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Introduction

e The infinite dimensional BMS (Bondi-van der Burg-Metzner-Sachs) group was
shown long ago to be the group of asymptotic symmetries of gravity in
asymptotically flat spacetime and it was originally discovered in the asymptotic
analysis at null infinity in the context of gravitational radiation.

e The BMS symmetries do not only leave invariant the boundary conditions at
null infinity, but are also exact symmetries of the theory leaving the action
invariant up to a surface term. Therefore, they should appear in any description,
in particular, in slices adapted to spatial infinity.

o Remarkably, since there is no outgoing flux at spatial infinity, any relevant
symmetry can be generated by a conserved charge that can be determined by
standard canonical techniques.

e However, Hamiltonian analyses at spatial infinity did not exhibit any sign of

BMS,.
[ Recce - Teite| boim H’}L\)



Introduction

e [t was not until recently that this discrepancy was resolved by considering
appropriate “parity-twisted boundary conditions” at spatial infinity on
spacelike hypersurfaces leading to a full agreement with the result at null

infinity. [HENNEAY\"\?\DE”"‘EK\’ , 013 -?__OH}

e Canonical realization of the super-BMS algebra where the fermionic
generators can be considered as being the “square roots” of the BMSy

t lations.
supertranslations [FUEN“CB\\JA, Hewnenur, “l-\jono\hﬂ-, I.M., Neopi, 2000-2021]

e The asymptotic structure of gravity at spatial infinity in five spacetime

dimensions, which revealed interesting new features not uncovered before.
[ Fuestealba ,Hemmenug, IM. Troessaeat, 2014 - 201.]
e Extension of the BMS, group by adding logarithmic supertranslations.

[Fuep‘ien\ba s Henmenuy, Troe ss;md-, 107.1_]



e The BMS group can be enlarged by extending the Lorentz algebra, the
so-called “superrotations”.

—. Baanich - Tﬁoess/-\ﬂl% ¢+ (Vies ViR)X S
[ Boewich , Teoe ssoget, 2010)

Laddha . D"Ff(g) % S
[Ln.n(,ie\?A- Laddha, 20W]

‘,COnP‘akEI Fiop_ucc'\,Euz%ini , LOZO]

— C_Amvig\\'p -

e Unfortunately, superrotations have been elusive in spatial infinity settings.
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Minkowski spaceti




Asymptotically flat metrics

e The solution space of four-
dimensional asymptotically flat
metrics reads as

2
ds? = ( mE L O(r_2)> du”

/’n

—2(1+ (’)(7“_2)) dudr
+ (r26_7AB +rCap + (’)(r—l)) dz? dzP i

1 2 1
+ (583055 + o (NA + ZCEGCCE) + 0(r‘2)> dudz®
r

Wg (0, #7) : Bondi mAss.
Np (v 2): Aoy lan nomen Yo kspau\-.

N%:gv\(,p.s’-BOno’i NEWS (t’:&(.oaiwe cW)



Symmetry group of asymptotically flat spacetimes

What do we expect?

e The isometry group of Minkowski space, i.e., the Poincaré group: 4
spacetime traslations + 6 Lorentz transformations (3 boosts, 3 rotations).

What do we actually have?

e An infinite dimensional extension of Poincaré: the Bondi-Metzner-van der
Burg; Sachs (BMS) group. o i

There exist a vector field preserving the asymptotic form of the metric
given by £ = £%0, + £°0, + £°0z + £ 0, such that

&' =T (z,2); supertranslations u — u+ 7 (z, 2)

e Supertranslations shift the retarded time by a different amount at each
point on the sphere.

e There exist an even bigger extension by considering arbitrary functions
that parametrize rotations ) (superrotations)

' =T(2,2) +ua (LY ; € =V+0r1); & = —na+ O@r°)
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Electromagnetism L Hennenux -Troessaer T, 1803.101a4)
e Hamiltonian action for Electromagnetism

LanGcronNee
t‘\t)“\’\'phe‘z
I | )
Sy = /dt{/dS:mr— (5777@4— ZFJFij —|—A§Q>> —|—Foo}
\IEC:\/OQ' \ CO«\ﬁ‘ueAm S__a_“-u
?o)fehﬁ’\ﬁ Mnowegta - x0



Electromagnetism L Hennenux -TroessaerT, 1803.10194)
e Hamiltonian action for Electromagnetism

Lacronee
nolkolice
Sp = /dt{/d%w— (%ﬂ@—l— iFijFij +\A@) +Foo}
\IEC\’OQ_ CCNJ:;‘U@AT:, . (U
?O'\'eﬂ’\'\ﬁ\ Mo ne gta S_ oum =0

e The EM field and its conjugate are usually taken to decay as
1 : 1
A; = o2 , n=—A7)+0(r?
| TP

AR}J'l“’ QAQY for o’\' ONS
ON +he 2-gohere

These conditions will be constrainted in order to guarantee the finiteness of the
symplectic structure.



Electromagnetism [ Hennerux -TroessaerT, 1803.10194)
e Hamiltonian action for Electromagnetism

Lacronee
nolklice
Sp = /dt{/d?)m— (%ﬂ@—l— iFijFij +\°A@) +Foo}
\IECI\’OQ_ Cmﬁ-ueAm . (U
Qo)few“&\ Mo we uta S‘ 9T, o

e The EM field and its conjugate are usually taken to decay as
1 : 1
A; = o2 , n=—A7)+0(r?
| B

AR}J'l“’QAQY fup ons
ON +he 2-gohere

These conditions will be constrainted in order to guarantee the finiteness of the
symplectic structure.

e BC are invariant under gauge transformations generated by the first-class
constraint G

6€Ai = 8@ , 5€7Ti =0
¢
€ = SR+ O

e The generator of the gauge symmetries is given by
electric charce (€21

G le] = /d3x€g + %d25¢67_ri ~ %dQSieTri (imp. GAUGe TRANS.)



Poincaré Transformations

e A general deformation of constant time hypersurface can be parametrized by
normal £ and tangential £&* components. In particular, a general Poincaré
tranformation corresponds to

¢ =bia’ + CJL,L ¢ = zfjxj +a
Lorentz  staudaed Spah o\ S+ angnRd
Loosts 4rans\ntions Rotations trauslations

e The fields transform as

o 4y I, GAUGE
0A; f\/§+€ Fji + > Erans.

o' = Om (VIF™E) + Lem
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Finiteness of the symplectic form

e The symplectic form (kinetic term) possesses a logaritmic divergence

dr /d% (ﬁﬂflr + ﬁAZlA)

/'4

Tupose extra condiXions

. PN
50 that [d% ) =0 —» PARITY CONDIVTION




Finiteness of the symplectic form

e The symplectic form (kinetic term) possesses a logaritmic divergence

dr /d% (ﬁﬂflr + ﬁAZlA)

/'4

Tupose extra condiXions
50 thnt SJ";(( Y =0

e Radial components
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Finiteness of the symplectic form

e The symplectic form (kinetic term) possesses a logaritmic divergence

dr /d% (ﬁﬂflr + ﬁAZlA)

/'4

Tupose extra condiXions
50 thnt SJ";(( Y =0

e Radial components

—P PARITY CONDITIONS

) Cou]on\a f;E\A (Movine f\ZL\“é)

7} Ay _ A (A
Ar(=a”) = =4, (%) ® Gavee mvp‘p\im\\‘}'

7 (—z) = 7" () e Charge |Gl #o\zx € cven 1M

e Angular components

O,ITwigh:d‘\ ppﬁ(\‘\’y cond. OF e AA(_CEB) = _AA(xB) + 8ACI)(QUB)
FORm Of B GeUGE YRAus
e é(-xo)=-é(xe) / 9A ﬁA:O ﬁA(—xB)ZﬁA(af;B)

o Accommodare solotrions.



Finiteness of the symplectic form

e The symplectic form (kinetic term) possesses a logaritmic divergence

%/d% (ﬁﬂflrJFﬁAAA) — 0 l

Tupose extra condirions
50 thnt SJ";{( Y =0

e Radial components

—» PARITY CONDITIONS

) Cou]on\:, f;e\d (Movipe fﬁt\“é)

7\ Ay _ _ A (A
Ar(=a7) = =4r (") ® Gavee iN\/AV\'\At\\“'

7—.‘_7“(_3314) — 7_1'T(:13A) o C\/\ARBC’, . 6 [é}: #A‘LX égveﬂ ;‘:—Y\r

e Angular components

o"'\/wigfed‘\ pp.v.'v\’y cond. OF {'\(\e AA(—fEB) = —AA(ZUB) - 8A(I’(i'?B)
FORW Of B GeUGE YRAus
° é(-xo)=-é(xe) / gA 'ﬁ‘A:O ﬁA(—xB):ﬁA(xB)

o Accommodare solotrions.
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Invariance of the symplectic structure

e We want Poincaré to be a symmetry of the theory, in particular, it should leave
the symplectic structure invariant

Q= / d%dmi
A exterior derivative

N P\M\SE. SpACE
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Invariance of the symplectic structure

e We want Poincaré to be a symmetry of the theory, in particular, it should leave
the symplectic structure invariant

Q= / d%dmi
A exterior derivative

N P\AASE SpACE

e A transformation defined by the vector field X es canonical if

dv(bxﬁ) =0

e Evaluating for Lorentz boosts & = br

dv(LbQ) = %dQZIZﬁ dvATDB(bdvA¢B> i O

EVEN + Oo\o\

Something must be done in order to accomodate Lorentz boosts.




e The problem can be solved by considering a'surface degree of freedom at infinity
such that we add to the symplectic form

_ 7{ d%ﬁdvﬁrdv@)\‘ ocld

where ¥ transforms under boosts as

¥ = DB(bAB) + bAr



e The problem can be solved by considering a'surface degree of freedom at infinity
such that we add to the symplectic form

- d2x\/§dpuﬁrdv<:l\‘
% odd
where ¥ transforms under boosts as

5b\i/ = DB(bAB) + bAr

e The transformation of A; under boosts is modified by adding a gauge
transformation

1 .
such that ¥ is any function that matches ¥ at infinity as

1 -
U=-U+0(r 1)
r

e Finally, since the symplectic form is invariant, boosts define canonical

transformations!
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Complete action

e We can extend the surface dof ¥ into a dynamical bulk field ¥ by introducting
the constraint m¢ ~ 0 and its Lagrange multiplier A such that the full action is

now
Sy = /dt{/d?’rf; (WZAZ —|—7T\1,\il) — %deﬁAr\i!
1 . .
—/dSCC (—ﬂjﬂ'i @FUFM> —/dsa: ()\W\p+Atg)}
2\/9 4

T\":,‘ r O(¥?) A= ¥ O(\r")

(
s[>



Complete action

e We can extend the surface dof ¥ into a dynamical bulk field ¥ by introducting
the constraint m¢ ~ 0 and its Lagrange multiplier A such that the full action is

now
Sy = /dt{/dsx (WZAZ —|—7T\1,\il> — %deﬁAr\i!
—/dBZC (—ﬂ'zﬂ'i + %FZJFM> — /d?’ac ()\71'\1; —|—Atg)}

2,/9

e The action is invariant under arbitrary shifts of ¥ parametrized by g, such that
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Complete action

e We can extend the surface dof ¥ into a dynamical bulk field ¥ by introducting
the constraint m¢ ~ 0 and its Lagrange multiplier A such that the full action is

now
Sy = /dt{/d?’rf; (WZAZ —|—7T\1,\il) — %deﬁAr\i!
—/dBZC (—ﬂ'zﬂ'i + %FZJFM> — /d?’a: ()\71'\1; —|—Atg)}

2,/9

e The action is invariant under arbitrary shifts of ¥ parametrized by g, such that

5H,qu — 'Ll/ s 5M,€A’L — aze ; 5/1,,671-?: — O 3 6M,€7T\IJ — 0

e The generator is then given by

G e :/d3az v + €G —I—?!d%: en” — \/ALA, ot o
Ky (,LL W ) (L ﬁlj ) /gv\eg'oexv,ﬁ‘)
gven odd o0

e This combination form thedfull'angle-dependent U(1) transformation at null
infinity.
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Asymptotic symmetry algebra

e Poincaré transformations are now canonical transformations generated by

o 3 EM 1y EM EM
Pe i —/d v (MM e nEM) + B

. . 1 . .
HEM = Vo;n*+ A;0'nry + ——m;w" + ﬁFz’jFW
2\/9 4
HZEM = Fz’jﬂ‘j — Aiajﬂ'j +7n1,8@\11

BEN: = y{d% [b (@ﬁr + ﬁABDBAT) +YB (Apr" + ﬁ@aBA,,,)]
e The algebra of the generators is given by
{Pfl,fi ’ P€2,£% } - Pé?él ! {G,u,,e, Pg,fz } — Gﬁ"é

{Gul,el ) G,u2,€2 } =0

where
£ =¢€10,60 — £50:61 , € =¢€10;8) — €10,6) 4 9% (€10,€2 — £20;61)
o=V (U0e) — E0;ip , €é=Eu—EO;e

e The algebra is the semzi-direct sum of the Poincaré algebra and the abelian

algebra parametrized by i1 and €. (angle dependent U(1) transformation)
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Gravity L Hennerux -Troessaer T, 1904.04495]

e The hamiltonian action of pure gravity in four spacetime dimensions can be
written as

S[gij, 7, N, N*] = /dt {/d% (77 gij — NHI™ — N*HITY) — nga“}
e

a a
coutueate  Seakia\  Lpose Shi well -degived
HO?GN“'U"\ r\e\'nl'-c F 'F+ Action prisciple
HQICLU = —\/§R+ —(Wijﬂ'ij — 571'2), Hf?“av — —ZVjﬂ'g
V3 l
Haw, \—\’onlw MOMENTUM

Cons fraint ons ot



Gravity L Hennerux -Troessaer T, 1904.04495]

e The hamiltonian action of pure gravity in four spacetime dimensions can be
written as

S[gij,W”,N, Nz] _ /dt {/de (ﬂ.wgij — NH9ITav _ szngav) . ngav}
N N N !
Cou:yuan.‘\’e 6?&'\". _A\ Lb.? Se S\v\iFf' well -c\ef;oed
M OMENTUN metric Action Pa'ueo;.p\i:

1 . 1
HI™W = —\ JgR+ — (7 m;j — =m?), HI = -2V n]
Haui Ho wian MOMENTUM
Cons fraint ons FrawNt
e We can consider the fall-off of the metric and its conjugate momentum
_ . - (Recee -Tci’fg\s,o;nl‘}‘i]
hij . R B LT deoend
S — M O 1) — O 3 o, © QEPEN ON
gij = Mij + - +0(r™7) , w 2 +0(r ) e angles



GraVIty E HenNE RUR - Troessher T, '\QIO"‘\.OL*“‘%]

e The hamiltonian action of pure gravity in four spacetime dimensions can be
written as

S[gij, 7, N, N*] = /dt {/d% (77 gij — NHI™ — N*HITY) — nga“}
! \4 e I8
congueate  searial Lb.? Se Sk;F-f- well -degived
MOMENTUM  netric action priccok

1 . 1
HITY = —\/gR+ — ("7 — —71'2), Hfmv = —ZVjﬂ'g
Hawi Hrowian MOMENTUM
Cons fraint ons FrawNt
e We can consider the fall-off of the metric and its conjugate momentum
- | v (Recee-Teitelbom ' 4]
- —1]j =i
. o o1 ij T O(r—3 i, T . depend on
gij = Mij + - +0(r™7) , w 2 +0(r ) e angles

and go directly to the kinetic term and check finiteness unit Norral

Yo e sSpheRe

/!

[ ety ~JE[dodt sweT Ty = Oy (ont) = By (o)

odd 7 (n*) = —a* (n")



e One possible solution is to consider parity conditions involving a “twist” given
by an improper gauge transformations of the form of a diffeomorphism

(Bz'j )even

gij = —2——+ (0 +9;G) +O0™?) 4 TV gven OL)
o Pucconnodate Tavb-nut
N (ﬁ.ij>0dd .
n = 2 1 (8,0;V —AV)+0(r3) @ T+ complieates charoes, ete..

r2



e One possible solution is to consider parity conditions involving a “twist” given
by an improper gauge transformations of the form of a diffeomorphism

(Bz ,)even 5
gij = JT + (9:¢j + 05¢i) + O(r™) PY Ci,\/ . EVEN OW1)
o Pucconnodate Tavb-nut
N —ij odd
Tt = % + (0;0;V — AV) + O(r_3) ® 1+ com p\ica’\'es c.\mmcpes, ete..
r

e In order to eliminate divergences of the symplectic term and the Hamiltonian, as
well as to guarantee that the bulk pieces of the boost and rotation generators are
convergent integrals we have to impose

Irav — O(?“_5) ’ ,Hzgrcw _ O(?“_5)

e The absence of canonical generator for the boosts can be solved by demanding
that the leading order of the mixed radial-angular components of the metric is
zero so that

grA = hrA — S\A + O(r_l) — O(r_l)



Invariance of the boundary conditions

e Under deformations of the constant time hypersurface parametrized by ¢ and £?,
the canonical variables transform as

_1 1
0gi; = 269 2 (Wij — §9¢j7f> + L g
. . 1 .. 1 1
om*l = —fg% RY — —g"“R | + —fg_% Tmnm ™" — Z?
2 2 2
PV N Y B L (elij _ ijelm
26g 2 | mmm — omim ) +g2 (& g7 & \m



Invariance of the boundary conditions

e Under deformations of the constant time hypersurface parametrized by ¢ and £?,
the canonical variables transform as

_1 1
0gij = 289 2 (Wz'j - §9¢j7T> + Legij
- 1. 1 1
Sl — —fg% (R'LJ _ 59”1%) + igg—% (Wmnﬂ_mn _ 57_(_2>

1 . . 1 .. 1 .. ..
—28g™ 2 (Wzmwmj - ;T”W) + g2 (E'” —9”€|m|m)

e The boundary conditions are then invariant under hypersurface deformations
that behave asymptotically as (in spherical coordinates)

1/ _
E=br+T+Cup +00™ 1) , A=Y+ - (DAW + C{,‘))) + O(r—2),

67“ :W‘i_O(’r—l)) DADBb—i_’?ABb:(L EYS/AB =0,

b boos\'s + \ f\
: - . GeENeRaYOR
Y. spatial /ot Cf\b5 o have A well _ef ENERA
T, W: fUNc‘\’ioAs oN C(b) . Yo MMN-"A}M \’\»(A =0
the spheRE.




Surface terms and charge generators

e The generator of the transformations is given by
PI" (g5, 7] = / Pz (EH + & Hy) + BT [gij, 7]
where the boundary term can be determined by integrating
dyBe = —%Gijkl(f(dvgij)m — & pdv gi;)d> S
—7{ (%kdvﬂkl + (28F It — flﬁjk)dvgjk) d* S
and G%Fl is De Witt supermetric,

. 1 o .
ngkl — \/§(2(ngng _|_gzlgjk) _gzjgkl).

e The generator is finite, integrable and canonical.




BMS, algebra

e The asymptotic symmetry algebra are canonical transformations generated by

ng " such that

{Pgrcw grafu} gra/u

where
YA =Y PopYs +34Bb10gbs — (1 < 2)
b=Y{Pogbs — (1< 2)
T =Y{04Ts — 361 Wy — 94b1 DAWo — b1 DA D AWy — (1 - 2)
W =Y 04Wa — b1 To — (1 < 2)

e BMS, algebra in an unfamiliar parametrization.

e Similarly to EM odd W and even T' combine to yield the arbitrary function that

paramatrize supertranslations in the null infinity parametrization.
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Superrotations (super-Lorentz) at spatial infinity

e We will propose some boundary conditions invariant under Dif f(S?) x S.

e In the null infinity analysis, the asymptotic conditions are asymptotically
locally Minkowski, this implies that the metric at the boundary is not fixed.

e We have to relax the boundary conditions in a way that they are
invariant under hypersurface deformations that behave asymptotically as

§:br+T+£+O(r’2),
F=W+S 40077,

A A
R T

where b, YA, T, W, ¢, €, €* and e(AQ) are arbitrary functions of the angles.
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Asymptotic conditions

e This can be done by considering asymptotically locally flat spacetimes,
where we now allow the angular components of the background metric to
vary at infinity

hor }_L

), o ),

gAB—T.-i-ThAB-l-O( )

_.+—rr 1)7 ﬂ_'rA

5AB\ -~AB
L _ 7T7.2 (ng)

e This asymptotic conditions are invariant under super-Lorentz.
—

’D(H,(S\') % S

gr
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Symplectic structure

e The kinetic term in the Hamiltonian action yields the symplectic form

Q= /dgwdvﬂ'ijdvhij.

e It is easy to check that the symplectic structure is divergent for our
boundary conditions

Q= /d% [rdVPABdVGAB
+ (deABdV;LAB + dvﬁ'AdeéAB + deTTdV;LTT)
1, - _ _ _
+ = (dv PAPavRSY + dyat Py hag + 7 dy Gas

tdy Py R + dy 7 dy e ) + 0 (r72)]



Symplectic structure

e We can use the ambiguities present in the formalism to renormalize the
symplectic structure, by adding the boundary terms to the action

/ d3z [rPABatGAB . L(.Q.,) ~ Cor's‘\’mh»‘\'s.
Y,—00

GRAV
+ (PAPoTap + 74P 0,Gap + P okk ) —y ()~ v 8O
2 (PABORG, + 74 Pahap + 730G ap + PR + r‘r”atﬁw)}
N i,(_(]_,,,,) ~ Lo.d)\’m'w}"

e The renormalization procedure makes the charge finite!
p _:—J_—‘—_/‘

e Unfortunately, the charge is non-integrable.
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Surface terms and charge generators

e The generator of the transformations can be obtained from i) = —dVPEgm”
which in this setup is equivalent to the Regge-Teitelboim approach

P [gij, 7] = / Pw (EH +EHs) + BT [gij, 7]
where the boundary term can be determined by integrating
dyBe = — % G (E(dv giz) ik — Exdy gis)d>S)
— § (vt + 264w — ln M)y g0 ) S
and Gkl is De Witt supermetric,

Gz]kl — \/g(g(gzkg]l _,’_gzlgjk) _ gzggkl).



Charge

Bgz/d2xdv{2YA [GABﬁ'€£+f_LAB7T :|+2W|: TT*7TA +hrTPTT pABf_LAB]
+TVGhyr + P+ VG + b {f (2k<2> + k% + EARB — 3hwk) XAz g}}
el
+/d2x {dV]-:’AB [2Wkap + €' GaB]

+dyGap b\/é E@AB 4 l h — 3k )kAE
4

2b R 1~ =
+ﬁ7_rmﬂr3 + W(_ﬁAB + hMPAB) + ZT\/akAB:|}
where

T = 2T + b(h + 3hsr)

13 - - _
E=—4de+b (—gsk@) - kBk:A + —hwk— 7h(2) + h(2) + Gjr Aﬁg) — 2Tk

e The generator is finite, but non-integrable.

e
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Integrability of the charge

e There are in principle two ways of integrating the charge.

O.. We cAn inTroduce A tovple °f Lousda® fie\ds Chg ANA Fhs
Alove with a \-’\odi(:cnlf'no.u of the 57\1?\6(}(“-
5\—(wo¥ume

- )a‘*(avf“a 4G + A T°n 3y Cas)
such Yunk Hﬁ va¥ees Hhe dhnece joTeoeoble

b we can Fol\o\u Fhe cane peo cedvre with F-,E\JS
wat aee nleendy ?usan-\' w Fhe AC

L-o CANACAPA‘E}: \25 Avd ?\nl:)



e We can integrate the charge by imposing the following transformation law
for the fields Cap and F*%

Bg :/dQCCdV {QYA [GABﬁ'&B) + ;LABﬂ'TB] +2W |:77'TT — ﬁ'ﬁ -+ BTTPTT — pABfLAB]
+TVGhyyr + P+ VG +b {\FG (2E<2> + B2 + ks — 371”15) + = FrrAﬁz} }

+/d2:c {deAB [2Wkap + €' GaB

&ZA&
+dyGag [b\@ (’_f(z)AB —+

&l

1 - _ _

“(h— ShTT)kAB)

4

+ 20 grazeB W (_5AB ], PABY 4 ET\@EAB} }
Vel " 4

~ _—
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e This allows us to to get rid of the non-integrable pieces in the charge by
means of the term in the contraction of the symplectic form proportional to

i ~ / ((5§FABdVGAB - vaAB5gCAB) .



e We still have to deal with the contributions coming from

it ~ / (5§PABdVCAB - dVFAB(sEC:AB) .

e The computation leads to the following contribution to the charge

Be =— /d2xdv {b?{(C’F) + YAHEE’F’} ,

where H(©F) and 'Hff’F) correspond to the Hamiltonian and Momentum
constraints for linearized gravity in a curved background with a positive
cosmological constant

— o _ _ 1 _
HCF) —_ /& (DADBCAB —AC —RABCu 5 + 5cf‘BR) e

GC
)\_,,Jx= \

2 AB 5 AC pB 5 AB
+ — (F*®Psp — PF + P*~“P°,Cuap — PCypP YA
\/G( ©
1 AB 52\ ~
- — (P4Bpys — P?) C,
7z ( )

’HA(AC’F) = — QDBFBA +PBC (DACBC — 2DBCCA) .



e The transformation laws of the boundary fields have to be supplemented
by precisely the (Hamiltonian) transformation laws of a spin-2 field in a
curved background.

e Thus, the final expression for the charge is integrable and found to be

odd » odd

BE = %d2x [2}‘/_‘4(6?1437?(5 +BABﬁTB) +QE(77'TT — 7+ Brrpf PABf_LAB)

12TV Gy +bV/G(2E® 4 B 4 RAEE — 3R ) + j—%fr”‘ﬁﬁ} 1 B
I&mm“-y,ol
G

e Finally, the generator of the asymptotic symmetries is given by

Gelgij, 7] = / ez (gH + 5%) + Be



e The asymptotic symmetry algebra is

{Ge, . Ges Hais ™1 ~ Gelgis, ™) + Mgy s [g65, 7]
where é is parametrized by
YA =Y 20pYs* + G*Pbi0pby — (1 < 2),
b=Y{"0abs — (1 2),
T =Y 0aTs — 30, Wa — G*P04b1 DpWo
— bGP DADEWs — (1 45 2),
W =Y*0aWa — 01T — (1 5 2).

and the nonlinear term

Agy e, = Qfd2m(b1T2 — b2T1)PhTr.

e Despite the resemblance with the previous results, the structure constants
now depend explicitly on Gap and DAY 4 = %P thus forming a Lie
algebroid.
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Comments and Remarks

o There is another potential way of solving the integrability problem by
means of the sub-sub-leading terms in the asymptotic expansion, i.e. h A? B
and fréj)g . (Still in progress but promising)

e It will be important to understand the connection with the results at null
infinity.

e Canonical realization of the superrotation symmetry of Barnich and
Troessaert ((Vir x Vir) x S) at spatial infinity.

e Supergravity, Higher spacetime dimensions, etc...



