

Very small but energetic enough flux possible

particles will not reach deep underground => take surface runs

(we are neglecting complications here; rough estimate)

Summary

- the number of possibilities for particle DM appears daunting (no insight on mass); however there are very well motivated cases that can serve as "prototype models" coupled through portal interactions
- direct detection aims at registering DM-atom interaction; lowering threshold, one gains exponentially
- we may harvest irreducible signal components (Bremsstrahlung, Migdal electrons, solar reflected DM) to extend the physics reach of those experiments without extra cost
- solar reflection of MeV-mass DM with couplings to electrons
 - $=> O(10^{-4})$ component to the DM flux at earth from solid angle

=> extends the reach in the "electron-scattering" channel to MeV DM mass range with optimum sensitivity at electron mass direct detection

=> cosmological bounds on DM-electron scattering for light mediator are similar but complementary; for sub-% fractional abundance, cosmological limits may disappear

Summary

