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Motivation 1: Higher form symmetries
Gaiotto+’14

• Continuous 0-form symmetry
▶ 0-form parameter λ(0)

▶ (D − 1)-form closed current j(D−1)

▶ j(D−1) coupled to a background A(1)

▶ Example

S =
∫ 1

2dϕ† ∧ ⋆dϕ , j(D−1) = iϕ† ⋆ dϕ + c.c. ,

∫
A(1) ∧ j(D−1)

• Continuous q-form symmetry
▶ q-form parameter λ(q)

▶ (D − q − 1)-form closed current j(D−q−1)

▶ j(D−q−1) coupled to a background A(q+1)

▶ Example: q = 1

S =
∫ 1

2dC (1) ∧ ⋆dC (1) , j(D−2) = ⋆dC (1) ,

∫
A(2) ∧ j(D−2)
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Motivation 2: Higher group symmetries
Cordova-Dumitrescu-Intriligator’18

• It involves two higher form symmetries
• Definition: 2-group

A(1) → A(1) + dλ(0) ,

B(2) → B(2) + dλ(1) + dλ(0) ∧ A(1)

• Definition: (2q + 2)-group U(1)(q) ×κ U(1)(2q+1)

A(q+1) → A(q+1) + dλ(q) ,

B(2q+2) → B(2q+2) + dλ(2q+1) + κdλ(q) ∧ A(q+1)

• Example: 4-group U(1)(2) ×1 U(1)(5) in 11D SUGRA (q = 2)

A(3) → A(3) + dλ(2) ,

B(6) → B(6) + dλ(5) + dλ(2) ∧ A(3)
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SSB in global symmetries
• Classification of phases of matter

▶ Unbroken phase. Excitations are gapped and
correlation functions decay exponentially

⟨O†(x)O(y)⟩ ∼ exp{−m|x − y |}

▶ Broken phase. Something condenses. Correlation
functions factorize and saturate at large distances

⟨O†(x)O(y)⟩ ∼ ⟨O†⟩⟨O⟩
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SSB in global symmetries
• For a 1-form symmetry

▶ Unbroken phase. All excitations are gapped.
Charged operators have an area law. Analogue of
exponentially decaying correlator of local operators

⟨WC ⟩ ∼ exp{−Tp+1 Area[C ]}

▶ Broken phase. Strings condense and have no
tension. Charged operators develop perimeter laws
at large distance. Analogue of factorized local
correlators

⟨WC ⟩ ∼ exp{−Tp Perimeter[C ]}
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Goldstone Theorem (0-form symmetry)
Euclidean path integral

Levin-Wen ’04, Hofman-Iqbal ’18

• Conserved ⋆j from 0-form symmetry and charged O
d ⋆ j(x)O(0) = iqO(0) δ(d)(x)

• Integrating over a 4-ball of radius R and evaluating:〈(∫
S3(R)

⋆j
)

O(0)
〉

= iq⟨O⟩

• If ⟨O⟩ ≠ 0, R independence implies

〈
⋆j i(x)O(0)

〉
∝ iqni

R3

• Power-law decay ⇒ 1 Goldstone mode
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Goldstone Theorem (p-form symmetries)
• Conserved ⋆j from a p-form symmetry with charged operator W (C) over a

p-dim manifold

d ⋆ j(x)W (C) = iqδC(x)W (C)

• If C is an infinite p-plane, we integrate over a (d − p)-ball Bd−p〈(∫
Sd−p−1(R)

⋆j
)

W (C)
〉

= iq⟨W (C)⟩

• If ⟨W (C)⟩ ≠ 0, R independence implies

⟨⋆j(R)W (C)⟩ ∝ iqc
Rd−p−1

• Power-law decay ⇒ Goldstone p-form modes
Lake’18, Hofman-Iqbal’18

7



EFT for Goldstone modes
Coleman-Wess-Zumino’69, Callan-Coleman-Wess-Zumino’69

• Coset construction
▶ Quotient space G/H
▶ Given a SSB of G , where H ⊂ G is preserved

Lie(G) = { VI︸︷︷︸
broken

, Za︸︷︷︸
unbroken

}

▶ For g̃ ∈ G/H , we can express it as g̃ = exp{ξa(x)Za}
▶ ξa are the Goldstone modes

• For g ∈ G , g̃ transforms as

g exp{ξaZa} = exp
{
ξ′aZa

}
h(g , ξa) , h ∈ H

• Usually, the transformation g : ξa → ξ′a is complicated (nonlinear)

• How to build actions?
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EFT for Goldstone modes
Coleman-Wess-Zumino’69, Callan-Coleman-Wess-Zumino’69

• How to build actions?

• Lie-algebra valued Maurer-Cartan 1-form

ω = g̃−1dg̃ ≡ ωZ + ωV ≡ ωaZa + ωIVI

• Transforms homogeneously under G

g :
{

ωZ → h(x)ωZ h−1

ωV → h(x)(ωV + d)h−1

• At leading order in derivative expansion:

L ∝ Tr [ω ∧ ⋆ω]
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Example: EFT for periodic scalar
• For θ(x), we consider Ψ(x) = e iθ(x)

• The Maurer-Cartan 1-form

ω = −iΨ−1(x)dΨ(x) = dθ(x)

• To lowest order in derivatives,

S = f 2
∫

ω ∧ ⋆ω = f 2
∫

dθ ∧ ⋆dθ

• This is more than required!
▶ Invariant under U(1) “momentum” symmetry θ(x) → θ(x) + α
▶ Invariant under U(1) “winding” (D − p − 2) symmetry
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Example: EFT for periodic scalar
Witten95

• Understanding the “winding”

S = f 2
∫

(dθ − β) ∧ ⋆(dθ − β) + 2πi
∫

β ∧ dη

[β] : ⋆ (dθ − β) = πif −2dη

[η] : dβ = 0

β dynamical 1-form connection
η dynamical (D − p − 2) connection (Lagrange multiplier)

• Being β pure gauge:

⋆dθ = πif −2dη

• We say that θ and η are electromagnetic duals

• For D = 2, p = 0, this is T duality
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Questions & Goals
• How about 1-form symmetries

▶ Maxwell as the EFT of Goldstone bosons?
▶ Coset construction?
▶ Rôle of Wilson and ’t Hooft operators?

• How about p-form symmetries?
▶ Coset construction and EFT?
▶ Rôle of charged objects?

• One step further: is SUGRA an EFT of Goldstone bosons?
▶ Motivation: Goldstone theorem for non invertible + symmetry operators

Iqbal-GarcíaEtxebarria’20, FM-Giorgi-Marqués-Rosabal’24
▶ Bosonic sector: “generalized” electromagnetism
▶ Chern Simons?
▶ Higher groups?

12



Outline
1. Introduction

2. Maxwell as a theory of Goldstone modes

3. Generalized Maxwell for p-forms

4. 5D Maxwell-CS

5. Supergravity

6. Conclusions and prospects

13



Outline
1. Introduction

2. Maxwell as a theory of Goldstone modes

3. Generalized Maxwell for p-forms

4. 5D Maxwell-CS

5. Supergravity

6. Conclusions and prospects

14



Outline
1. Introduction

2. Maxwell as a theory of Goldstone modes

3. Generalized Maxwell for p-forms

4. 5D Maxwell-CS

5. Supergravity

6. Conclusions and prospects

15



1-form Symmetries & Loop Space
Polyakov’79

• Charged objects supported by a closed manifold Σ1

▶ The coset representative: Ψ[Σ1] = exp i
∫

Σ1
P [A1]

▶ The loop variation under a vector X is defined as

δX Φ[Σ1] =
∫

Σ1
dσ δXµ(σ) δΦ

δXµ(σ)

▶ Maurer-Cartan 1-form

ωX (Σ1) ≡ ω(X ; Σ1) = −iΨ−1[Σ1]δX Ψ[Σ1] =
∫

Σ1
ιX dA1

• Maurer-Cartan (Bianchi-like)

δX ωY (Σ1) − δY ωX (Σ1) − ω[X ,Y ](Σ1) = 0
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Area & Loop Derivatives
Makeenko-Migdal’79, Migdal’80, Iqbal-McGreevy’21

• An equivalent approach: area derivative

Ψ[C ∪ δC ] = Ψ[C ] + σµν(δC) δΨ[C ]
δσµν(λ) ,

σµν(δC) = 1
2

∮
δC

dX µX ν

• Example: ϕ[C ] ≡
∮

C dX µAµ

ϕ[C ∪ δC ] − ϕ[C ] =
∮

δC
dX µAµ

=
∮

δC
dX µ(A(X0)µ + (X0 − X )ν∂νAµ(X0) + · · ·)

which implies
δϕ[C ]

δσµν(λ) = 2∂[µAν](X0(λ))
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Area & Loop Derivatives
• Equivalence with Polyakov

δΨ[C ]
δX µ(s) = 1

2
dX ν

ds
δΨ[C ]

δσµν(s)

• A generic action

S[Ψ] = N
∫

[dC ]
∮

C
ds

√
h δΨ†[C ]

δσµν(s)
δΨ[C ]

δσµν(s) + V (Ψ†[C ]Ψ[C ])

• For V = 0 and Ψ[C ] = exp i
∫

C P [A],

S[Ψ] = N
∫

[dC ]
∮

C
ds δΨ†[C ]

δσµν(s)
δΨ[C ]

δσµν(s) = −1
2

∫
Σd

dA ∧ ⋆dA
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Area derivative for p-forms
Hidaka-Kawana’23

• Consider Ψ[Cp] = exp i
∫

Cp
Ap

• Variation of Ψ[Cp] for an arbitrary change δCp ,

δΨ[Cp] =
∫

dpξ
√

hδX µ(ξ) δΨ[Cp]
δX µ(ξ) = 1

(p + 1)!σ
µ1···µp+1(δCp) δΨ[Cp]

δσµ1···µp+1(ξ) ,

σµ1···µp+1(δCp) =
∫

δCp
δX [µ1dX µ2 ∧ · · · ∧ dX µp+1]

• The action

S[Ψ] = Np

∫
[dCp]

∮
Cp

dpξ
δΨ†[Cp]

δσµ1···µp+1(ξ)
δΨ[C ]

δσµ1···µp+1(ξ) = −1
2

∫
Σd

dAp ∧ ⋆dAp
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EFT for p- and q-forms
• Coset construction

Ψ[Σp, Σq] = exp i
{∫

Σp
Ap +

∫
Σq

Aq

}

• Maurer-Cartan 1-form

ωX (Σp, Σq) =
∫

Σp
ιXdAp +

∫
Σq

ιXdAq

• Maurer-Cartan equations∫
Σp

ιXd2Ap +
∫

Σq
ιXd2Aq = 0 ⇒ d2Ap = d2Aq = 0

• If q = d − p − 2 and ⋆dAp = dAq

d2Ap = 0 , d ⋆ dAp = 0

• Other: read off the Maurer-Cartan components: dAp and dAq
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5D Maxwell-CS
• Action S =

∫ 1
2dA ∧ ⋆dA + κ

3A ∧ dA ∧ dA

• Democratic formulation

Sdem =
∫

α1dA ∧ ⋆dA + α2(dB − A ∧ dA) ∧ ⋆(dB − A ∧ dA)

+ 2α1 − 4α2

3 A ∧ dA ∧ dA

• Higher group: δB = dλ1 + dλ0 ∧ A
• Coset construction (charged objects)

Ψ[Σ1, Σ2] = exp i
{∫

Σ1
A +

∫
Σ2

B
}

• String theory: objects localized on the brane?

• Why? Ψ only depends on Σ1 and Σ2
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5D Maxwell-CS

• What can we do with a Wilson line (Σ1) and a ’t
Hooft string (Σ2)?
▶ ∂Σ2 = Σ1
▶ ∂Σ1 ⊆ Σ2 with ∂Σ2 = ∅
▶ Others?
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5D Maxwell-CS
• Gauge invariance for ∂Σ1 ⊆ Σ2 with ∂Σ2 = ∅

δ
(∫

Σ1
A +

∫
Σ2

B
)

=
∫

∂Σ1
λ0

• We propose a localized field∫
Σ2

B − dθ ∧ A δθ = λ0

• This requires δB = dλ1 + dλ0 ∧ A but it’s not enough! We need

ddθ = −δ2(∂Σ1)

δ
(∫

Σ1
A +

∫
Σ2

B − dθ ∧ A
)

=
∫

∂Σ1
λ0 −

∫
Σ2

dθ ∧ dλ0 = 0

• This was studied in string theory! Witten’95, Hanany-Witten’96
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Hanany–Witten & Freed–Witten

• In type IIB
D5 x x x x x x
NS5 x x x x x x
D3 x x x x
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Hanany–Witten & Freed–Witten
• Here we require dF = H + δ3(∂Σ4) at the boundary of the D3

• The presence of the NS5 is crucial, as it requires
∮

H ̸= 0!

• Freed-Witten: branes in the presence of nontrivial H are anomalous

• Anomaly cancels by making another brane end on it Maldacena-Moore-Seiberg’01

[H] =
�
��Z
ZZ

[W ] + [δ] (1)

• Punchline: The HW brane creation is required to cancel the FW anomaly.
Conversely, the FW condition is required to explain the HW brane creation.

• Generalization to M theory Witten’99

“This reduces to (1) in the appropriate situation, and I suspect it holds in general”
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Coset for Maxwell-CS
• From Freed-Witten,

[F2] = [δ2] ⇒ F2 = dC1 + δ2(∂Σ1)

• Coset construction

Ψ[Σ1, Σ2] = exp i
(∫

Σ1
A +

∫
Σ2

B − C1 ∧ A
)

• C1 not entirely determined
▶ If C1 = dθ + A is gauge invariant (like F ) then we have to prescribe δX θ
▶ If C1 is gauge invariant (like B) then we have to choose a section of the bundle

and integrate over the gauge transformations of C1 (or, equivalently, over dθ)

• Inherent integration over dθ makes the coset noninvertible
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Coset for Maxwell-CS
• We can do the path integral over θ and average over all the gauge

transformations

Ψeff[Σ1, Σ2] =
∫

[Dθ]Ψ[Σ1, Σ2]

• To do so, we have to do it legally, including every single term involving θ

Ψeff[Σ1, Σ2] =
∫

[Dθ]Ψ[Σ1, Σ2] exp
{

i
∫

Σ2
(dθ − A) ∧ ⋆(dθ − A)

}
• The Σ2 integral can be written as Witten’96

Ψeff[Σ2] = exp
{

i
∫

Σ2
B
} ∫

[Da] exp
{

−ik
∫

Σ2×R+
a ∧ da

}
, a|t=0= A

• Varying Ψ[Σ2] w.r.t. the surface along X :

δX Ψeff[Σ2] = iΨeff[Σ2]
∫

Σ2
P [ιX (dB − A ∧ dA)]
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An action for Maxwell-CS
• Maurer-Cartan 1-form

ωX (Σ1, Σ2) =
∫

Σ1
P [ιXdA] + ϵp

∫
Σ2

P [ιX (dB − A ∧ dA)]

• Maurer-Cartan equation
▶ Fixed gauge transformations ⇒ Field strengths ⇒ Bianchi’s
▶ Bianchi’s + duality relations = EOMs

• Effective action
▶ Democratic action + duality relations

S[Ψ] = N
∫

[DΣ1][DΣ2] ω(Σ1,2) ∧ ⋆ω(Σ1,2)
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Supergravity (bosonic sector)

• 11D Supergravity
▶ M2 branes ending on M5 branes
▶ CS coefficient entirely fixed by SUSY
▶ CS origin: anomaly inflow arising from the self-dual 2-form in the M5

• Type II
▶ H flux induced by NS5

▶ Freed-Witten & Hanany-Witten
▶ IIA CS origin: anomaly inflow arising from the self-dual 2-form in the NS5
▶ IIB CS origin: anomaly inflow arising from the self-dual 2-form in the KKM?
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Conclusions

1. Higher form and and higher group symmetries in supergravity
2. Spontaneous symmetry breaking of higher form symmetries
3. EFT for Goldstone modes and the coset construction (Maurer-Cartan)
4. Loop space and area derivative

▶ Maxwell as the EFT of Goldstone modes for SSB of 1-form symmetry
5. Generalization to higher p-forms

▶ Generalized electromagnetism with no higher group
▶ Coset Ψ[Σp]
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Conclusions
6. Maxwell-CS

▶ We have built a coset Ψ[Σ1, Σ2] with good properties
▶ Manifolds with boundaries enter the game
▶ Charged objects restricted by Freed-Witten anomalies
▶ Hanany-Witten: branes ending on branes
▶ Noninvertibility still around (

∫
[Dθ])

▶ Effective description
▶ Maurer-Cartan eq + duality relations = EOMs
▶ Maurer-Cartan components + duality relations = EOMs

7. 11D SUGRA: straightforward extension of Maxwell-CS
8. Type II

▶ D-branes: Maurer-Cartan eq’s for RR fields
▶ NS5: Necessary for the EOM of B2
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Prospects

• Finish the paper!

• Other applications: Axion-Maxwell (type IIA analogue)

• Loop space: Hodge operator and other formal problems?

• Supersymmetry? Goldstinos?

• How are they related? CS = higher group = Witten effect?

• Green-Schwarz mechanism in this set-up? Orientifolds?

• Spacetime symmetries and Goldstone modes

• Higher derivatives? No assumption taken until duality relation

Thanks!
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