Branes, Coset Models & Supergravity

José J. Fernández Melgarejo¹

¹Universidad de Murcia

Based on: [2512.XXXXX] FM, Iñaki García Etxebarria, J. A. Rosabal

IV GRASS – SYMBHOL Meeting • Toledo

Motivation 1: Higher form symmetries

Gaiotto+'14

- Continuous 0-form symmetry
 - 0-form parameter $\lambda^{(0)}$
 - \triangleright (D-1)-form closed current $j^{(D-1)}$
 - \triangleright $i^{(D-1)}$ coupled to a background $A^{(1)}$
 - Example

$$S=\intrac{1}{2}\mathsf{d}\phi^\dagger\wedge\star\mathsf{d}\phi\;,\qquad j^{(D-1)}=i\phi^\dagger\star\mathsf{d}\phi+\mathsf{c.c.}\;,\qquad\int A^{(1)}\wedge j^{(D-1)}$$

- Continuous *q*-form symmetry
 - ightharpoonup *q*-form parameter $\lambda^{(q)}$
 - \triangleright (D-q-1)-form closed current $j^{(D-q-1)}$
 - \triangleright $j^{(D-q-1)}$ coupled to a background $A^{(q+1)}$
 - ightharpoonup Example: q=1

$$S = \int \frac{1}{2} dC^{(1)} \wedge \star dC^{(1)} , \qquad j^{(D-2)} = \star dC^{(1)} , \qquad \int A^{(2)} \wedge j^{(D-2)}$$

Motivation 2: Higher group symmetries

Cordova-Dumitrescu-Intriligator'18

- It involves two higher form symmetries
- Definition: 2-group

$$A^{(1)} o A^{(1)} + d\lambda^{(0)} , \ B^{(2)} o B^{(2)} + d\lambda^{(1)} + d\lambda^{(0)} \wedge A^{(1)}$$

• Definition: (2q+2)-group $U(1)^{(q)} \times_{\kappa} U(1)^{(2q+1)}$

$$A^{(q+1)}
ightarrow A^{(q+1)} + \mathsf{d}\lambda^{(q)} \; , \ B^{(2q+2)}
ightarrow B^{(2q+2)} + \mathsf{d}\lambda^{(2q+1)} + \kappa \mathsf{d}\lambda^{(q)} \wedge A^{(q+1)}$$

• Example: 4-group U(1) $^{(2)}$ $imes_1$ U(1) $^{(5)}$ in 11D SUGRA (q=2)

$$A^{(3)} o A^{(3)} + d\lambda^{(2)} , \ B^{(6)} o B^{(6)} + d\lambda^{(5)} + d\lambda^{(2)} \wedge A^{(3)}$$

3

SSB in global symmetries

- Classification of phases of matter
 - Unbroken phase. Excitations are gapped and correlation functions decay exponentially

$$\langle \mathcal{O}^{\dagger}(x)\mathcal{O}(y)\rangle \sim \exp\{-m|x-y|\}$$

$$O^{\dagger}(x)$$

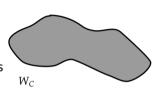
 Broken phase. Something condenses. Correlation functions factorize and saturate at large distances

$$\begin{array}{c}
\bullet \\
O(y)
\end{array}$$

 $O^{\dagger}(x)$

SSB in global symmetries

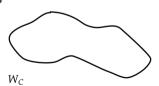
- For a 1-form symmetry
 - Unbroken phase. All excitations are gapped.
 Charged operators have an area law. Analogue of exponentially decaying correlator of local operators



$$\langle W_C \rangle \sim \exp\{-T_{p+1} \operatorname{Area}[C]\}$$

 Broken phase. Strings condense and have no tension. Charged operators develop perimeter laws at large distance. Analogue of factorized local correlators

$$\langle W_C \rangle \sim \exp\{-T_p \text{ Perimeter}[C]\}$$



Goldstone Theorem (0-form symmetry)

Euclidean path integral

Levin-Wen '04, Hofman-Igbal '18

• Conserved $\star j$ from 0-form symmetry and charged ${\cal O}$

$$d \star j(x) \mathcal{O}(0) = iq \mathcal{O}(0) \ \delta^{(d)}(x)$$

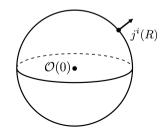
• Integrating over a 4-ball of radius R and evaluating:

$$\left\langle \left(\int_{S^3(R)} \star j\right) \mathcal{O}(0) \right\rangle = iq \langle \mathcal{O} \rangle$$

• If $\langle \mathcal{O} \rangle \neq 0$, R independence implies

$$\left\langle \star j^i(x) \mathcal{O}(0) \right\rangle \propto \frac{iqn^i}{R^3}$$

• Power-law decay ⇒ 1 Goldstone mode



Goldstone Theorem (*p*-form symmetries)

• Conserved $\star j$ from a p-form symmetry with charged operator W(C) over a p-dim manifold

$$d \star j(x)W(C) = iq\delta_C(x)W(C)$$

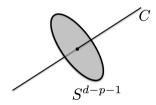
• If C is an infinite p-plane, we integrate over a (d-p)-ball B_{d-p}

$$\left\langle \left(\int_{S^{d-p-1}(R)} \star j \right) W(C) \right\rangle = iq \langle W(C) \rangle$$

• If $\langle W(C) \rangle \neq 0$, R independence implies

$$\langle \star j(R)W(C)\rangle \propto \frac{iqc}{R^{d-p-1}}$$

• Power-law decay \Rightarrow Goldstone *p*-form modes



Lake'18, Hofman-Iqbal'18

EFT for Goldstone modes

Coleman-Wess-Zumino'69, Callan-Coleman-Wess-Zumino'69

- Coset construction
 - Quotient space G/H
 - ▶ Given a SSB of G, where $H \subset G$ is preserved

$$Lie(G) = \{ \underbrace{V_I}_{broken}, \underbrace{Z_a}_{unbroken} \}$$

- ▶ For $\tilde{g} \in G/H$, we can express it as $\tilde{g} = \exp\{\xi^a(x)Z_a\}$
- $\triangleright \xi^a$ are the Goldstone modes
- For $g \in G$, \tilde{g} transforms as

$$g \exp\{\xi^a Z_a\} = \exp\{\xi'^a Z_a\} h(g, \xi^a), \qquad h \in H$$

- Usually, the transformation $g: \xi^a \to {\xi'}^a$ is complicated (nonlinear)
- How to build actions?

EFT for Goldstone modes

Coleman-Wess-Zumino'69, Callan-Coleman-Wess-Zumino'69

- How to build actions?
- Lie-algebra valued Maurer-Cartan 1-form

$$\omega = \tilde{g}^{-1} d\tilde{g} \equiv \omega_Z + \omega_V \equiv \omega^a Z_a + \omega^I V_I$$

• Transforms homogeneously under G

$$g: \left\{ \begin{array}{ccc} \omega_Z & \to & h(x)\omega_Z h^{-1} \\ \omega_V & \to & h(x)(\omega_V + \mathsf{d})h^{-1} \end{array} \right.$$

• At leading order in derivative expansion:

$$\mathcal{L} \propto \text{Tr} \left[\omega \wedge \star \omega\right]$$

Example: EFT for periodic scalar

- For $\theta(x)$, we consider $\Psi(x) = e^{i\theta(x)}$
- The Maurer-Cartan 1-form

$$\omega = -i\Psi^{-1}(x)d\Psi(x) = d\theta(x)$$

To lowest order in derivatives,

$$S = f^2 \int \omega \wedge \star \omega = f^2 \int d\theta \wedge \star d\theta$$

- This is more than required!
 - ▶ Invariant under U(1) "momentum" symmetry $\theta(x) \rightarrow \theta(x) + \alpha$
 - Invariant under U(1) "winding" (D p 2) symmetry

Example: EFT for periodic scalar

Witten95

• Understanding the "winding"

$$S = f^{2} \int (d\theta - \beta) \wedge \star (d\theta - \beta) + 2\pi i \int \beta \wedge d\eta$$
$$[\beta] : \star (d\theta - \beta) = \pi i f^{-2} d\eta$$
$$[\eta] : d\beta = 0$$

eta dynamical 1-form connection η dynamical (D-p-2) connection (Lagrange multiplier)

• Being β pure gauge:

$$\star d\theta = \pi i f^{-2} d\eta$$

- We say that θ and η are electromagnetic duals
- For D = 2, p = 0, this is T duality

Questions & Goals

- How about 1-form symmetries
 - Maxwell as the EFT of Goldstone bosons?
 - Coset construction?
 - Rôle of Wilson and 't Hooft operators?
- How about p-form symmetries?
 - Coset construction and EFT?
 - Rôle of charged objects?
- One step further: is SUGRA an EFT of Goldstone bosons?
 - ▶ Motivation: Goldstone theorem for non invertible + symmetry operators

Iqbal-GarcíaEtxebarria'20, FM-Giorgi-Marqués-Rosabal'24

- ▶ Bosonic sector: "generalized" electromagnetism
- Chern Simons?
- Higher groups?

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for *p*-forms
- 4. 5D Maxwell-CS
- 5. Supergravity
- 6. Conclusions and prospects

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for p-forms
- 4. 5D Maxwell-CS
- Supergravity
- 6. Conclusions and prospects

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for p-forms
- 4. 5D Maxwell-CS
- Supergravity
- 6. Conclusions and prospects

1-form Symmetries & Loop Space

- Charged objects supported by a closed manifold Σ_1
 - ► The coset representative: $Ψ[Σ_1] = \exp i \int_{Σ} P[A_1]$
 - The loop variation under a vector X is defined as

$$\delta_X \Phi[\Sigma_1] = \int_{\Sigma_1} \mathsf{d}\sigma \, \delta X^\mu(\sigma) rac{\delta \Phi}{\delta X^\mu(\sigma)}$$

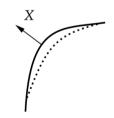
Maurer-Cartan 1-form

waurer-Cartan 1-form
$$\omega_X(\Sigma_1)\equiv\omega(X;\Sigma_1)=-i\Psi^{-1}[\Sigma_1]\delta_X\Psi[\Sigma_1]=\int_{\Sigma_1}\iota_X\mathsf{d}A_1$$

• Maurer-Cartan (Bianchi-like)

$$\delta_X \omega_Y(\Sigma_1) - \delta_Y \omega_X(\Sigma_1) - \omega_{[X,Y]}(\Sigma_1) = 0$$

Polyakov'79



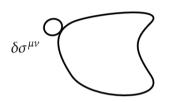
Area & Loop Derivatives

Makeenko-Migdal'79, Migdal'80, Iqbal-McGreevy'21

• An equivalent approach: area derivative

$$\Psi[C \cup \delta C] = \Psi[C] + \sigma^{\mu\nu}(\delta C) \frac{\delta \Psi[C]}{\delta \sigma^{\mu\nu}(\lambda)} ,$$

$$\sigma^{\mu\nu}(\delta C) = \frac{1}{2} \oint_{\delta C} dX^{\mu} X^{\nu}$$



• Example: $\phi[C] \equiv \oint_C dX^\mu A_\mu$

$$\phi[C \cup \delta C] - \phi[C] = \oint_{\delta C} dX^{\mu} A_{\mu}$$

$$= \oint_{\delta C} dX^{\mu} (A(X_0)_{\mu} + (X_0 - X)^{\nu} \partial_{\nu} A_{\mu}(X_0) + \cdots)$$

which implies

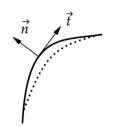
$$rac{\delta\phi[\mathcal{C}]}{\delta\sigma^{\mu
u}(\lambda)}=2\partial_{[\mu}A_{
u]}(X_0(\lambda))$$

17

Area & Loop Derivatives

• Equivalence with Polyakov

$$\frac{\delta \Psi[C]}{\delta X^{\mu}(s)} = \frac{1}{2} \frac{\mathrm{d} X^{\nu}}{\mathrm{d} s} \frac{\delta \Psi[C]}{\delta \sigma^{\mu\nu}(s)}$$



A generic action

$$S[\Psi] = \mathcal{N} \int [\mathsf{d} \mathit{C}] \oint_{\mathcal{C}} \mathsf{d} s \sqrt{h} rac{\delta \Psi^{\dagger}[\mathit{C}]}{\delta \sigma_{\mu
u}(s)} rac{\delta \Psi[\mathit{C}]}{\delta \sigma^{\mu
u}(s)} + V(\Psi^{\dagger}[\mathit{C}] \Psi[\mathit{C}])$$

• For V=0 and $\Psi[C]=\exp i\int_C P[A]$,

$$S[\Psi] = \mathcal{N} \int [\mathsf{d} C] \oint_C \mathsf{d} s rac{\delta \Psi^\dagger[C]}{\delta \sigma_{\mu
u}(s)} rac{\delta \Psi[C]}{\delta \sigma^{\mu
u}(s)} = -rac{1}{2} \int_{\Sigma_d} \mathsf{d} A \wedge \star \mathsf{d} A$$

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for *p*-forms
- 4. 5D Maxwell-CS
- Supergravity
- 6. Conclusions and prospects

Area derivative for *p*-forms

Hidaka-Kawana'23

- Consider $\Psi[C_p] = \exp i \int_C A_p$
- Variation of $\Psi[C_p]$ for an arbitrary change δC_p ,

$$\delta\Psi[C_p] = \int d^p \xi \sqrt{h} \delta X^{\mu}(\xi) \frac{\delta\Psi[C_p]}{\delta X^{\mu}(\xi)} = \frac{1}{(p+1)!} \sigma^{\mu_1 \cdots \mu_{p+1}} (\delta C_p) \frac{\delta\Psi[C_p]}{\delta \sigma^{\mu_1 \cdots \mu_{p+1}(\xi)}} ,$$

$$\sigma^{\mu_1 \cdots \mu_{p+1}}(\delta C_p) = \int_{\delta C_p} \delta X^{[\mu_1} dX^{\mu_2} \wedge \cdots \wedge dX^{\mu_{p+1}]}$$

The action

$$S[\Psi] = \mathcal{N}_{\rho} \int [\mathsf{d}C_{\rho}] \oint_{C_{\rho}} \mathsf{d}^{\rho} \xi \frac{\delta \Psi^{\dagger}[C_{\rho}]}{\delta \sigma_{\mu_{1} \cdots \mu_{\rho+1}}(\xi)} \frac{\delta \Psi[C]}{\delta \sigma^{\mu_{1} \cdots \mu_{\rho+1}}(\xi)} = -\frac{1}{2} \int_{\Sigma_{d}} \mathsf{d}A_{\rho} \wedge \star \mathsf{d}A_{\rho}$$

EFT for p- and q-forms

Coset construction

$$\Psi[\Sigma_{
ho},\Sigma_{q}]= \exp i \left\{ \int_{\Sigma_{
ho}} A_{
ho} + \int_{\Sigma_{q}} A_{q}
ight\}$$

Maurer-Cartan 1-form

$$\omega_X(\Sigma_p,\Sigma_q) = \int_{\Sigma_p} \iota_X \mathsf{d}A_p + \int_{\Sigma_q} \iota_X \mathsf{d}A_q$$

Maurer-Cartan equations

$$\int_{\Sigma_a} \iota_X d^2 A_p + \int_{\Sigma_a} \iota_X d^2 A_q = 0 \qquad \Rightarrow \qquad d^2 A_p = d^2 A_q = 0$$

• If q = d - p - 2 and $\star dA_p = dA_q$

$$d^2A_p=0, \qquad d\star dA_p=0$$

• Other: read off the Maurer-Cartan components: dA_p and dA_q

- 1. Introduction
- 2. Maxwell as a theory of Goldstone mode:
- Generalized Maxwell for p-forms
- 4. 5D Maxwell-CS
- Supergravity
- 6. Conclusions and prospects

5D Maxwell-CS

- Action $S = \int \frac{1}{2} dA \wedge \star dA + \frac{\kappa}{3} A \wedge dA \wedge dA$
- Democratic formulation

$$S_{\mathsf{dem}} = \int lpha_1 \mathsf{d} A \wedge \star \mathsf{d} A + lpha_2 (\mathsf{d} B - A \wedge \mathsf{d} A) \wedge \star (\mathsf{d} B - A \wedge \mathsf{d} A) \\ + \frac{2lpha_1 - 4lpha_2}{3} A \wedge \mathsf{d} A \wedge \mathsf{d} A$$

- Higher group: $\delta B = d\lambda_1 + d\lambda_0 \wedge A$
- Coset construction (charged objects)

$$\Psi[\Sigma_1, \Sigma_2] = \exp i \left\{ \int_{\Sigma_1} A + \int_{\Sigma_2} B \right\}$$

- String theory: objects localized on the brane?
- Why? Ψ only depends on Σ_1 and Σ_2

5D Maxwell-CS

- What can we do with a Wilson line (Σ_1) and a 't Hooft string (Σ_2) ?
 - \triangleright $\partial \Sigma_2 = \Sigma_1$
 - ightharpoonup $\partial \Sigma_1 \subseteq \Sigma_2$ with $\partial \Sigma_2 = \emptyset$
 - ► Others?



5D Maxwell-CS

• Gauge invariance for $\partial \Sigma_1 \subseteq \Sigma_2$ with $\partial \Sigma_2 = \emptyset$

$$\delta\left(\int_{\Sigma_1} A + \int_{\Sigma_2} B\right) = \int_{\partial \Sigma_1} \lambda_0$$

• We propose a localized field

$$\int_{\Sigma_2} B - d\theta \wedge A \qquad \delta\theta = \lambda_0$$

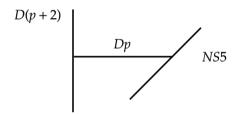
• This requires $\delta B = d\lambda_1 + d\lambda_0 \wedge A$ but it's not enough! We need

$$dd\theta = -\delta_2(\partial \Sigma_1)$$

$$\delta\left(\int_{\Sigma_1} A + \int_{\Sigma_2} B - d\theta \wedge A\right) = \int_{\partial \Sigma_1} \lambda_0 - \int_{\Sigma_2} d\theta \wedge d\lambda_0 = 0$$

This was studied in string theory!

Hanany-Witten & Freed-Witten



In type IIB

D5	Х	Χ	Χ				Χ	Χ	Χ	
NS5	Х	Χ	Χ	X	X	X				
D3	Х	Х	Х							Х

Hanany-Witten & Freed-Witten

- Here we require $d\mathcal{F} = H + \delta_3(\partial \Sigma_4)$ at the boundary of the D3
- The presence of the NS5 is crucial, as it requires $\oint H \neq 0!$
- Freed-Witten: branes in the presence of nontrivial *H* are anomalous
- Anomaly cancels by making another brane end on it Maldacena-Moore-Seiberg'01

$$[H] = \mathcal{W} + [\delta] \tag{1}$$

- Punchline: The HW brane creation is required to cancel the FW anomaly.
 Conversely, the FW condition is required to explain the HW brane creation.
- Generalization to M theory

 "This reduces to (1) in the appropriate situation, and I suspect it holds in general"

Coset for Maxwell-CS

From Freed-Witten.

$$[F_2] = [\delta_2] \quad \Rightarrow \quad F_2 = dC_1 + \delta_2(\partial \Sigma_1)$$

Coset construction

$$\Psi[\Sigma_1, \Sigma_2] = \exp i \left(\int_{\Sigma_1} A + \int_{\Sigma_2} B - C_1 \wedge A \right)$$

- C₁ not entirely determined
 - ▶ If $C_1 = d\theta + A$ is gauge invariant (like \mathcal{F}) then we have to prescribe $\delta_X \theta$
 - ▶ If C_1 is gauge invariant (like B) then we have to choose a section of the bundle and integrate over the gauge transformations of C_1 (or, equivalently, over $d\theta$)
- Inherent integration over $d\theta$ makes the coset noninvertible

Coset for Maxwell-CS

• We can do the path integral over θ and average over all the gauge transformations

$$\Psi_{\mathsf{eff}}[\Sigma_1,\Sigma_2] = \int [\mathsf{D} heta] \Psi[\Sigma_1,\Sigma_2]$$

ullet To do so, we have to do it legally, including every single term involving heta

$$\Psi_{\mathsf{eff}}[\Sigma_1,\Sigma_2] = \int [\mathsf{D} heta] \Psi[\Sigma_1,\Sigma_2] \exp\Bigl\{i\int_{\Sigma_2} (\mathsf{d} heta-A) \wedge \star (\mathsf{d} heta-A)\Bigr\}$$

• The Σ_2 integral can be written as

Witten'96

$$\Psi_{\mathsf{eff}}[\Sigma_2] = \mathsf{exp}\Big\{i\int_{\Sigma_2} B\Big\}\int[\mathsf{D} a]\,\mathsf{exp}\Big\{-ik\int_{\Sigma_2 imes\mathbb{R}^+} a\wedge\mathsf{d} a\Big\}\;,\qquad a|_{t=0}=A$$

• Varying $\Psi[\Sigma_2]$ w.r.t. the surface along X:

$$\delta_X \Psi_{\mathsf{eff}}[\Sigma_2] = i \Psi_{\mathsf{eff}}[\Sigma_2] \int_{\Sigma_2} \mathsf{P}\left[\iota_X (\mathsf{d}B - A \wedge \mathsf{d}A)\right]$$

An action for Maxwell-CS

Maurer-Cartan 1-form

$$\omega_X(\Sigma_1, \Sigma_2) = \int_{\Sigma_1} \mathsf{P}\left[\iota_X \mathsf{d} A\right] + \epsilon_\rho \int_{\Sigma_2} \mathsf{P}\left[\iota_X (\mathsf{d} B - A \wedge \mathsf{d} A)\right]$$

- Maurer-Cartan equation
 - ► Fixed gauge transformations ⇒ Field strengths ⇒ Bianchi's
 - ► Bianchi's + duality relations = EOMs
- Effective action
 - Democratic action + duality relations

$$S[\Psi] = \mathcal{N} \int [\mathsf{D}\Sigma_1][\mathsf{D}\Sigma_2] \ \omega(\Sigma_{1,2}) \wedge \star \omega(\Sigma_{1,2})$$

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for p-forms
- 4. 5D Maxwell-CS
- 5. Supergravity
- 6. Conclusions and prospects

Supergravity (bosonic sector)

- 11D Supergravity
 - M2 branes ending on M5 branes
 - CS coefficient entirely fixed by SUSY
 - CS origin: anomaly inflow arising from the self-dual 2-form in the M5
- Type II
 - H flux induced by NS5
 - ► Freed-Witten & Hanany-Witten
 - ▶ IIA CS origin: anomaly inflow arising from the self-dual 2-form in the NS5
 - ▶ IIB CS origin: anomaly inflow arising from the self-dual 2-form in the KKM?

- 1. Introduction
- 2. Maxwell as a theory of Goldstone modes
- 3. Generalized Maxwell for p-forms
- 4. 5D Maxwell-CS
- 5. Supergravity
- 6. Conclusions and prospects

Conclusions

- 1. Higher form and and higher group symmetries in supergravity
- 2. Spontaneous symmetry breaking of higher form symmetries
- 3. EFT for Goldstone modes and the coset construction (Maurer-Cartan)
- 4. Loop space and area derivative
 - Maxwell as the EFT of Goldstone modes for SSB of 1-form symmetry
- 5. Generalization to higher *p*-forms
 - Generalized electromagnetism with no higher group
 - ► Coset $Ψ[Σ_p]$

Conclusions

6. Maxwell-CS

- We have built a coset $\Psi[\Sigma_1, \Sigma_2]$ with good properties
- Manifolds with boundaries enter the game
- Charged objects restricted by Freed-Witten anomalies
- Hanany-Witten: branes ending on branes
- Noninvertibility still around $(\int [D\theta])$
- Effective description
 - Maurer-Cartan eq + duality relations = EOMs
 - Maurer-Cartan components + duality relations = EOMs
- 7. 11D SUGRA: straightforward extension of Maxwell-CS
- 8. Type II
 - D-branes: Maurer-Cartan eq's for RR fields
 - NS5: Necessary for the EOM of B_2

Prospects

- Finish the paper!
- Other applications: Axion-Maxwell (type IIA analogue)
- Loop space: Hodge operator and other formal problems?
- Supersymmetry? Goldstinos?
- How are they related? CS = higher group = Witten effect?
- Green-Schwarz mechanism in this set-up? Orientifolds?
- Spacetime symmetries and Goldstone modes
- Higher derivatives? No assumption taken until duality relation

Prospects

- Finish the paper!
- Other applications: Axion-Maxwell (type IIA analogue)
- Loop space: Hodge operator and other formal problems?
- Supersymmetry? Goldstinos?
- How are they related? CS = higher group = Witten effect?
- Green-Schwarz mechanism in this set-up? Orientifolds?
- Spacetime symmetries and Goldstone modes
- Higher derivatives? No assumption taken until duality relation

Thanks!