WIMP dark matter as radiative neutrino mass messenger

Joaquim Palacio Thursday 7th November, 2013

9th MultiDark Consolider Workshop Alcalá de Henares

M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas, J.W.F. Valle. 10.1007JHEP10(2013)149

Multimessenger Approach for Dark Matter Detection

Outline

Dark Matter Evidences

(Radiative) Neutrino Mass Models

Dark Matter & Neutrino Masses

The Model

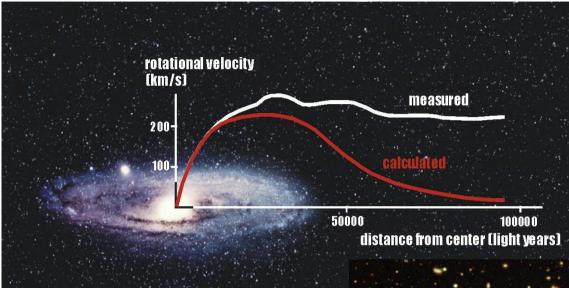
Particle content

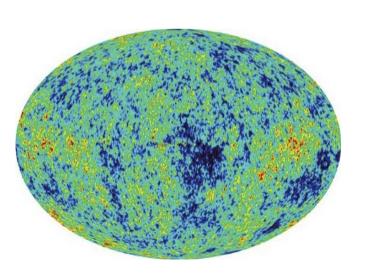
Study of the Model

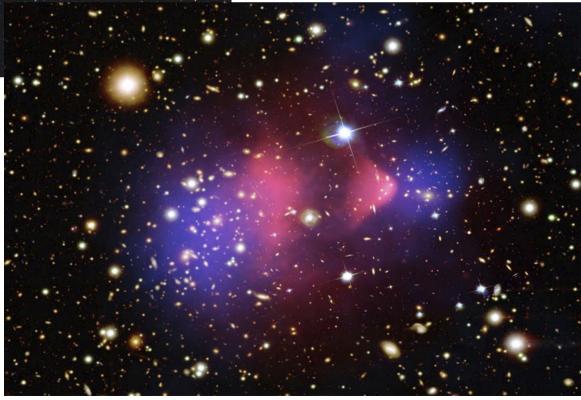
Detection prospects

Conclusions

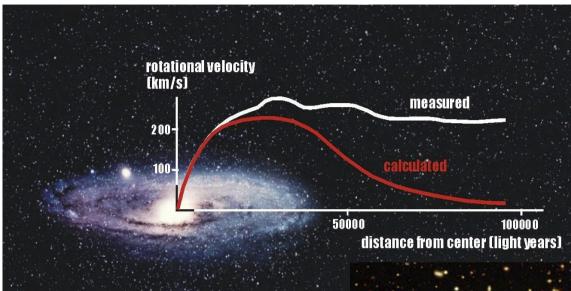
DM evidences







DM evidences



Need of extra matter

÷WIMP;

Neutrinos are massless in the SM

FORER	FORERO-TORTOLA-VALLE						
Phys.	Rev.	D	86,	073012	(2012)		

parameter	best fit	1σ range	2σ range	3σ range
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.62	7.43–7.81	7.27-8.01	7.12-8.20
$ \Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$	$2.55 \\ 2.43$	2.46 - 2.61 2.37 - 2.50	2.38 - 2.68 2.29 - 2.58	2.31 - 2.74 2.21 - 2.64
$\sin^2 heta_{12}$	0.320	0.303-0.336	0.29–0.35	0.27-0.37
$\sin^2 heta_{23}$	$\begin{array}{c} 0.613 \ (0.427)^a \\ 0.600 \end{array}$	0.400-0.461 & 0.573-0.635 0.569-0.626	0.38-0.66 0.39-0.65	0.36–0.68 0.37–0.67
$\sin^2 heta_{13}$	$0.0246 \\ 0.0250$	0.0218–0.0275 0.0223–0.0276	0.019–0.030 0.020–0.030	0.017-0.033
δ	$0.80\pi - 0.03\pi$	$0 - 2\pi$	$0-2\pi$	$0-2\pi$

dirac mass term require a very small yukawa...

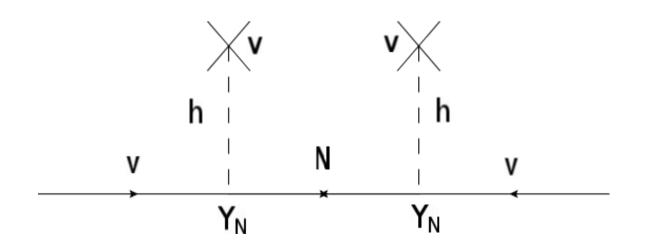
¿small masses = new physics?

Effective dim 5 operator: Weinberg Operator $(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$ where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

	Field	Spin	SU(2)	Y
Type 1	Ν	1/2	1	0
Type 2	Δ	0	3	-2
Type 3	Σ	1/2	3	0

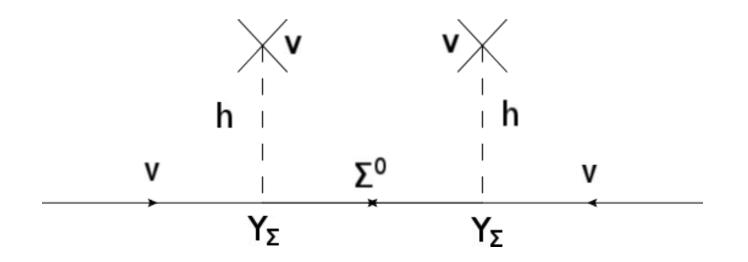
Effective dim 5 operator: Weinberg Operator $(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$ where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

(Field	Snin	<u>SU(2)</u>	V
	Type 1	Ν	1/2	1	0
	Type 2	Δ	0	3	-2
	Type 3	Σ	1/2	3	0



Effective dim 5 operator: Weinberg Operator $(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \widetilde{\phi}^* \widetilde{\phi}^\dagger L_{jL}$ where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

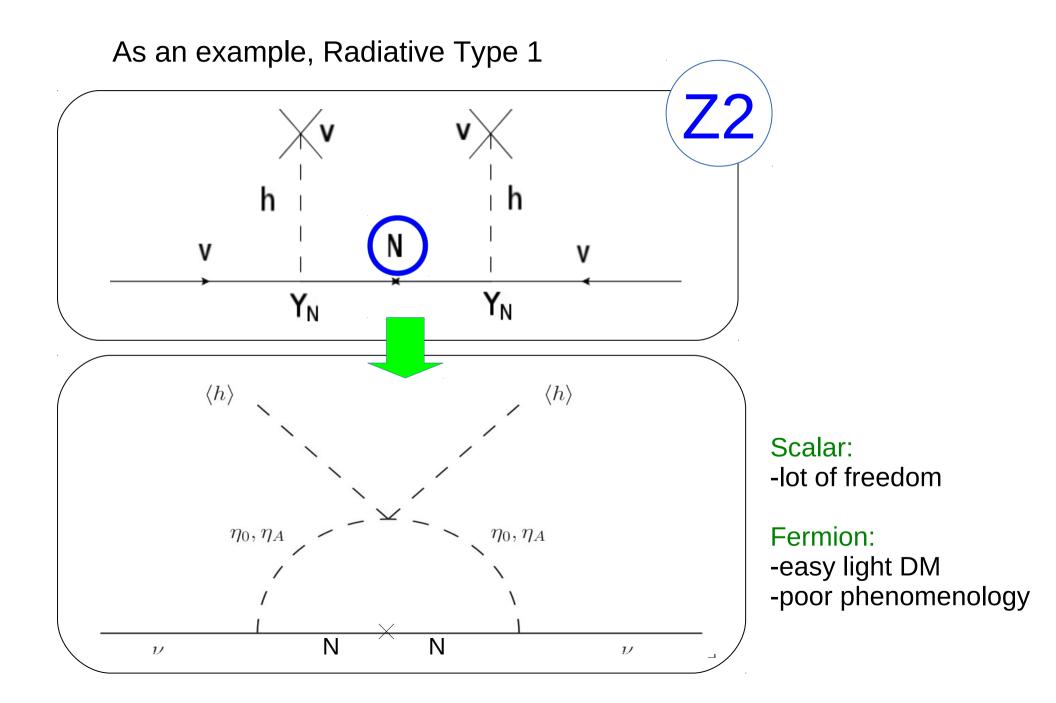
	Field	Spin	SU(2)	Y	
Type 1	Ν	1/2	1	0	
Type 2	Λ	0	3	-2	
Type 3	Σ	1/2	3	0	

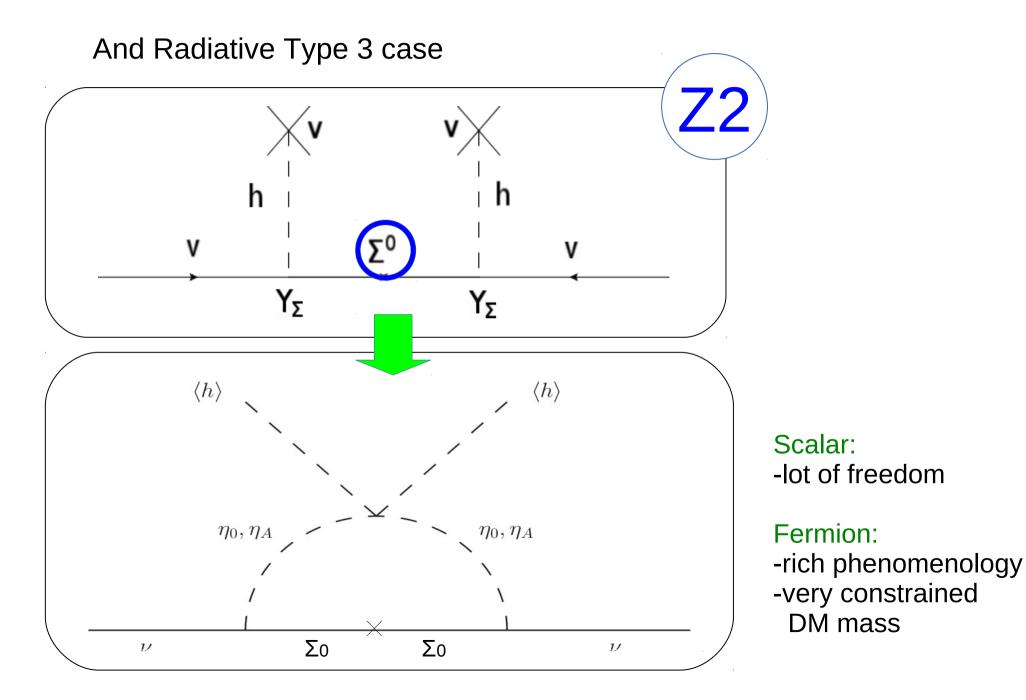


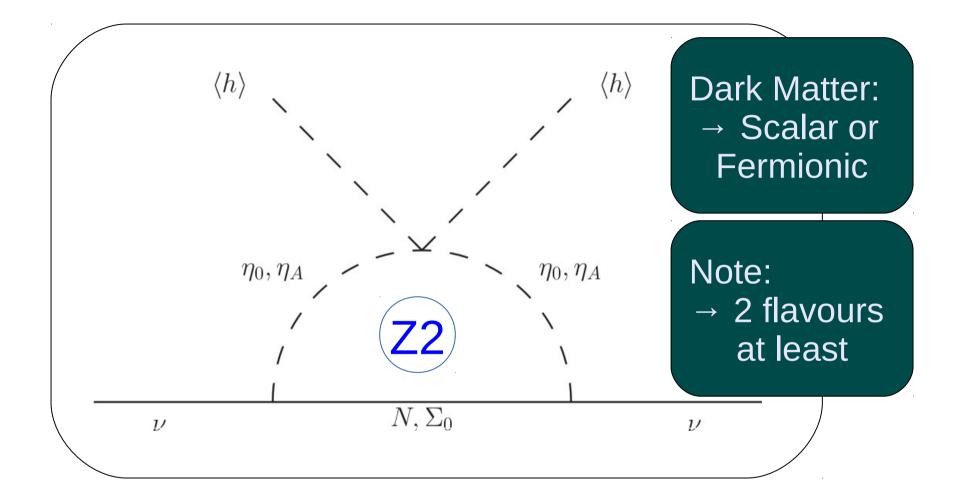
Effective dim 5 operator: Weinberg Operator $(\mathcal{O}_{ij}) = \frac{1}{\Lambda} L_{iL}^c \quad \tilde{\phi}^* \tilde{\phi}^\dagger L_{jL}$ where $L_i = (\nu_e, e), (\nu_\mu, \mu), (\nu_\tau, \tau);$

	Field	Spin	SU(2)	Y
Type 1	Ν	1/2	1	0
Type 2	Δ	0	3	-2
Type 3	Σ	1/2	3	0

It was then realised that based on the same matter content, neutrino masses could arise at loop level, providing an interesting link between Dark Matter and Neutrino masses generating mechanism.



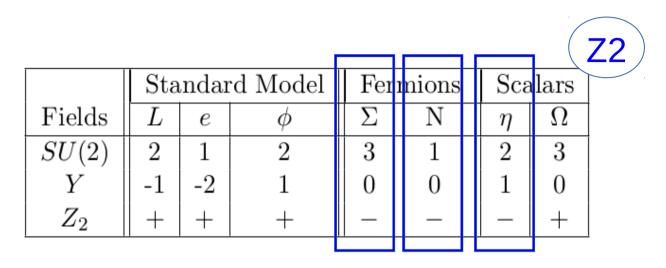




We would like to join de advantatges of both scenario:

->Light DM for the singlet ->Rich phenomenology

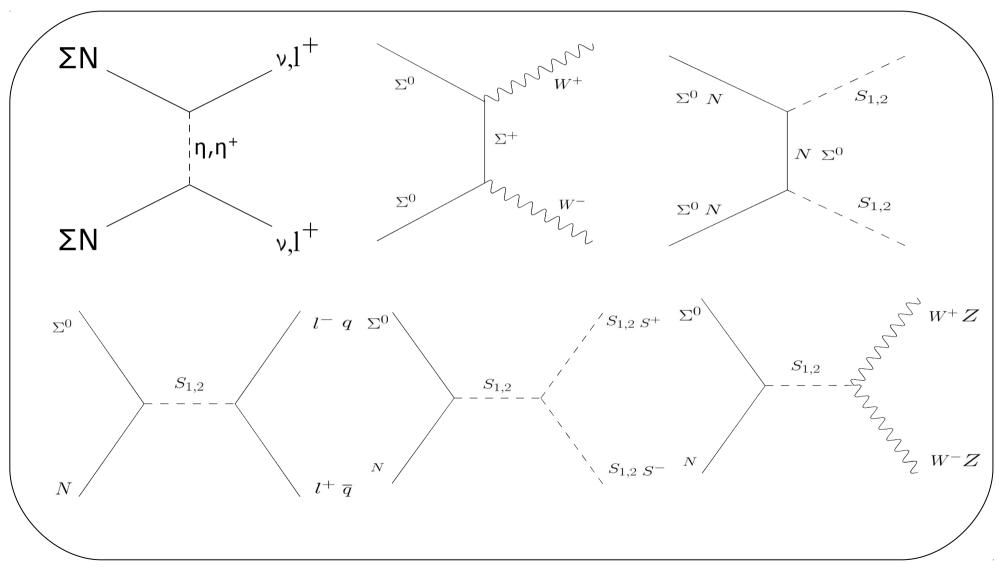
M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas, J.W.F. Valle. 10.1007JHEP10(2013)149



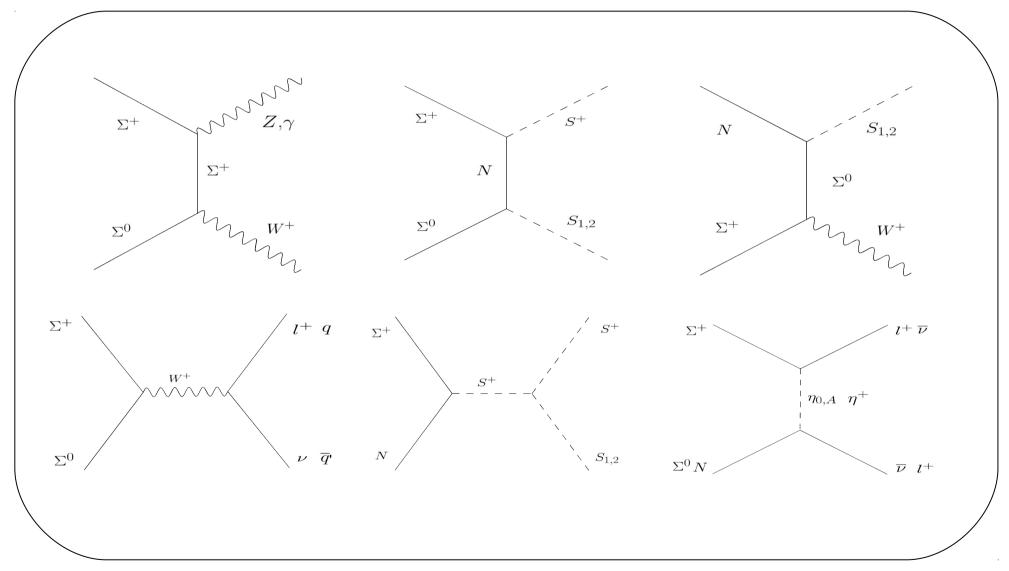
$$\mathcal{L} = -Y_{\alpha\beta} \overline{L}_{\alpha} e_{\beta} \phi - Y_{\Sigma_{\alpha}} \overline{L}_{\alpha} C \Sigma^{\dagger} \tilde{\eta} - \frac{1}{4} M_{\Sigma} \operatorname{Tr} \left[\overline{\Sigma}^{c} \Sigma \right] + Y_{\Omega} \operatorname{Tr} \left[\overline{\Sigma} \Omega \right] N - Y_{N_{\alpha}} \overline{L}_{\alpha} \tilde{\eta} N - \frac{1}{2} M_{N} \overline{N^{c}} N + h.c.$$

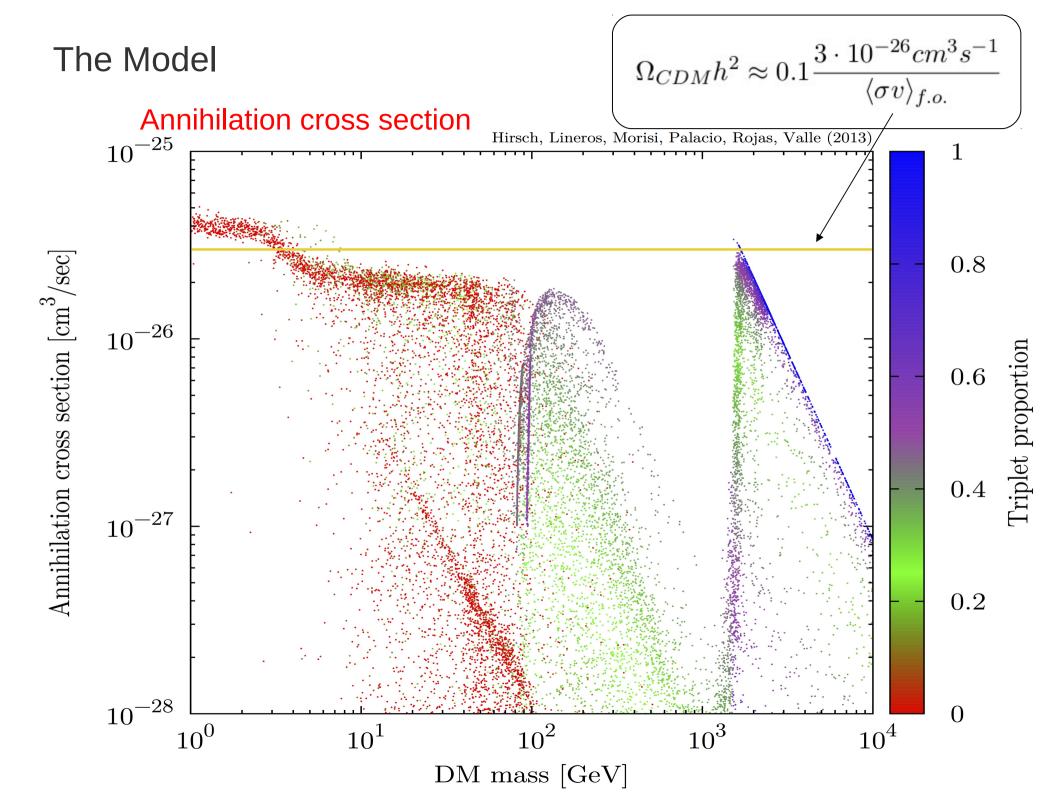
where $\alpha, \beta = 1, 2, 3;$

(Co-)Annihilation diagrams

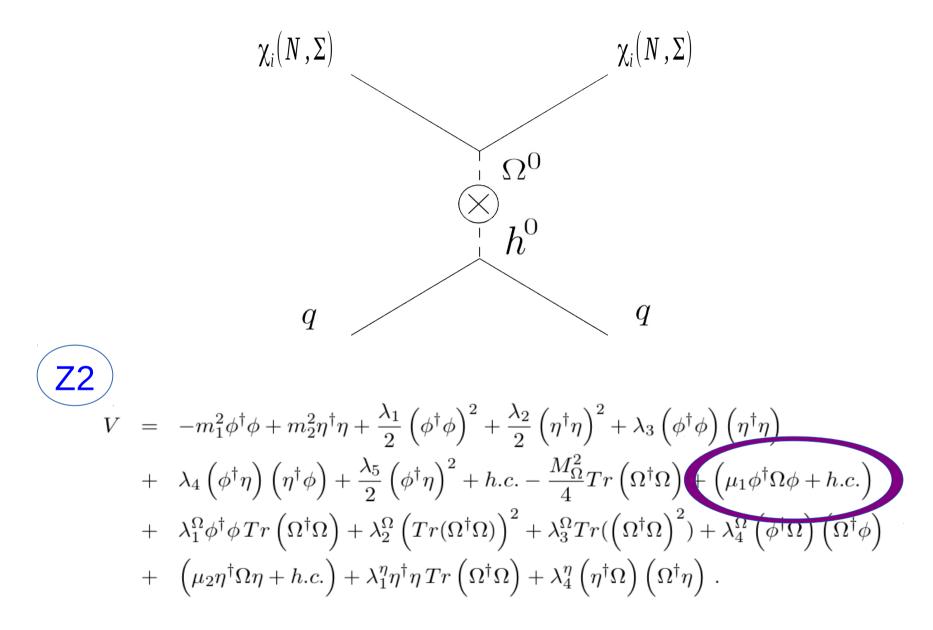


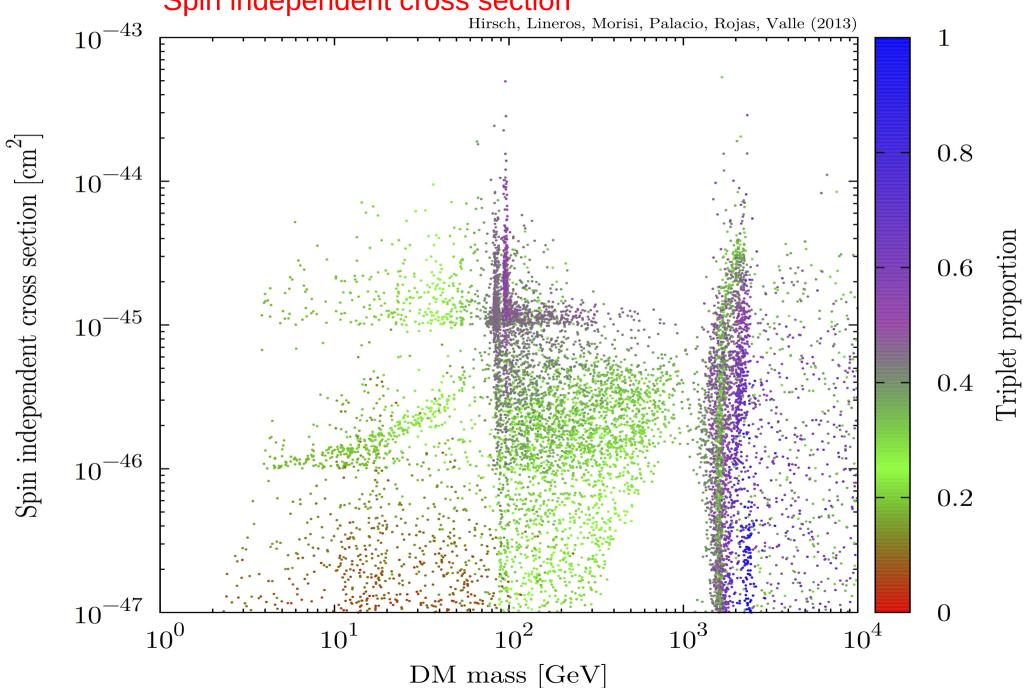
Charged co-Annihilation diagrams





Direct detection





Spin independent cross section

Conclusions

Dark Matter and neutrino oscillations are the most robust evidence of physics beyond de Standard Model

We linked both phenomenas in this model: Neutrino massgenerating mechanism also stabilizes the Dark Matter.

The mixture scenario, Ω , gain the nice thinks of both pure Models: light DM with a rich phenomenology

The same mechanism that produces the fermion mixing also predicts a high interaction with quarks

Conclusions

Dark Matter and neutrino oscillations are the most robust evidence of physics beyond de Standard Model

We linked both phenomenas in this model: Neutrino massgenerating mechanism also stabilizes the Dark Matter.

The mixture scenario, Ω , gain the nice thinks of both pure Models: light DM with a rich phenomenology

The same mechanism that produces the fermion mixing also predicts a high interaction with quarks

Thanks

Back-up slides

The Scan

We used micrOMEGAs to do a parameter scan G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, arXiv:1305.0237 [hep-ph]

Constraints: - Ω is an triplet of SU(2)

$$M_W = \frac{g}{2}\sqrt{v_h^2 + v_\Omega^2}.$$

- searches of new physics

Parameter	Range
$M_N (\text{GeV})$	$1 - 10^5$
$M_{\Sigma} ~({ m GeV})$	$100-10^5$
$m_{\eta^{\pm}} \; (\text{GeV})$	$100 - 10^5$
$m_{\eta^0}~({ m GeV})$	$1 - 10^5$
$M_{\pm} (\text{GeV})$	$100 - 10^4$
$ \lambda_i $	$10^{-4} - 1$
$ Y_i $	$10^{-4} - 1$

$$\mathcal{M}_{s}^{2} = \begin{pmatrix} \lambda_{1}v_{h}^{2} + \frac{t_{h}}{v_{h}} & -2\mu_{1}v_{h} + 4v_{h}v_{\Omega}\left(\lambda_{1}^{\Omega} + \frac{\lambda_{4}^{\Omega}}{2}\right) \\ -2\mu_{1}v_{h} + 4v_{h}v_{\Omega}\left(\lambda_{1}^{\Omega} + \frac{\lambda_{4}^{\Omega}}{2}\right) & \frac{\mu_{1}v_{h}^{2}}{v_{\Omega}} + 16v_{\Omega}^{2}\left(2\lambda_{2}^{\Omega} + \lambda_{3}^{\Omega}\right) + \frac{t_{\Omega}}{v_{\Omega}} \end{pmatrix}$$

$$\begin{split} M_{S1}^2 &= v_h^2 \lambda_1 \cos\left(\theta_0\right)^2 + 4v_h \left[-v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) + \mu_1\right] \cos\left(\theta_0\right)^2 \sin\left(\theta_0\right)^2 \\ &+ \left[16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) + \mu_1 v_h^2 / v_\Omega\right] \sin\left(\theta_0\right)^2 \\ M_{S2}^2 &= v_h^2 \lambda_1 \sin\left(\theta_0\right)^2 + 4v_h \left[v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) - \mu_1\right] \cos\left(\theta_0\right)^2 \sin\left(\theta_0\right)^2 \\ &+ \left[16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) + \mu_1 v_h^2 / v_\Omega\right] \cos\left(\theta_0\right)^2 \\ &\text{where } \tan\left(2\theta_0\right) = \frac{4v_h \left[v_\Omega \left(2\lambda_1^\Omega + \lambda_4^\Omega\right) - \mu_1\right]}{16v_\Omega^2 \left(2\lambda_2^\Omega + \lambda_3^\Omega\right) - v_h^2 \left(\lambda_1 - \mu_1 / v_\Omega\right)} \end{split}$$

Scalar sector

Scalar Sector

$$-Z2$$

$$m_{\eta 0}^{2} = m_{2}^{2} + \frac{1}{2} (\lambda_{3} + \lambda_{4} + \lambda_{5}) v_{h}^{2} + (2\lambda_{1}^{\eta} + \lambda_{4}^{\eta}) v_{\Omega}^{2} - 2\mu_{2} v_{\Omega},$$

$$m_{\eta \pm}^{2} = m_{2}^{2} + \frac{1}{2} (\lambda_{3} + \lambda_{4} - \lambda_{5}) v_{h}^{2} + (2\lambda_{1}^{\eta} + \lambda_{4}^{\eta}) v_{\Omega}^{2} - 2\mu_{2} v_{\Omega},$$

$$m_{\eta \pm}^{2} = m_{2}^{2} + \frac{1}{2} \lambda_{3} v_{h}^{2} + 2\mu_{2} v_{\Omega} + (2\lambda_{1}^{\eta} + \lambda_{4}^{\eta}) v_{\Omega}^{2}.$$

$$\lambda 5 \text{ plays an important role in v masses}$$

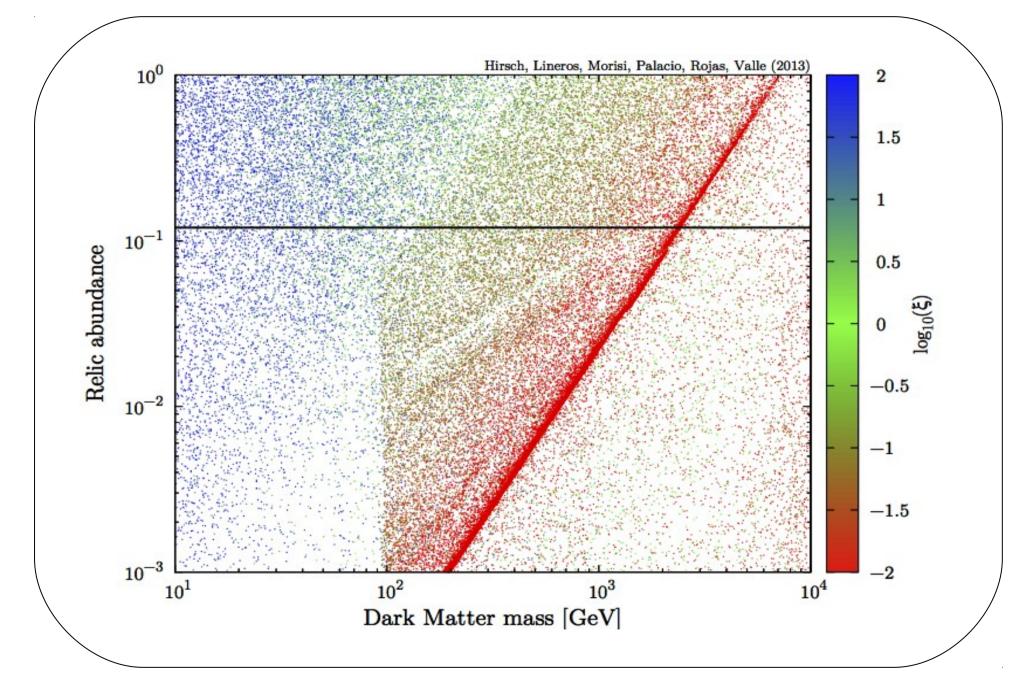
$$M_{\chi} = \begin{pmatrix} M_{\Sigma} & 2Y_{\Omega}v_{\Omega} \\ 2Y_{\Omega}v_{\Omega} & M_{N} \end{pmatrix}$$

$$M_{\chi 1} = \sin (\theta_f)^2 M_N + \cos (\theta_f)^2 M_{\Sigma} - 2v_{\Omega} Y_{\Omega} \cos (\theta_f) \sin (\theta_f)$$

$$M_{\chi 2} = \cos (\theta_f)^2 M_N + \sin (\theta_f)^2 M_{\Sigma} + 2v_{\Omega} Y_{\Omega} \cos (\theta_f) \sin (\theta_f)$$

where
$$\tan (2\theta_f) = \frac{-4Y_{\omega} v_{\Omega}}{M_{\Sigma} - M_N}$$

Scan constrains



Scan constrains

