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Review of the Komar charge

It is the Noether charge associated to the invariance under the GCTs in pure GR.

Suppose ξ generates a GCT. Then the variation of the
action reads

δξS[Φ] =

∫ {
EΦ ∧ δΦ+ dΘ(Φ, δΦ)

}
= −

∫
LξL.

The Noether current is

J[ξ] = dQ[ξ],

Q[ξ] is the Noether–Wald charge.

If ξ is a Killing vector k:

dQ[k] = J[k]
.
= ιkL

.
= dωk.

K[k] ≡ −Q[k] + ωk

dK[k]
.
= 0

The Komar charge only exists in stationary or axisymmetric spacetimes.
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Application of the Komar charge: the Smarr formula

The event horizon of asymptotically-flat, stationary black
holes is the Killing horizon of a Killing vector that, in
adapted coordinates, can be written as

k = ∂t − Ω ∂φ.

Assuming that the horizon is bifurcate (k
∣∣
BH = 0), choose a

spacelike hypersurface Σ3 with boundary ∂Σ3 = S2
BH ∪ S2

∞.
Integrating dK(k)

.
= 0 over Σ3 and applying Stokes’

theorem,

0
.
=

∫
Σ3

dK(k) =

∫
S2
∞

K(k)−
∫
S2
BH

K(k).

S2
∞

S2
BH

Smarr formula∫
S2
BH

K(k)
.
=

∫
S2
∞

K(k)
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Application of the Komar charge: the Smarr formula

ds2 = λ(r)dt2 − 1

λ(r)
dr2 − r2(dθ2 + sin2 θdφ2)

The timelike Killing vector is

k = ∂t = kµ∂µ, kµ = δµt

k̂ ≡ kµdx
µ = gµtdx

µ = gttdt = λ(r)dt.

The Komar of pure gravity in d = 4 is

K[k] = − 1

16πG
(4)
N

⋆ (ea ∧ eb)Pk ab

The Lorentz momentum map is

Pk ab = e µ
a e ν

b ∇[µkν] = 2δ 0
[b ∂a]

√
λ.
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Application of the Komar charge: the Smarr formula

− 1

16πG
(4)
N

∫
S2

⋆(ea ∧ eb)Pkab =
1

16πG
(4)
N

∫
S2

r2 sin θ∂rλdθ ∧ dϕ =
1

4G
(4)
N

r2∂rλ

This integral must be r-indepedent

R → ∞ ⇒ − 1

16πG
(4)
N

∫
S2
∞

⋆(ea ∧ eb)Pkab ≡
M

2
⇒ λ(r) = 1−

2MG
(4)
N

r

R = r+ ⇒ − 1

16πG
(4)
N

∫
BH

⋆(ea ∧ eb)Pkab =
∂rλ

4π

∣∣∣∣
r+

πr2

G
(4)
N

∣∣∣∣
r+

= TS

M = 2TS
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Setup: 5-D GR + KK Bounday conditions

KK paradigm

Physics in the uncompactified (lower) dimensions is just a manifestation of Physics in the
total spacetime manifold (higher dimensions)
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Setup: 5-D GR + KK Bounday conditions

The 5-D geometry of 4-D stationary black holes [C. Gómez-Fayrén, P. Meessen, T. Ort́ın, M. Zatti]

[G.W. Gibbons, D.L. Wiltshire]

4-D stationary black hole

For the rigidity theorem, it admits a timelike
Killing vector m at infinity and a rotational
one n. The Killing

l ≡ m− ΩH n, l2
H
= 0

identifies H as a Killing horizon.

5-D KK uplift

The 5-D solution has the extra isometry k̂ = ∂z
and remains stationary (m = ∂t). The horizon
is the local product of the 4-D horizon with S1.
The uplift of l satisfying

l̂2
H
= 0 Ll̂ĝµ̂ν̂ = 0

is
l̂ ≡ l − k̂
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5-D K̂[l̂] → 4-D Smarr formula and first law

l̂ ≡ l − k̂

̸= M P̂z ∼ q
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Motivation

Problem

The 5-D Komar charge does not
measure the 4-D mass

Mass: the mass of the 4-D dimensionally
reduced solution in the 4-D EF

ds2(5) =
k∞
k

ds2E(4) − k2
(
dz +

√
k∞AE

)2

• Komar asymptotically:

K̂
r→∞∼ r2∂rĝtt

▶ gtt
r→∞∼ 1− 2M

r

▶ k
r→∞∼ k∞

(
1 + Σ

r

)
▶ ĝtt =

k∞
k gtt

r→∞∼ 1− 2M +Σ

r

Conclusion: the naive 5-D Komar integral returns a combination of the mass M and the
scalar charge Σ.
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Motivation

Goal: find a consistent modification of the Komar charge to isolate the 4-D mass M .

⇓
Solution

K̂α[l̂] ≡ K̂[l̂] + α Q̂h
l̂

Adding an on-shell closed (d− 2)-form to remove the unwanted term
→ relation with higher form symmetries

Smarr formula doesn’t change

Now the Komar gives the mass
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5D GR with Kaluza–Klein boundary conditions

5D Einstein–Hilbert action

Ŝ[ê] =
1

16πG
(5)
N

∫
⋆̂
(
êâ ∧ êb̂

)
∧ R̂âb̂

Kaluza–Klein boundary conditions

We assume a spatial Killing vector with closed
orbits, k̂ = ∂z . Work in coordinates adapted to k̂,
so the metric and fields are z-independent:

∂z ĝµ̂ν̂ = 0, z ∼ z + 2πℓ,

where ℓ is some length scale

Compact direction

z

k̂ = ∂z

z ∼ z + 2πℓ
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∂z ĝµ̂ν̂ = 0, z ∼ z + 2πℓ,

where ℓ is some length scale

Compact direction

z

k̂ = ∂z

z ∼ z + 2πℓ

15 / 31



ĝµ̂ν̂ =

(
ĝµν ĝµz

ĝµz ĝzz

)
=

(
gµν − k2AµAν −k2Aµ

−k2Aµ −k2

)

ds2(5) = ds2(4) − k2
(
dz +A

)2

gµν = ĝµν −
ĝµz ĝνz
ĝzz

(KK metric)

Aµ =
ĝµz
ĝzz

(KK vector)

k =
√∣∣ĝzz∣∣

(KK scalar)
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ĝµ̂ν̂ =

(
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S[e,A, k] =
2πℓ

16πG
(5)
N

∫ {
k
[
− ⋆(ea ∧ eb) ∧Rab +

1
2k

2F ∧ ⋆F
]
+ d
[
2 ⋆ dk

]}

Field rescalings

gµν ≡ k∞
k

gE µν

eaµ ≡
√

k∞
k

eE
a
µ

Aµ ≡
√
k∞ AE µ

Einstein-frame

S[gE , AE , k] ∼∫
ddx

√
|gE |

{
R(gE) +

d− 1

d− 2
k−2(∂k)2 − 1

4 k
2 d−1

d−2F 2
E

}

Global symmetries: global rescalings of k and A

δγgE µν = 0, δγAE = γAE , δγk = −γ d−2
d−1k, ⇒ δγS = 0
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Symmetries in KK theories

Higher
dimensional

theory

Lower
dimensional

theory

Local symmetries
(e.g. gauge,

diffeomorphisms)

Global Symmetries

Diffeomorphisms

Action
invariant

EM-type duality
(action not invariant)

?

They are not
diffeomorphisms

in the internal direction
(Higher–form symmetries)
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Local Symmetries

Generic Manifold

EH action is invariant up to total derivatives under
5-D GCTs δξ̂x̂

µ̂ = ξ̂µ̂, that is

δξ̂ ĝµ̂ν̂ = −Lξ̂ ĝµ̂ν̂ = −
(
ξ̂ρ̂∂ρ̂ĝµ̂ν̂ + 2∂(µ̂ξ̂

ρ̂ĝν̂)ρ̂
)

+

KK boundary conditions ∂z ĝµ̂ν̂ = 0 The 5-D GCTs δξ̂x̂
µ̂ = ξ̂µ̂ which preserve the

KK boundary condition are generated by vectors
fields ξ̂ which are z-independent

δξ̂gµν = −
(
ξ̂ρ∂ρgµν + 2 ∂(µξ̂

ρ gν)ρ
)

δξ̂Aµ = −
(
ξ̂ρ∂ρAµ + ∂µξ̂

ρ Aρ

)
−∂µξ̂

z

δξ̂k = −ξ̂ρ∂ρk

4-D GCTs ξµ(x) = ξ̂µ(x)

U(1) δχA = dχ, χ(x) = −ξ̂z(x)

U(1) acts on dz as δχdz = −dχ
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Global Symmetries [C. Gómez-Fayrén, P. Meessen, T. Ort́ın, M. Zatti]

Non-trivial topology

+

Isometry - Killing k̂

Let h = hµ̂dx̂
µ̂ an a harmonic 1-form satisfing

the conditions

dˆ̃ϵ = 0, dιk ˆ̃ϵ = 0

with

ϵ̂ = ϵ̂µ̂∂µ̂, ˆ̃ϵ ≡ ϵh

δϵĝµ̂ν̂ ≡ δhϵ ĝµ̂ν̂ + δsϵ ĝµ̂ν̂ ≡ −2ϵh(µ̂k̂ν̂)︸ ︷︷ ︸
global rescaling of the EH action

+
2ϵ

(d̂− 2)
ĝµ̂ν̂︸ ︷︷ ︸

global rescaling of the metric

δϵŜ = δhϵ Ŝ + δsϵ Ŝ = −ϵŜ + ϵŜ = 0
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δϵĝµ̂ν̂ ≡ δhϵ ĝµ̂ν̂ + δsϵ ĝµ̂ν̂ ≡ −2ϵh(µ̂k̂ν̂)︸ ︷︷ ︸
global rescaling of the EH action

+
2ϵ

(d̂− 2)
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δϵĝµ̂ν̂ ≡ δhϵ ĝµ̂ν̂ + δsϵ ĝµ̂ν̂ ≡ −2ϵh(µ̂k̂ν̂)︸ ︷︷ ︸
global rescaling of the EH action

+
2ϵ

(d̂− 2)
ĝµ̂ν̂︸ ︷︷ ︸

global rescaling of the metric

If k̂ = ∂z, dˆ̃ϵ = 0, dιkˆ̃ϵ = 0 ⇒ ˆ̃ϵ = γdz︸︷︷︸
global part

+ dΛ(x)︸ ︷︷ ︸
exact part

� Global Part: it’s not a 5-D diffeomorphism

δγ ĝµ̂ν̂ = −2γδ
z
(µ̂ĝν̂)z +

2

(d̂− 2)
γĝµ̂ν̂

and, translating the 5-D metric to 4-D EF fields, we get the 4-D global symmetries

δγgEµν = 0 δγAEµ = γAEµ δγk = −γ d−2
d−1k

21 / 31
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δγ ĝµ̂ν̂ = −2γδ
z
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ĝµ̂ν̂︸ ︷︷ ︸

global rescaling of the metric

If k̂ = ∂z, dˆ̃ϵ = 0, dιkˆ̃ϵ = 0 ⇒ ˆ̃ϵ = γdz︸︷︷︸
global part

+ dΛ(x)︸ ︷︷ ︸
exact part

� Exact Part: gives a 5-D diffeomorphism generated by Λ(x)∂z

δΛĝµ̂ν̂ = −2∂ (µ̂Λ(x)ĝν̂)z

and, translating the 5-D metric to 4-D fields, obtains the gauge transformation of the
KK vector

δΛgµν = 0, δΛAµ = −∂µΛ δΛk = 0
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The 5-D generalized Komar charge

The idea is the following

1 Write L̂
.
= dĴh .

= 0 and 0 = δl̂Ĵ
h .
= −dQ̂h

l̂

2 Build a 1-parameter family of conserved Komar charges K̂α[l̂] ≡ K̂[l̂] + αQ̂h
l̂

3 Reducing from 5-D to 4-D and choose the proper α
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= dĴh .

= 0 and 0 = δl̂Ĵ
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The 5-D generalized Komar charge: Step 1

êâ ∧ Êâ = 3L̂ ⇒ L̂
.
= 0

On the other hand, from

δŜ =

∫ {
Êâ ∧ δêâ + d Θ̂(ê, δê)

}
we get

δhϵ Ŝ = −ϵŜ ⇒ L̂
.
= dĴh .

= 0, Ĵh = −K̂[k̂]∧h, K̂[k̂] = 1

16πG
(5)
N

⋆̂(êâ∧ êb̂)P̂k̂ âb̂

δsϵ Ŝ = +ϵŜ ⇒ L̂
.
= 0

⇒ Ĵh is the Noether current associated to the symmetry δϵ ≡ δhϵ + δsϵ

L̂
.
= −d

{
1

ϵ
Θ̂(ê, (δhϵ + δsϵ )ê)

}
= dĴh.
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= dĴh.

25 / 31



The 5-D generalized Komar charge: Step 1

êâ ∧ Êâ = 3L̂ ⇒ L̂
.
= 0

On the other hand, from

δŜ =
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.
= 0
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= dĴh .
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⇒ Ĵh is the Noether current associated to the symmetry δϵ ≡ δhϵ + δsϵ

L̂
.
= −d

{
1

ϵ
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The 5-D generalized Komar charge: Step 1

Given a (d− 1)-form current J which is conserved when evaluated over a solution of the
theory with a spacetime symmetry generated by the vector p (i.e. δp annihilates all the
fields of the solution and, therefore, the current), it is always possible to derive from it a
(d− 2)-form charge Qp which is also conserved under the same assumptions.

In our case the Killing vector is l̂

4-form: 0 = δl̂Ĵ
h .
= −d Q̂h

l̂

3-form: Q̂h
l̂
≡ ιl̂Ĵ

h + K̂[k̂]
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The 5-D generalized Komar charge: Step 2

Why do we expect Q̂h
l̂
to remove the scalar charge contribution?

5-D 4-D

4-form Ĵh

3-form Q̂h
l̂

3-form J

2-form Q

Σ =
∫
S2
∞
Q

[R. Ballesteros, C. Gómez-Fayrén, T. Ort́ın, M. Zatti]
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The 5-D generalized Komar charge: Step 2

Linear combinations of conserved charges with constant coefficients are conserved

⇓
Let’s define the following 1-parameter family of conserved Komar charges

K̂α[l̂] ≡ K̂[l̂] + αQ̂h
l̂

= K̂[l̂]− αıl̂K̂[k̂] ∧ h

α is an arbitrary coefficient to be determined using some physical criterion
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The 5-D generalized Komar charge: Step 3

The pullback of K̂α[l̂] over hypersurfaces that include z is (up to a total derivative)

K̂α[l̂]h
.
= k∞

16πG
(5)
N

{
− ⋆E dlE + (1− 2α) ⋆E (d ln k ∧ lE) + (1− α)PE lk

3 ⋆E FE − αP̃E lFE

}
∧h

The second term gives an unwanted additional contribution which is proportional to the
scalar charge of the KK scalar k, so choosing α = 1/2 we get

K̂1/2[l̂]h =
k∞

16πG
(5)
N

{
− ⋆E dlE + 1

2PE lk
3 ⋆E FE − 1

2 P̃E lFE

}
∧ h = K[l] ∧ h

2πℓ

which, integrated over the compact direction gives the 4-D generalized Komar 2-form
charge.
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Conclusion and future directions

We reviewed recent developments in KK theory of gravity

We presented an algorithm for construct a Komar charge which, by exploiting
higher-form symmetries, reproduces precisely the 4-D mass

Generalization to coupling with matter: N = 1, d = 5 SUGRA
[GB, J. Luis V. Cerdeira, C. Gómez-Fayrén, P. Meessen and T. Ort́ın, in progress]
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Thank you so much for the attention!
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