Filtered Dark Matter

Setting the DM Abundance Through a First-Order Phase Transition

Joachim Kopp (CERN & Uni Mainz) Invisibles / Elusives Webinar | 14.01.2020

DM in the early Universe: Thermal Freeze-Out

DM in the early Universe: Thermal Freeze-Out

observed relic abundance obtained for $\langle \sigma(\chi\chi \to \bar{f}f)v_{\rm rel} \rangle \simeq 2.2 \times 10^{-26} \ {\rm cm}^3/{\rm sec}$

- Continued absence of signals in
 - O direct DM searches (DM-nucleus scattering)
 - **O** indirect searches (cosmic rays from DM annihilation)
 - O collider searches (production of DM particles)

- Continued absence of signals in
 - O direct DM searches (DM–nucleus scattering)
 - **O** indirect searches (cosmic rays from DM annihilation)
 - **O** collider searches (production of DM particles)
- No showstoppers yet, but the community is beginning to worry

- Continued absence of signals in
 - O direct DM searches (DM-nucleus scattering)
 - **O** indirect searches (cosmic rays from DM annihilation)
 - **O** collider searches (production of DM particles)
- No showstoppers yet, but the community is beginning to worry

- Continued absence of signals in
 - O direct DM searches (DM–nucleus scattering)
 - indirect searches (cosmic rays from DM annihilation)
 - **O** collider searches (production of DM particles)
- No showstoppers yet, but the community is beginning to worry
- One alternative: setting the DM abundance in a cosmological phase transition this talk

Phase Transitions Primer

Phase Transitions in Everyday Life

IGII

Image Credit: libretexts.org

Order Parameter Q: a quantity measuring the change in the system across the phase transition

O for liquid–gas transition: density ρ

Order Parameter Q: a quantity measuring the change in the system across the phase transition

O for liquid–gas transition: density ρ

Caroline Röhr and Heinz Gericke

VERN Neutrino PLATFORM

7

computational details 🗯 backup slides

How is this picture modified for non-minimal Higgs sectors? (for instance in dark matter models)

computational details 🗯 backup slides

"Filtered" Dark Matter

 \mathbf{M} Assume DM (χ) acquires mass during a phase transition

 $\mathcal{L} \supset -y_{\mathrm{DM}} \, \phi ar{\chi} \chi$

 \mathbf{M} Assume DM (χ) acquires mass during a phase transition

Iow-energy DM particles will not be able to enter bubbles

Markov Assume DM (χ) acquires mass during a phase transition $\mathcal{L} \supset -y_{\text{DM}} \phi \bar{\chi} \chi$

Iow-energy DM particles will not be able to enter bubbles

Baker JK Long, arXiv:1912.02830

Markov Assume DM (χ) acquires mass during a phase transition $\mathcal{L} \supset -y_{\text{DM}} \phi \bar{\chi} \chi$

Iow-energy DM particles will not be able to enter bubbles

Markov Assume DM (χ) acquires mass during a phase transition $\mathcal{L} \supset -y_{\text{DM}} \phi \bar{\chi} \chi$

Iow-energy DM particles will not be able to enter bubbles

Markov Assume DM (χ) acquires mass during a phase transition $\mathcal{L} \supset -y_{\text{DM}} \phi \bar{\chi} \chi$

Iow-energy DM particles will not be able to enter bubbles

Baker JK Long, arXiv:1912.02830

Example 2: DM Filtering at Bubble Walls

Example 2: DM Filtering at Bubble Walls

Small DM abundance inside the bubble persists

Example 2: DM Filtering at Bubble Walls

Small DM abundance inside the bubble persists

Most DM particles remain outside, annihilate efficiently

Baker JK Long, arXiv:1912.02830

Dark Matter at Bubble Walls

General Boltzmann Equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

Liouville operator

total time derivative of phase space distribution

General Boltzmann Equation

Liouville operator

total time derivative of phase space distribution

collision term

change in phase space distribution due to collision and annihilation

$$\mathbf{V}$$
 General Boltzmann Equation $\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$

 $\mathbf{L}[f_{\chi}] = \frac{df_{\chi}}{dt^w} = \frac{\partial f_{\chi}}{\partial t^w} + \frac{\partial \mathbf{x}^w}{\partial t^w} \frac{\partial f_{\chi}}{\partial \mathbf{x}^w} + \frac{\partial \mathbf{p}^w}{\partial t^w} \frac{\partial f_{\chi}}{\partial \mathbf{p}^w}$

The Liouville Operator

$$\mathbf{L}[f_{\chi}] = \frac{df_{\chi}}{dt^{w}} = \frac{\partial f_{\chi}}{\partial t^{w}} + \frac{\partial \mathbf{x}^{w}}{\partial t^{w}} \frac{\partial f_{\chi}}{\partial \mathbf{x}^{w}} + \frac{\partial \mathbf{p}^{w}}{\partial t^{w}} \frac{\partial f_{\chi}}{\partial \mathbf{p}^{w}}$$

Simplifications:

- **O** stationarity $(\partial f_X / \partial t^w = 0)$
- O translation invariance in x and y
- **O** integrate over x and y (to reduce number of variables)
- make ansatz $f_{\chi} = \mathcal{A}(z^w, p_z^w) \exp\left(-\frac{E^p}{T}\right)$ (superscript "w": wall rest frame, "p": plasma rest frame)

$$g_{\chi} \int \frac{dp_{x} dp_{y}}{(2\pi)^{2}} \mathbf{C}[f_{\chi}] = \sum_{\text{spins}} \int \frac{dp_{x} dp_{y}}{(2\pi)^{2}} d\Pi_{q^{p}} d\Pi_{k^{p}} d\Pi_{l^{p}} \frac{(2\pi)^{4}}{2E_{p}^{p}} \delta^{(4)} (p^{p} + q^{p} - k^{p} - l^{p}) |\mathcal{M}|^{2} \\ \cdot \left[f_{\chi_{p}} f_{\bar{\chi}_{q}} (1 \pm f_{\phi_{k}}) (1 \pm f_{\phi_{l}}) - f_{\phi_{k}} f_{\phi_{l}} (1 \pm f_{\chi_{p}}) (1 \pm f_{\bar{\chi}_{q}}) \right],$$

$$g_{\chi} \int \frac{dp_x dp_y}{(2\pi)^2} \mathbf{C}[f_{\chi}] = \sum_{\text{spins}} \left(\frac{dp_x dp_y}{(2\pi)^2} \right) \Pi_{q^p} d\Pi_{k^p} d\Pi_{l^p} \frac{(2\pi)^4}{2E_p^p} \delta^{(4)}(p^p + q^p - k^p - l^p) |\mathcal{M}|^2$$
$$\cdot \left[f_{\chi_p} f_{\bar{\chi}_q}(1 \pm f_{\phi_k})(1 \pm f_{\phi_l}) - f_{\phi_k} f_{\phi_l}(1 \pm f_{\chi_p})(1 \pm f_{\bar{\chi}_q}) \right],$$
integrate out x and y

$$g_{\chi} \int \frac{dp_x dp_y}{(2\pi)^2} \mathbf{C}[f_{\chi}] = \sum_{\text{spins}} \left(\frac{dp_x dp_y}{(2\pi)^2} d\Pi_{q^p} d\Pi_{k^p} d\Pi_{l^p} \right) \frac{(2\pi)^4}{2E_p^p} \delta^{(4)}(p^p + q^p - k^p - l^p) |\mathcal{M}|^2$$
$$\cdot \left[f_{\chi_p} f_{\bar{\chi}_q} (1 \pm f_{\phi_k}) (1 \pm f_{\phi_l}) - f_{\phi_k} f_{\phi_l} (1 \pm f_{\chi_p}) (1 \pm f_{\bar{\chi}_q}) \right],$$
$$\text{integrate out } x \text{ and } y \text{ phase space integrals}$$

full details in Baker JK Long, arXiv:1912.02830

matrix element

matrix element

distribution functions, Pauli blocking / Bose enhancement

$$g_{\chi} \int \frac{dp_{x}dp_{y}}{(2\pi)^{2}} \mathbf{C}[f_{\chi}] = \sum_{\text{spins}} \int \frac{dp_{x}dp_{y}}{(2\pi)^{2}} d\Pi_{q^{p}} d\Pi_{k^{p}} d\Pi_{l^{p}} \frac{(2\pi)^{4}}{2E_{p}^{p}} \delta^{(4)}(p^{p} + q^{p} - k^{p} - l^{p}) |\mathcal{M}|^{2}$$
$$\cdot \left[f_{\chi_{p}} f_{\bar{\chi}_{q}}(1 \pm f_{\phi_{k}})(1 \pm f_{\phi_{l}}) - f_{\phi_{k}} f_{\phi_{l}}(1 \pm f_{\chi_{p}})(1 \pm f_{\bar{\chi}_{q}}) \right],$$

Simplifications:

O same as for the Liouville operator, but also

O neglect Pauli blocking / Bose enhancement

After simplifications, Boltzmann equation takes the form

$$\left(\frac{p_z}{m_\chi}\frac{\partial}{\partial z} - \left(\frac{\partial m_\chi}{\partial z}\right)\frac{\partial}{\partial p_z} - \left(\frac{\partial m_\chi}{\partial z}\right)\frac{v_w}{T_n}\right)\mathcal{A}(z, p_z)\right]\frac{g_\chi m_\chi T_n}{2\pi}\exp\left[\frac{v_w p_z - \sqrt{m_\chi^2 + (p_z)^2}}{T_n}\right] = g_\chi \int \frac{\mathrm{d}p_x \,\mathrm{d}p_y}{(2\pi)^2} \,\mathbf{C}[f_\chi]$$

A PDE of the form

$$a(z^w, p_z^w)\frac{\partial \mathcal{A}}{\partial z^w} + b(z^w, p_z^w)\frac{\partial \mathcal{A}}{\partial p_z^w} = c(\mathcal{A}, z^w, p_z^w)$$

can be solved by the method of characteristics

M Define parametric curve via

$$\frac{dz^w(\lambda)}{d\lambda} = a(z^w, p_z^w), \qquad \frac{dp_z^w(\lambda)}{d\lambda} = b(z^w, p_z^w)$$

A PDE of the form

$$a(z^w, p_z^w)\frac{\partial \mathcal{A}}{\partial z^w} + b(z^w, p_z^w)\frac{\partial \mathcal{A}}{\partial p_z^w} = c(\mathcal{A}, z^w, p_z^w)$$

can be solved by the method of characteristics **M** Define parametric curve via

$$\frac{dz^w(\lambda)}{d\lambda} = a(z^w, p_z^w), \qquad \frac{dp_z^w(\lambda)}{d\lambda} = b(z^w, p_z^w)$$

Solution along the curve is given by

$$\frac{d\mathcal{A}(z^w(\lambda), p_z^w(\lambda))}{d\lambda} = c(\mathcal{A}(\lambda), z^w(\lambda), p_z^w(\lambda))$$

Solution along the curve is given by

$$\frac{d\mathcal{A}(z^w(\lambda), p_z^w(\lambda))}{d\lambda} = c(\mathcal{A}(\lambda), z^w(\lambda), p_z^w(\lambda))$$

M Physical interpretation:

O curves = particle trajectories

Parameter Space

Baker JK Long, arXiv:1912.02830 (today)

Parameter Space

Baker JK Long, arXiv:1912.02830 (today)

Parameter Space

Dark Matter Decay Between Phase Transitions

Observed DM abundance requires a mechanism that depletes DM by several orders of magnitude, then stops

Observed DM abundance requires a mechanism that depletes DM by several orders of magnitude, then stops

Idea: DM decay!

- Observed DM abundance requires a mechanism that depletes DM by several orders of magnitude, then stops
- Idea: DM decay!
- **Example**:
 - O Phase transition shifts particle masses, making DM unstable
 - O DM partly decays

O 2nd phase transition restores stability

Toy Model: SM + singlet scalar S

 $V^{\text{tree}} = -\mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2 - \mu_S^2 S^{\dagger} S + \lambda_S (S^{\dagger} S)^2 + \lambda_p (H^{\dagger} H) (S^{\dagger} S)$

Typical behavior: 2-step phase transition

• High T: $\langle S \rangle = 0, \langle H \rangle = 0$

O Intermediate *T*: $\langle S \rangle \neq 0, \langle H \rangle = 0$

O Low *T*: $\langle S \rangle = 0, \langle H \rangle \neq 0$

Profumo *et al.* 0705.2425 Cline *et al.* 0905.2559 Espinosa Konstandin Riva 1107.5441 Cui Randall Shuve 1106.4834 Cline Kainulainen 1210.4196 Fairbairn Hogan 1305.3452 Curtin Meade Yu 1409.0005 Baker JK 1608.07578 Baker Breitbach JK Mittnacht 1712.03962 Baker Mittnacht 1811.03101

The Vev Flip-Flop

 $I = T > 400 \text{ GeV}: \langle S \rangle = 0, \langle H \rangle = 0$ (thermal corrections dominate V_{eff})

- T ~ 400 GeV: S develops vev m DM unstable
- $T \sim 150 \text{ GeV}$: *H* develops vev \implies Feedback through $\lambda_p(H^{\dagger}H)(S^{\dagger}S)$

 \implies m_{S,eff} changes sign, $\langle S \rangle \rightarrow 0$, DM stable

The Vev Flip-Flop

Computed by Mike Baker using CosmoTransitions Wainwright <u>1109.4189</u>, Kozaczuk Profumo Haskins Wainwright <u>1407.4134</u>

The Vev Flip-Flop

Computed by Mike Baker using CosmoTransitions Wainwright <u>1109.4189</u>, Kozaczuk Profumo Haskins Wainwright <u>1407.4134</u>

Example 1: Decay Between Phase Transitions

Evolution of DM Abundance

Baker Mittnacht <u>arXiv:1811.03101</u> see also Baker JK <u>arXiv:1608.07578</u>

Example 1: Decay Between Phase Transitions

Baker Mittnacht <u>arXiv:1811.03101</u> see also Baker JK <u>arXiv:1608.07578</u>

Example 1: Decay Between Phase Transitions

Baker Mittnacht <u>arXiv:1811.03101</u> see also Baker JK <u>arXiv:1608.07578</u>

Implications for the LHC

Connections to Higgs Physics at Colliders

Early Universe phase transitions often controlled by scalar fields

Early Universe phase transitions often controlled by scalar fields

Connection to the SM: Higgs portal $(S^{\dagger}S)(H^{\dagger}H)$

Early Universe phase transitions often controlled by scalar fields

- \mathbf{M} Connection to the SM: Higgs portal $(S^{\dagger}S)(H^{\dagger}H)$
- **M** Testable at colliders:
 - O Invisible Higgs decays

Early Universe phase transitions often controlled by scalar fields

- \mathbf{M} Connection to the SM: Higgs portal $(S^{\dagger}S)(H^{\dagger}H)$
- Testable at colliders:
 - O Invisible Higgs decays
 - **O** If $\langle S \rangle \neq 0$: mixing between S and H
 - → electroweak precision observables (S, T, U parameters)
 - → modified *H* branching ratios
 - → direct observation of S

(similar production/decay channels as *H*, but suppressed by mixing)

Early Universe phase transitions often controlled by scalar fields

- Connection to the SM: Higgs portal $(S^{\dagger}S)(H^{\dagger}H)$
- Testable at colliders:
 - O Invisible Higgs decays
 - **O** If $\langle S \rangle \neq 0$: mixing between S and H
 - → electroweak precision observables (S, T, U parameters)
 - → modified *H* branching ratios
 - → direct observation of S
 - (similar production/decay channels as *H*, but suppressed by mixing)
 - O Precision measurements of Higgs self-coupling (e.g. in di-Higgs production)

Barger *et al.*, <u>https://arxiv.org/abs/0706.4311</u> Robens & Stefaniak, <u>arXiv:1601.07880</u>

Summary

Summary

Summary

Phase Transition in the early Universe

- imply abrupt change in the primordial plasma
- often depend on the dynamics of scalar particles
- Constant of the dark matter abundance in multiple ways
- Mave consequences for
 - **O** Higgs precision measurements
 - **O** gravitational wave observations
 - O baryogenesis

- backup slides
- backup slides

Thank you!

Bonus Slides

Scalar Potentials at Finite Temperature

Tree level potential

$$V^{\rm tree} = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

Coleman—Weinberg

$$Q + X + X + + + \cdots$$

Coleman Weinberg 1973, Dolan Jackiw 1974

Tree level potential

$$V^{\rm tree} = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

 $Q + X + X + + + \cdots$

$$V^{\rm CW}[\phi] = \sum_{n=1}^{\infty} \int \frac{d^4k}{(2\pi)^4} \frac{1}{2n} \left(\frac{2\lambda\phi}{k^2 - m^2}\right)^n$$

O Sum over n

O Regularize, evaluate integral

• Renormalize by adding counterterms

$$V^{\rm CW} = \sum_{i} \frac{n_i}{64\pi^2} m_i^4(h, S) \left[\log \frac{m_i^2(h, S)}{\Lambda^2} - \frac{3}{2} \right]$$

1-loop, finite temperature corrections Dolan Jackiw 1974

- **O** Evalute 1-loop diagrams
- Replace vacuum propagators by thermal propagators propagator = correlation function $\langle \Phi(x) \Phi(y) \rangle$ in vacuum, points *x* and *y* become correlated if a particle propagates from *x* to *y*. in a thermal bath, long-distance correlations are washed out by interactions with the bath.

1-loop, finite temperature corrections <u>Dolan Jackiw 1974</u>

- **O** Evalute 1-loop diagrams
- Replace vacuum propagators by thermal propagators propagator = correlation function $\langle \Phi(x) \Phi(y) \rangle$ in vacuum, points x and y become correlated if a particle propagates from x to y. in a thermal bath, long-distance correlations are washed out by interactions with the bath.

Maise Resummed "Daisy" Corrections

Dolan Jackiw 1974, Carrington 1992

1-loop, finite temperature corrections <u>Dolan Jackiw 1974</u>

O Evalute 1-loop diagrams

• Replace vacuum propagators by thermal propagators propagator = correlation function $\langle \Phi(x) \Phi(y) \rangle$ in vacuum, points *x* and *y* become correlated if a particle propagates from *x* to *y*. in a thermal bath, long-distance correlations are washed out by interactions with the bath.

Maise Resummed "Daisy" Corrections

O *n* one-vertex bubbles, one *n*-vertex bubble:

$$\sum_{n} \left(\int \frac{d^4k}{(2\pi)^4} \tilde{D}(k) \right)^n \cdot \int \frac{d^4k}{(2\pi)^4} \left(\tilde{D}(k) \right)^n$$

Dolan Jackiw 1974, Carrington 1992

O One-vertex bubbles yield thermal mass $\Pi(T)$

$$V^{\text{daisy}} = -\frac{T}{12\pi} \sum_{i} n_i \left(\left[m_i^2(h, S) + \Pi_i(T) \right]^{\frac{3}{2}} - \left[m_i^2(h, S) \right]^{\frac{3}{2}} \right)$$

Field	Spin	ℤ₂	mass Scale
S	0	+1	0.1 — 100 GeV
X	1⁄2	-1	5 GeV — 5 TeV
ψ	1⁄2	-1	5 GeV — 5 TeV

$$\mathcal{L} \supset -[y_{\chi\psi}\bar{\psi}S\chi + h.c.] - y_{\chi}\bar{\chi}S\chi - y_{\psi}\bar{\psi}S\psi$$

new scalar Field	Spin	ℤ2	mass Scale
S	0	+1	0.1 — 100 GeV
X	1/2	-1	5 GeV — 5 TeV
ψ	1/2	-1	5 GeV — 5 TeV

$$\mathcal{L} \supset -[y_{\chi\psi}\bar{\psi}S\chi + h.c.] - y_{\chi}\bar{\chi}S\chi - y_{\psi}\bar{\psi}S\psi$$

$$\mathcal{L} \supset -[y_{\chi\psi}\bar{\psi}S\chi + h.c.] - y_{\chi}\bar{\chi}S\chi - y_{\psi}\bar{\psi}S\psi$$

$$\mathcal{L} \supset -\left[y_{\chi\psi}\bar{\psi}S\chi + h.c.\right] - y_{\chi}\bar{\chi}S\chi - y_{\psi}\bar{\psi}S\psi$$

 $\mathcal{L} \supset -[y_{\chi\psi}\bar{\psi}S\chi + h.c.] - y_{\chi}\bar{\chi}S\chi - y_{\psi}\bar{\psi}S\psi$

Neutrino PLATFORM

erc

JOHANNES GUTENBERG

to keep ψ in equilibrium

⟨S⟩ affects **ψ** mass

Cosmological Evolution

Evolution of Particle Masses

Evolution of DM Abundance

Cosmological Evolution

Neutrino **PLATFORM**

erc

JOHANNES GUTENBERG

Cosmological Evolution

Neutrino PLATFORM

erc

JOHANNES GUTENBERG

Parameter Space

Parameter Space

Gravitational waves

- O 1st order phase transitions contribute to stochastic GW background
- relevant processes: bubble collisions, sound waves, turbulence
- potentially detectable by LISA (TeV scale) or by pulsar timing arrays (GeV scale)

e.g. Breitbach JK Madge Opferkuch Schwaller arXiv:1811.11175

Maryogenesis

• relate particle-antiparticle asymmetry of the Universe to different permeability of bubble walls for fermions and anti-fermions

Implications B1 Baryogenesis

Consider 1st order electroweak phase transition e.g. SM + real singlet scalar

✓ Penetratring bubble walls is difficult for top quarks massless on the outside, massive on the inside → potential wall

Solution Permeability can be larger for t_L and t_R requires new CP-violating interaction

 \mathbf{M} Deficit of t_{L} outside the bubbles

B+*L* (baryon number + lepton number) violated by sphaleron transitions

- O effect of the weak interaction → affect only LH particles
- O active only outside the bubble (electroweak symmetry broken inside)
- **O** *B*–*L* remains conserved

Entropy maximization implies that baryons are regenerated from leptons

- Met gain in baryon number
- Excess baryons are eventually swept up by advancing bubble walls

Image: Wilfried Buchmüller, hep-ph/9812447

Implications B2 Gravitational Waves

Gravitational Waves from Phase Transitions

Phase transitions in extended scalar sectors often 1st order
gravitational wave signals?
<u>Witten 1984</u>
<u>Cutting Hindmarsh Weir 2018</u>

 $t/R_* = 0.00391$ 2.027×10^{-6} 200 1.954×10 1.880×10^{-10} 150 1.807×10^{-6} yM1.51001.0 500.50.00 Neutrino PLATFORI 501001500200xM

Gravitational Waves from Phase Transitions

Phase transitions in extended scalar sectors often 1st order
gravitational wave signals?
<u>Witten 1984</u>
<u>Cutting Hindmarsh Weir 2018</u>

 $t/R_* = 0.00391$ 2.027×10^{-6} 200 1.954×10 1.880×10^{-10} 150 1.807×10^{-6} yM1.51001.0 500.50.00 Neutrino PLATFORI 501001500200xM

Three contributions

- O Bubble collisions
- O Collisions of sound waves generated during bubble expansion
- **O** Turbulence in the plasma

Mow to compute the GW signal from these contributions:

- O requires numerical simulations (large uncertainties!)
- O Parameterize results, e.g. as

$$\Omega_{\rm GW}(f) \equiv \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm GW}(f)}{\mathrm{d}\log f} \simeq \mathcal{N}\Delta \left(\frac{\kappa \alpha}{1+\alpha}\right)^p \left(\frac{H}{\beta}\right)^q s(f)$$

Gravitational Wave Spectra

- **O** Bubble nucleation temperature *T^{nuc}*
- **O** Strength of the phase transition

$$\alpha \equiv \frac{\epsilon}{\rho_R} = \frac{1}{\rho_R} \left(\left. -\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \right|_{T^{\rm nuc}} \right)$$

O Inverse duration of phase transition

$$\frac{\beta}{H} = T_h^{\text{nuc}} \frac{\mathrm{d}S_E(T)}{\mathrm{d}T} \bigg|_{T_h^{\text{nuc}}}$$

- O Bubble nucleation tempera' latent heat release
- O Strength of the phase transition

$$\alpha \equiv \overbrace{\rho_R}^{\epsilon} = \frac{1}{\rho_R} \left(-\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \Big|_{T^{\rm nuc}} \right)$$

O Inverse duration of phase transition

$$\frac{\beta}{H} = T_h^{\text{nuc}} \frac{\mathrm{d}S_E(T)}{\mathrm{d}T} \bigg|_{T_h^{\text{nuc}}}$$

- O Bubble nucleation tempera' latent heat release
- O Strength of the phase transition

$$\alpha \equiv \left. \begin{array}{c} \epsilon \\ \rho_R \end{array} = \frac{1}{\rho_R} \left(\left. -\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \right|_{T^{\rm nuc}} \right) \right.$$

O Inverse duration of phase duration density

$$\frac{\beta}{H} = T_h^{\rm nuc} \frac{\mathrm{d}S_E(T)}{\mathrm{d}T} \bigg|_{T_h^{\rm nuc}}$$

- **O** Bubble nucleation temperature *T^{nuc}*
- **O** Strength of the phase transition

$$\alpha \equiv \frac{\epsilon}{\rho_R} = \frac{1}{\rho_R} \left(\left. -\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \right|_{T^{\rm nuc}} \right)$$

O Inverse duration of phase transition

$$\frac{\beta}{H} = T_h^{\text{nuc}} \frac{\mathrm{d}S_E(T)}{\mathrm{d}T} \bigg|_{T_h^{\text{nuc}}}$$

- **O** Bubble nucleation temperature *T^{nuc}*
- **O** Strength of the phase transition

$$\alpha \equiv \frac{\epsilon}{\rho_R} = \frac{1}{\rho_R} \left(\left. -\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \right|_{T^{\rm nuc}} \right)$$

O Inverse duration of phase transition

O Bubble wall velocity v_w

Euclidean action corresponding to the transition path in field space

- **O** Bubble nucleation temperature *T^{nuc}*
- **O** Strength of the phase transition

$$\alpha \equiv \frac{\epsilon}{\rho_R} = \frac{1}{\rho_R} \left(\left. -\Delta V + T^{\rm nuc} \frac{\partial \Delta V}{\partial T} \right|_{T^{\rm nuc}} \right)$$

O Inverse duration of phase transition

$$\frac{\beta}{H} = T_h^{\text{nuc}} \frac{\mathrm{d}S_E(T)}{\mathrm{d}T} \bigg|_{T_h^{\text{nuc}}}$$

Parameter Dependence of GW Spectra

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Breitbach JK Madge Opferkuch Schwaller arXiv:1811.11175

erc

Markov Markov M

- hidden sector may have different temperature than visible sector
- ${\bf O}$ parameterized by temperature ratio $\xi_{\rm h}$

Dependence on Hidden Sector Temperature

Dependence on Hidden Sector Temperature

What is Needed for a Strong Phase Transition?

In practice

- difficult to realize sufficiently strong 1st order phase transitions (participating particles must be large fraction of total radiation density)
- easier at lower energies (pulsar timing arrays!)
- O but strong constraints from BBN

Decoupled hidden sector ν -quilibration 95% CL 95% CL BB # relativistic DOFs g_h relativistic DOFs g_h 6 $\Delta N_{\rm eff} = 0.9$ 5Higgsed Dark Photon $\Delta N_{\rm eff} = 0.7$ $MB+H_0$ 3 $\Delta N_{\text{off}} = 0.5$ Singlet Scalars $_{\rm m} = 0.3$ # $\Delta N_{\text{eff}} = 0.1$ 0 0.20.40.60.80.20.40.80.01.00.60.0temperature ratio ξ_h^{init} before e^{\pm} -annih. temperature ratio ξ_h Neutrino **PLATFORM** erc JOHANNES GUTENBERG

1.0