

Impact of LHC Higgs physics and EDMs on Baryogenesis in the Standard Model EFT with dim 6 terms

Marta Losada New York University Abu Dhabi

Work done in collaboration with E. Fuchs, Y. Nir and Y. Viernik

HIDDEN Network Webinar
June 2 2020

Outline

- Motivation/Relevant observables
- SM EFT with dim 6 terms
- Basics of EWBG
- EWPT
- EWBG/EDM/Collider Pheno in SMEFT
- Results: single flavor, combined flavors.
- Conclusions

Motivation I

Observation of asymmetry of matter-antimatter in the Universe.

$$Y_B^{
m obs} = (8.59 \pm 0.08) \times 10^{-11}$$
 Planck

- How to make a matter filled Universe?
 - Baryon number violation
 - Departure from thermal equilibrium
 - C and CP violation

Sakharov '67

Motivation II

- High precision, low energy experiments that have strong bounds.
- New CP violating terms have implications in other types of observables such as electric dipole moments.

ACME bound

$$|d_e^{\text{max}}| = 1.1 \times 10^{-29} \text{ e cm at } 90\% \text{ C. L.}$$

Motivation III

- LHC results of Higgs discovery and measurement of physical properties.
 - Scalar particle with SM Higgs boson properties
- No new elementary particles discovered with m ~ 1 TeV
 - New physics scale is high enough to be parametrized via higher dimensional operators.
- New physics via higher dimension operators
 - Use Higgs physics results from LHC to constrain these higher dim terms
 - Consider dimension six terms of Higgs- fermion fields with complex couplings

Constraining SMEFT

 Experimental results can constrain the complex couplings via:

- New contributions to cosmological observations, Y_B
- New contributions to Higgs production and decay rates at colliders
- New contributions to EDMs

SM EFT Framework

• Dim-6 term with real and imaginary Yukawa in Lagrangian:

$$L_{\text{Yuk}} = y_f \overline{F_L} F_R H + \frac{1}{\Lambda^2} (X_R^f + i X_I^f) |H|^2 \overline{F_L} F_R H + \text{h.c.}$$

- Allows for new CPV interactions
- Changes the fermion mass and the corresponding Yukawa coupling relation.

Parametrize by ratio of dim6 to dim 4 contribution to the fermion mass:

$$T_R^f \equiv rac{v^2}{2\Lambda^2} rac{X_R^f}{y_f}, \quad T_I^f \equiv rac{v^2}{2\Lambda^2} rac{X_I^f}{y_f}$$

Parameters in SMEFT

$$an heta_f = rac{\mathcal{T}_I^f}{1+\mathcal{T}_R^f}$$

$$m_f = \frac{y_f v}{\sqrt{2}} \sqrt{(1 + T_R^f)^2 + T_I^{f2}}$$

Mass and Yukawa coupling in real mass basis

$$\lambda_f = \frac{y_f}{\sqrt{2}} \frac{1 + 4T_R^f + 3T_R^{f2} + 3T_I^{f2} + 2iT_I^f}{\sqrt{(1 + T_R^f)^2 + T_I^{f2}}}$$

$$\left(\frac{y_f}{y_f^{\text{SM}}}\right)^2 = \frac{1}{(1+T_R^f)^2 + T_I^{f2}}$$

Basics of EWBG

Kuzmin, Rubakov, Shaposhnikov '85

- Initial hot plasma with zero net baryon number with EW symmetry.
- As Universe expands and cools until EWPT around T ~ 100 GeV
- Bubbles of the broken phase nucleate and expand to fill the Universe.
- Necessary to have new physics
 - CP violation sources: plasma particles CPV interactions with the bubble wall
 - Strong first order phase transition: suppress sphaleron transitions in the broken phase

Electroweak Phase Transition

Assume:

- New degrees of freedom that produce a strong first order EWPT
- These do not affect the CPV interactions with bubble wall we are going to consider.
- No new sources of CPV from these new degrees of freedom.

There are important parameters such as the wall velocity and wall width that need to be obtained In a specific model. We will simply take on some benchmark values for them in this analysis.

Main processes for EWBG

- Charged fermion plasma particles CPV interactions with the bubble wall generate a chiral asymmetry, while CP-conserving interactions wash out the generated asymmetry.
- The strong sphaleron process produces further washout in the quark sector.
- Remaining asymmetry diffuses into the symmetric phase. Diffusion is dominantly affected by gauge interactions, more efficient for leptons than for quarks.
- The weak sphaleron process is efficient only in the symmetric phase, acting on left-handed multiplets and changing baryon number.
- The chemical potential due to the chiral asymmetry induces a preferred direction for the weak sphaleron, thus generating a baryon asymmetry.
- Finally, the bubble wall catches up and freezes in the resulting baryon number density in the broken phase.

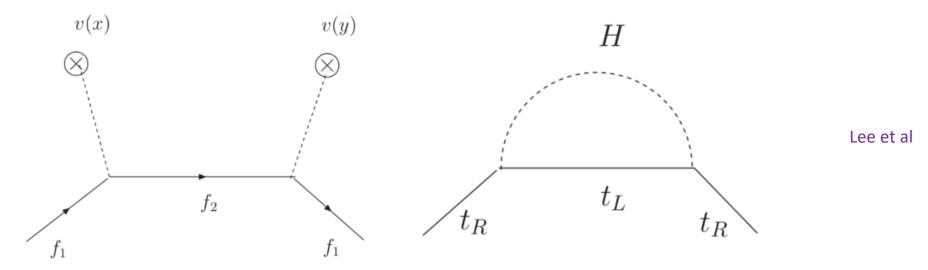
SMEFT implications for EW Baryogenesis

Full dynamics given by set of coupled equations:

$$\partial_{\mu} f^{\mu} = -\Gamma_{M}^{f} \mu_{M}^{f} - \Gamma_{Y}^{f} \mu_{Y}^{f} + \Gamma_{ss}^{f} \mu_{ss} - \Gamma_{ws}^{f} \mu_{ws}^{f} + S_{f}$$

$$\partial_{\mu}f^{\mu} pprox v_{w}f' - D_{f}f''$$

SMEFT implications for EW Baryogenesis


Full dynamics given by set of coupled equations:

$$\partial_{\mu} f^{\mu} = -\Gamma_{M}^{f} \mu_{M}^{f} - \Gamma_{Y}^{f} \mu_{Y}^{f} + \Gamma_{ss}^{f} \mu_{ss} - \Gamma_{ws}^{f} \mu_{ws}^{f} + S_{f}$$

Source, relaxation and Yukawa terms

Use vev-insertion approx.

$$S_f \propto \mathcal{I}m(m_f^*m_f') \propto y_f^2 T_I^f$$

SMEFT implications for EW Baryogenesis

Full dynamics given by set of coupled eqns:

$$\partial_{\mu}f^{\mu} = -\Gamma_{M}^{f}\mu_{M}^{f} - \Gamma_{Y}^{f}\mu_{Y}^{f} + \Gamma_{ss}^{f}\mu_{ss} - \Gamma_{ws}^{f}\mu_{ws}^{f} + S_{f}$$

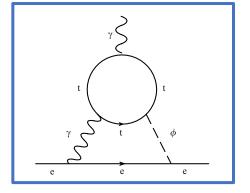
$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Changes in CP-even rates

$$\Gamma_{M} \to \left[\frac{(1 + r_{N0}^{2} T_{R}^{f})^{2} + (r_{N0}^{2} T_{I}^{f})^{2}}{(1 + T_{R}^{f})^{2} + T_{I}^{f2}} \right] \Gamma_{M}$$

$$\Gamma_{Y} \to \left[\frac{(1 + 3r_{N0}^{2} T_{R}^{f})^{2} + (3r_{N0}^{2} T_{I}^{f})^{2}}{(1 + T_{R}^{f})^{2} + T_{I}^{f2}} \right] \Gamma_{Y}$$

Baryon Asymmetry of the Universe


$$T_R^f = 0$$

$$Y_B = 8.6 \times 10^{-11} \times (51T_I^t - 23T_I^\tau - 0.44T_I^b)$$

BAU for values:

$$|T_I^t| = \mathcal{O}(0.02), \quad |T_I^\tau| = \mathcal{O}(0.04), \quad |T_I^b| > 1$$

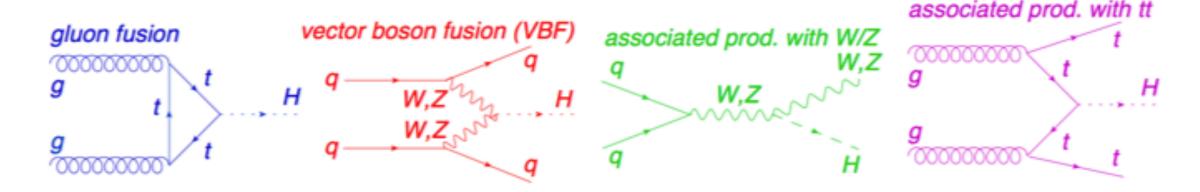
SMEFT implications for (e)-EDMs

ACME bound

$$|d_e^{\rm max}| = 1.1 \times 10^{-29} \ e \ {\rm cm} \ {\rm at} \ 90\% \ {\rm C. \ L.}$$

$$\begin{split} \frac{d_{\rm e}^{(t)}}{e} &\simeq -\frac{32\sqrt{2}}{3}\frac{e^2}{(16\pi^2)^2}\frac{m_{\rm e}}{v^2}\left[\left(2+\ln\frac{m_t^2}{m_h^2}\right)\left(\frac{y_t}{y_{\rm SM}^{\rm SM}}\right)^2 T_I^t\right] \\ \frac{d_{\rm e}^{(b)}}{e} &\simeq -\frac{32\sqrt{2}}{3}\frac{e^2}{(16\pi^2)^2}\frac{m_{\rm e}}{v^2}\left[\frac{1}{4}\left(\frac{\pi^2}{3}+\ln^2\frac{m_b^2}{m_h^2}\right)\frac{m_b^2}{m_h^2}\left(\frac{y_b}{y_b^{\rm SM}}\right)^2 T_I^b\right] \\ \frac{d_{\rm e}^{(\tau,\mu)}}{e} &\simeq -\frac{32\sqrt{2}}{3}\frac{e^2}{(16\pi^2)^2}\frac{m_{\rm e}}{v^2}\left[\frac{3}{4}\left(\frac{\pi^2}{3}+\ln^2\frac{m_{\tau,\mu}^2}{m_h^2}\right)\frac{m_{\tau,\mu}^2}{m_h^2}\left(\frac{y_{\tau,\mu}}{y_{\tau,\mu}^{\rm SM}}\right)^2 T_I^{\tau,\mu}\right] \end{split}$$

e-EDMs of only third generation fermions


$$d_e pprox |d_e^{
m max}| \left[2223 \left(rac{y_t}{y_t^{
m SM}}
ight)^2 T_I^t + 9.6 \left(rac{y_ au}{y_ au^{
m SM}}
ight)^2 T_I^ au + 11.6 \left(rac{y_b}{y_b^{
m SM}}
ight)^2 T_I^b
ight]$$

So for,
$$y_f = \mathcal{O}(y_f^{\mathrm{SM}})$$

$$T_I^t = \mathcal{O}(0.0004), \quad T_I^\tau = \mathcal{O}(0.1), \quad T_I^b = \mathcal{O}(0.09)$$

SMEFT implications for Colliders

Modification of Higgs production and decay modes.

$$\mu_I^F \equiv \frac{\sigma_I(pp \to h) \cdot \Gamma(h \to F)/\Gamma_h}{[\sigma_I(pp \to h) \cdot \Gamma(h \to F)/\Gamma_h]_{SM}}$$

$$r_f \equiv \frac{|\lambda_f|^2/|\lambda_f^{\rm SM}|^2}{|m_f|^2/|m_f^{\rm SM}|^2} = \frac{(1+3T_R^f)^2+9T_I^{f2}}{(1+T_R^f)^2+T_I^{f2}}$$

Modified Production Rates, Decays and Total Width

Production Rates

$$\sigma_{
m ggF}/\sigma_{
m ggF}^{
m SM} = \sigma_{tth}/\sigma_{tth}^{
m SM} = r_t$$
 $\sigma_{Vh}/\sigma_{Vh}^{
m SM} = \sigma_{
m VBF}/\sigma_{
m VBF}^{
m SM} = 1$

Decay Rates

$$\Gamma(h \to f \bar{f})/[\Gamma(h \to f \bar{f})]^{\mathrm{SM}} = r_f \quad (f = b, \tau, \mu)$$

Total Width
$$\Gamma_h/\Gamma_h^{
m SM}=1+{
m BR}_b^{
m SM}(r_b-1)+{
m BR}_ au^{
m SM}(r_ au-1)+{
m BR}_g^{
m SM}(r_t-1)$$

LHC Measurements

channel	experiment	\sqrt{s}/TeV	$\mathcal{L}/\mathrm{fb}^{-1}$	comment	μ
$h \to \tau^+ \tau^-$	ATLAS+CMS	7+8	5 + 20		$1.11^{+0.24}_{-0.22}$
	ATLAS	13	36.1	ggF, VBF	$1.09^{+0.35}_{-0.30}$
	CMS	13	77	ggF, $\bar{b}b$, VBF, Vh	$\left 0.75 \pm 0.17\right $
	ATLAS+CMS	7+8+13		all prod., priv. comb.	0.91 ± 0.13
$h \to \mu^+ \mu^-$	ATLAS	10	139	upper bound at 95% C.L.	< 1.7
	CMS	13	35.9		< 2.9
h o ar b b	ATLAS	13	79.8	VBF+VH	1.23 ± 0.26
				$t\bar{t}h + th$	$0.79^{+0.60}_{-0.59}$
	CMS	7+8+13	41.3	VH $(0-2\ell, 2 \text{ b-tags+jets})$	1.01 ± 0.22
				all prod.	1.04 ± 0.2
	ATLAS+CMS	7+8+13		VH, priv. comb.	0.98 ± 0.15
				all prod., priv. comb.	$\boxed{1.02 \pm 0.14}$

Single flavor

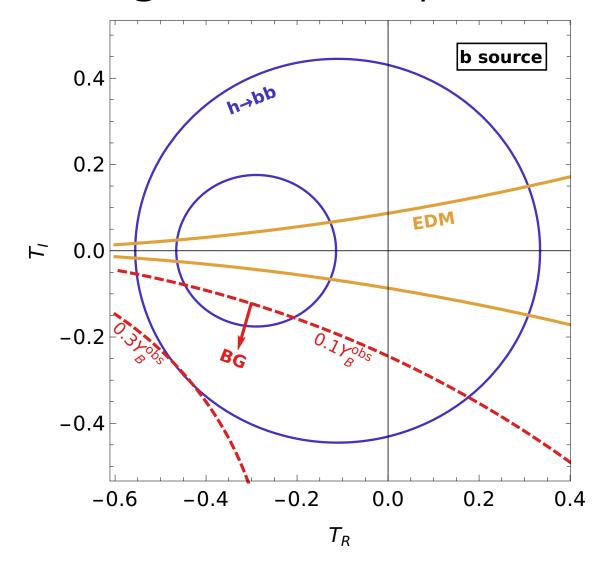
$$\mu_f = rac{r_f}{1 + \mathrm{BR}_f^{\mathrm{SM}}(r_f - 1)}$$

defines a circle in the (T_R, T_I) plane

$$T_I^{f^2} + (T_R^f - T_{R0}^f)^2 = R_T^2$$

For $\mu_f=1$, can have $T_R^f, T_I^f
eq 0$, independent of $\mathrm{BR}_f^\mathrm{SM}$

Combined flavors

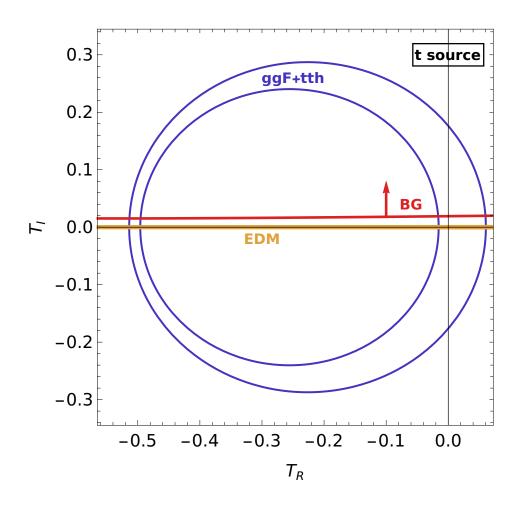

σ_I	$\Gamma(h \to F)$	Γ_h	f_1, f_2	process	dependence
SM	f_1	f_1, f_2	$egin{array}{c} au, b \ t, au \ t, b \ \end{array}$	any production, $h o au au$, $bar{b}$ $Vh+{\sf VBF},\ h o au au$ $Vh+{\sf VBF},\ h o bar{b}$	A
f_1	SM	f_1, f_2	$t, b/\tau$	$ggF+tth, h \rightarrow VV$	
f_1	f ₂	f_1, f_2	$egin{array}{c} t, au\ t,b \end{array}$	${ m ggF}+tth,\ h o au au \ { m ggF}+tth,\ h o bar{b}$	В

A:
$$\mu_{\text{SM}}^{f_1} = \mu_{f_1}^{\text{SM}} = \frac{r_{f_1}}{\Gamma_h/\Gamma_h^{\text{SM}}} = \frac{r_{f_1}}{1 + \text{BR}_{f_1}^{\text{SM}}(r_{f_1} - 1) + \text{BR}_{f_2}^{\text{SM}}(r_{f_2} - 1)}$$
B: $\mu_{f_1}^{f_2} = \frac{r_{f_1} r_{f_2}}{\Gamma_h/\Gamma_h^{\text{SM}}} = \frac{r_{f_1} r_{f_2}}{1 + \text{BR}_{f_1}^{\text{SM}}(r_{f_1} - 1) + \text{BR}_{f_2}^{\text{SM}}(r_{f_2} - 1)}$

Results: Single flavor features

- Y_B , $|d_e| \propto (y_f/y_f^{SM})^2 T_I^f$, except for the top quark. For $f \neq t$, contours of constant Y_B are also contours of constant d_e .
- Y_B^t is approximately constant in T_R^t due to the large Yukawa coupling contributing to its thermal mass.
- $ightharpoonup Y_B$ dependence on T_R^f is mild. Negative values of T_R generate a larger baryon asymmetry.
- \blacktriangleright $\mu_f=1$ defines a circle through the SM point $T_I^f=T_R^f=0$.
- Experimental bounds on μ_f constrain the dim-6 operators of each species to an annulus in the T_R^f , T_I^f plane.

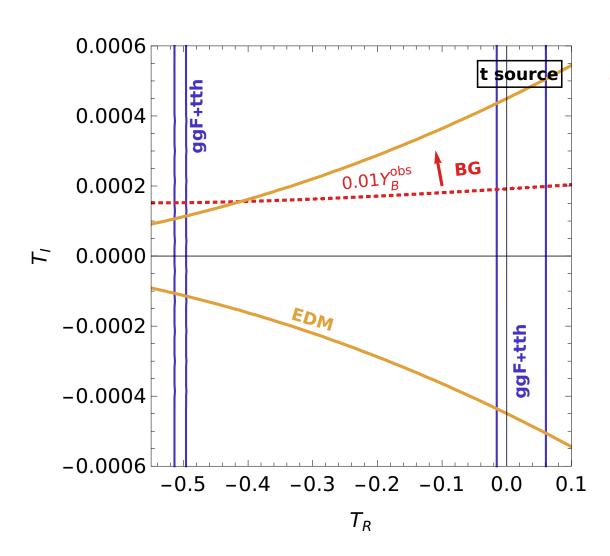
Third generation quarks --bottom



All production modes combined

$$\mu_{b\bar{b}} = 1.02 \pm 0.14$$

dominated by μ_{Vh}^{bb}


Third generation quarks -- top

Constrained by $\mu_{\rm ggF}$, $\mu_{\it tth}$ and $\mu_{\gamma\gamma}$ all decays

$$\mu_{\text{ggF}+t\bar{t}h} = 1.09 \pm 0.08$$

Third generation quarks—top (zoomed)

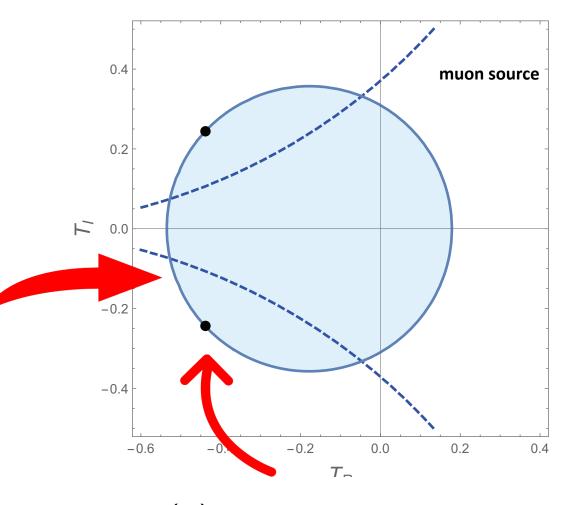
Constrained by $\mu_{\rm ggF}$, $\mu_{\it tth}$ and $\mu_{\gamma\gamma}$

$$\mu_{\text{ggF}+t\bar{t}h} = 1.09 \pm 0.08$$

Leptons -- muon

$$\frac{Y_B^{(\mu)}}{8.6 \times 10^{-11}} = \frac{d_e^{(\mu)}}{4.1 \times 10^{-30} \text{ e cm}}$$

$$\mu_{\mu^{+}\mu^{-}} = \frac{\Gamma(h \to \mu^{+}\mu^{-})}{[\Gamma(h \to \mu^{+}\mu^{-})]_{SM}} \qquad \mu_{\mu^{+}\mu^{-}} = \frac{(1 + 3T_{R}^{\mu})^{2} + 9T_{I}^{\mu 2}}{(1 + T_{R}^{\mu})^{2} + T_{I}^{\mu 2}}$$

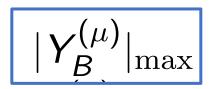

$$\mu_{\mu^+\mu^-}^{\rm CMS} < 2.9$$
 at 95% C.L. $\mu_{\mu^+\mu^-}^{\rm ATLAS} < 1.7$ at 95% C.L.

Leptons -- muon

$$\mu_{\mu^+\mu^-} = \frac{\Gamma(h \to \mu^+\mu^-)}{[\Gamma(h \to \mu^+\mu^-)]_{\rm SM}}$$

$$\mu_{\mu^+\mu^-}^{\rm CMS} < 2.9 {
m at } 95\% {
m C.L.}$$

$$\mu_{\mu^{+}\mu^{-}}^{\rm ATLAS} < 1.7 \ {\rm at} \ 95\% \ {\rm C.L.}$$



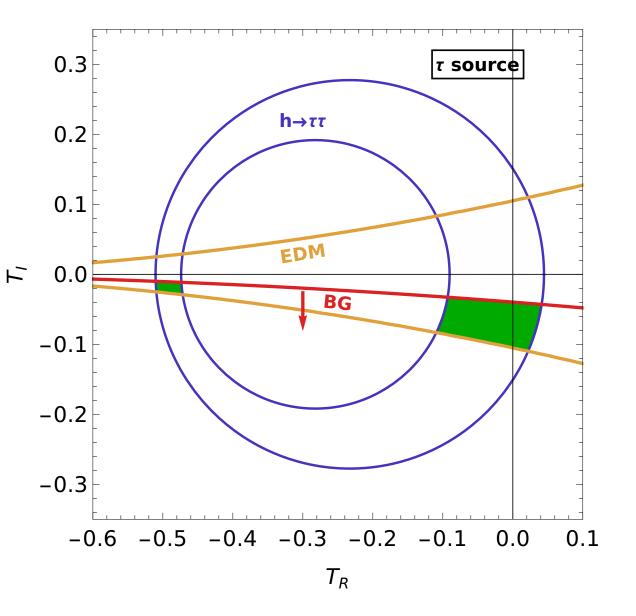
$$|Y_B^{(\mu)}|_{\text{max}} = 1.4 \times 10^{-11}$$

 $|d_e^{(\mu)}|_{\text{max}} = 6.5 \times 10^{-31} e \text{ cm}$

Leptons --muon

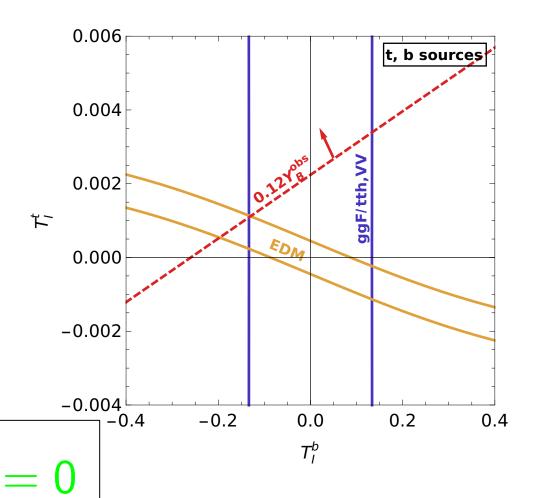
$$\mu_{\mu^+\mu^-}$$
 CP-even observable

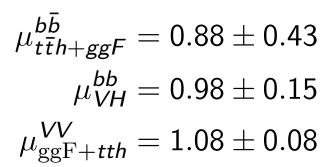
- The effective muon Yukawa coupling is not dominated by contributions from non-renormalizable terms.
- Is constraining a CP-odd observable, the baryon asymmetry, which is not dominated by a complex muon Yukawa coupling

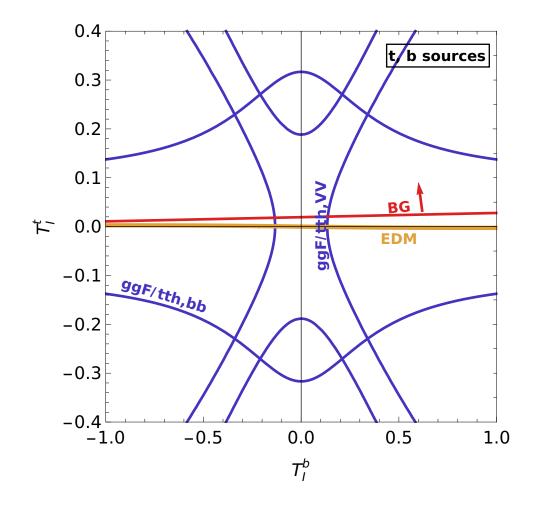

 A complex muon coupling could account for as much as 16% of Y_B, from current collider constraints.

Leptons- tau

$$\Gamma(h \to \tau^+ \tau^-)$$
 and Γ_h


All production modes


$$\mu_{\tau^+\tau^-} = 0.91 \pm 0.13$$



Combined Sources t-b

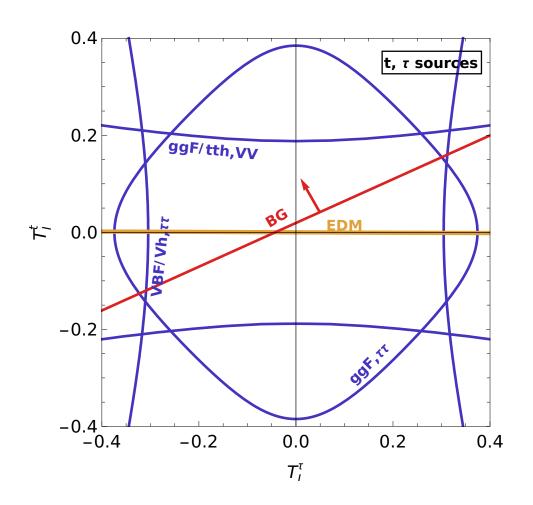
$$Y_B^{(t+b)} \lesssim 0.12 Y_B^{
m obs}$$

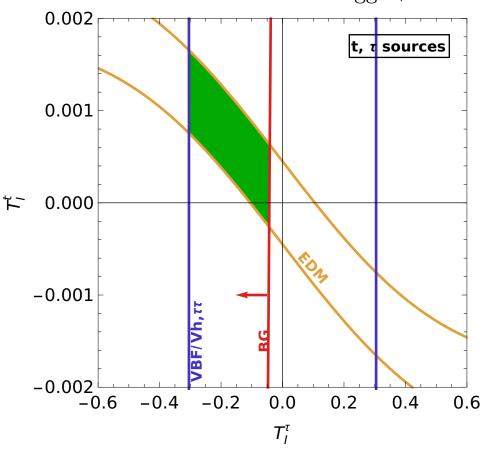
Combined Sources tau-b

No modification to production rates

$$\mu_{ au^+ au^-}$$
 Only Constraints $\mu_{bar{b}}$

$$Y_B^{b+ au, \max}(T_I^{ au} = -0.4, T_I^b = +0.4) \simeq 7.8 Y_B^{\text{obs}}$$


$$T_R^f = 0$$


Combined sources tau-t

$$\mu_{\mathrm{ggF}}^{ au au}=$$
 0.99 \pm 0.44

$$\mu_{\mathrm{VBF}+Vh}^{\tau\tau} = 1.09 \pm 0.26$$

$$\mu_{\mathrm{ggF}+tth}^{VV} = 1.08 \pm 0.08$$

$$Y_B^{t+\tau, \text{max}} = Y_B^{t+\tau} (T_I^{\tau} = -0.3, T_I^t = +0.0016) \simeq 6.4 Y_B^{\text{obs}}$$

$$T_R^f = 0$$

SM-like solutions
$$|Y_B=Y_B^{
m obs}|$$
 with $d_e\simeq 0$ and $\mu_I^F\simeq 1$

Choose

$$T_I^{ au}$$
 and T_I^b such that $d_e=0$, $T_R^{ au}$ and T_R^b such that $\mu_b=\mu_{ au}=1$

$$Y_B^{b+\tau, \max}(d_e = 0, \mu_b = \mu_\tau = 1) = 10.25 Y_B^{\text{obs}}$$

Recap + Signature

With two flavours:

• We can produce the BAU without any deviation of

$$\mu_I^{\mathsf{F}}$$

- No CPV signal from a single EDM,other additional EDMs??
- For BAU and EDMs additive contributions of different Yukawa couplings.

$$\mu_I^{F}$$

measurements at colliders is flavor specific.

CP violation in H->tau tau to determine Higgs boson decays to pairs of tau leptons.

by measuring angular distributions in

Implication for EFT Scales

Upper bounds on $T_{I,R}$ from collider and EDMs.

$$\Lambda/\sqrt{X_{R,I}^f} \gtrsim rac{v}{\sqrt{2}} rac{1}{(y_f T_{R,I})^{1/2}} \sim ext{few} - \mathcal{O}(10) \, ext{TeV}$$

For $Y_B^{\rm obs}$, T_I^{τ} in the range 0.01-0.1

$$\Lambda/\sqrt{X_I^{\tau}} \lesssim 18 \,\,{
m TeV} \,\, (0.01/T_I^{\tau})^{1/2}$$

Conclusions

- Baryon asymmetry can be produced with a tau CPV source.
- The CPV sources for the top and bottom cannot provide a large enough baryon asymmetry, due to EDM constraint.
- CPV source for the muon cannot provide large enough Y_B due to collider constraint h->mu mu.
- When multiple CPV sources (tau-t; tau-b) are present: cancellations to EDMs while enhancing $Y_B > Y_B^{\rm obs}$
- Smoking gun of this scenario is measuring CPV in Higgs boson decays to tau leptons.