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[ It is the Noether charge associated to the invariance under the GCTs in pure GR.

Suppose & generates a GCT. Then the variation of the

action reads

If ¢ is a Killing vector k:
6§S[<I>}:/{E¢/\6(I>+d(-)<l>6<l> /cEL

dQ[k] = J[k] = L = dwy.
The Noether current is

Jg] = aQle], | K[k = —Q[k] +wy |

Q[¢] is the Noether—Wald charge. dKIk] =0

The Komar charge only exists in stationary or azxisymmetric spacetimes.
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Application of the Komar charge: the Smarr formula

The event horizon of asymptotically-flat, stationary black
holes is the Killing horizon of a Killing vector that, in
adapted coordinates, can be written as

k=0, —Q0,.
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Application of the Komar charge: the Smarr formula

The event horizon of asymptotically-flat, stationary black
holes is the Killing horizon of a Killing vector that, in
adapted coordinates, can be written as

k=0, —Q0,.

Assuming that the horizon is bifurcate (k‘ sn = 0); choose a
spacelike hypersurface X3 with boundary 0%3 = 5123?-{ uSZ.
Integrating dK (k) = 0 over X3 and applying Stokes’
theorem,

Oi/23dK(k): R (k).

2
SBH
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Assuming that the horizon is bifurcate (k‘ sn = 0); choose a
spacelike hypersurface X3 with boundary 0%3 = 5123?-{ uSZ.
Integrating dK (k) = 0 over X3 and applying Stokes’
theorem,
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Application of the Komar charge: the Smarr formula
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The timelike Killing vector is

k=0, =k'0,, k= &t
k= kydat = gdat = gudt = A(r)dt.
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Application of the Komar charge: the Smarr formula

1

2 _ r 2
ds® = A(r)dt o)

dr? — r?(d6* + sin® fde?)

The timelike Killing vector is

k=0, =k'0,, k= &t
k= kydat = gdat = gudt = A(r)dt.

The Komar of pure gravity in d = 4 is

* (e A eb)Pk ab

The Lorentz momentum map is
Pi ab = €€,V [uk) = 205" 00 V).
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Application of the Komar charge: the Smarr formula

1
167rG§3)
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L7'2(9T/\
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4Gy
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Application of the Komar charge: the Smarr formula

1 1 ]
) / *(e® Ne") Pray = ——5 | r*sin00,0d0 A dep = — 5120, A
167Gy /52 167G /s e

This integral must be r-indepedent
1 M 2M G
R = o0 = ) *(e" A eb)Pkab == = Ar)y=1- N
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Setup: 5-D GR + KK Bounday conditions

KK paradigm

Physics in the uncompactified (lower) dimensions is just a manifestation of Physics in the
total spacetime manifold (higher dimensions)
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Setup: 5-D GR + KK Bounday conditions

The 5-D geometry of 4-D stationary black holes (c. GomesFayrén, P. Meessen, T. Ortin, M. Zatsi)

[G.W. Gibbons, D.L. Wiltshire]

4-D stationary black hole 5-D KK uplift

For the rigidity theorem, it admits a timelike

e P . The 5-D solution has the extra isometry k=ao.
Killing vector m at infinity and a rotational . . .=
The Killi and remains stationary (m = d;). The horizon
onen. Lhe BIng is the local product of the 4-D horizon with S*.
I=m—Quyn, 2Ho The uplift of [ satisfying
identifies H as a Killing horizon. 2Zg L;gao =0

is

I=1—k
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5D K| — 4-D Smarr formula and first law
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5D K| — 4-D Smarr formula and first law

P = @ - @
ao
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Motivation

Problem

The 5-D Komar charge does not
measure the 4-D mass
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Motivation

Problem

The 5-D Komar charge does not
measure the 4-D mass

Mass: the mass of the 4-D dimensionally
reduced solution in the 4-D EF

koo
dsty) = =% dsgy) — K (dz + VkooAg)®

Komar asymptotically:

S T—00 20 A
K ~"r°0:gu

r—00 2M
> g ~ 1—==

> BT k(14 2)

X k r—00
> g = =g ~ 1—

Conclusion: the naive 5-D Komar integral returns a combination of the mass M and the
scalar charge X.
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Motivation

Goal: find a consistent modification of the Komar charge to isolate the 4-D mass M.
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Motivation

Goal: find a consistent modification of the Komar charge to isolate the 4-D mass M.

U

Solution

K. [ =K[] + Q]

e Adding an on-shell closed (d — 2)-form to remove the unwanted term
— relation with higher form symmetries

e Smarr formula doesn’t change

o Now the Komar gives the mass
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5D GR with Kaluza—Klein boundary conditions

5D Einstein—Hilbert action

slel = 16 G(5)/*( AE)A

15 /31



5D GR with Kaluza—Klein boundary conditions

5D Einstein—Hilbert action

~ 1 N o ~
Slée] = —/Aé“/\éb AR.;
[] 167TG§\5,) *( ) ab

Kaluza—Klein boundary conditions

We assume a spatial Killing vector with closed

orbits, k= 0, . Work in coordinates adapted to l;:,
so the metric and fields are z-independent:

({Lg[“;:o, z~ z+ 27l

where £ is some length scale
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5D GR with Kaluza—Klein boundary conditions

5D Einstein—Hilbert action

~ 1 N o ~
Slée] = —/Aé"/\éb AR.;
[] 167TG§\5,) *( ) ab

Kaluza—Klein boundary conditions

We assume a spatial Killing vector with closed

orbits, k= 0, . Work in coordinates adapted to 12:,
so the metric and fields are z-independent:

({Lg[“;:o, z~z+2ml,

where / is some length scale

Compact direction

z~z+ 2l
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P e e —k24, 2

[ ds?, = ds?yy — k2 (dz + A)” ]




Gap = g;w gug _ g/,LV_k2A;,LAV _kQAM
T\ e —K2A, k2

[ dsty, = ds?y — k2 (dz + A)? ]

o gug gug
Juv = Guv — —=
4

(KK metric)




Gap = g;w gug _ g/,LV_k2A;,LAV _kQAM
T\ e —K2A, k2

[ dsty, = ds?y — k2 (dz + A)? ]

Y

. Guz g g
G = G — uz Jvz A, = Iz
zZz gZZ

(KK metric) (KK vec?or)




_@M: guu gug _ g,“,—kQAMA,, —k:QAM
T\ 9 —K? A, 2

[ ds?, = ds?yy — k2 (dz + A)” ]

Y

S gl@ QVE gug R
Guv = Guv — ——— A, == k= gﬁ|
22 9zz
(KK metric) (KK vector) (KK scalar)
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Sle, A, k] = Lﬁ(g))/{k[—*(e“/\eb)/\Rab—i— 1KPF A xF) +d[2*dk]}
167Gy,




27/ ap b LE
167rG(]\5,)/{k[*(e /\e)/\RabﬂszF/\*F}er[?*dk]}

Field rescalings

koo
Juv = gE#V

f
s




2mt /{k[f*(e“/\eb)/\Rab+%k2F/\*F}+d[2*dk]}

Sle, A k] = ———
167G
Field rescalings
]g Einstein-frame
Guv = 7 9E v
S[9E7 AEa k]
_ d _
= \/ /ddm\/|gE| {R(gE)+Hk (61@)2—%]@2%F }




2mt /{kz[f*(e“/\eb)/\Raqu%kzF/\*F}+d[2*dk]}

Sle, A k] = ———
167G
Field rescalings
k Einstein-frame
Guv = 7 9E v
S[9E7 AEa k]
p— d -
= \/ /ddm\/|gE| {R(gE)+Hk (61@2*%1@2%1? }

Global symmetries: global rescalings of k£ and A

d—=2

6, Ap =vAg, 6k=-—2k = §,5=0

5'ygE prv = 0,
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Symmetries in KK theories

Diffeomorphisms

Local symmetries

(e.g. gauge,
diffeomorphisms)

—

-~

Higher
dimensional
theory

!

Lower
dimensional
theory

They are not
diffeomorphisms
in the internal direction
(Higher—form symmetries)

Action

invariant
Global Symmetries

EM-type duality
(action not invariant)
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Local Symmetries

EH action is invariant up to total derivatives under
[Generic Manifold 5-D GCTs oz2# = £, that is
dedpo = —Ledpo = —(E°0s0p0 + 202 85)5)
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Local Symmetries

> EH action is invariant up to total derivatives under

[Generic Manifold ]_%_» 5-D GCTs (Sé_'f;“ — §“7 that is

N ! 0¢9pr = —Legpo = — (€059 + 2002 ,)

KK boundary conditions 9,gs = 0 3 The 5-D GCTs 55@41 = ¢ which preserve the
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ KK boundary condition are generated by vectors
fields £ which are z-independent

!

R ° 659;11/ = _(épapgm/ + Za(uép gu)p)
@ 4-D GCTs &(x) = &(x)

o U(l) 6, A=dy, x(&) = ~€(a) < @ 0:A, = —(£0,4,+ 0,62 A,)

@ U(1) acts on dz as d,dz = —dx A
® bck = -0,k
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Let h = h;d2” an a harmonic 1-form satisfing
the conditions

e dé=0, dué=0
with




Global Symmetries [C. G6mez-Fayrén, P. Meessen, T. Ortin, M. Zatti]

: .. ‘ Let h = hyd@” an a harmonic 1-form satisfing
' Non-t 1 topol ‘ 2 .
: on-trivial topology | the conditions
: —|— i\_/" dé = 0, deé =0
; o with
3 Isometry - Killing & | ¢ =éhg,, ‘= eh
A _ cha sA 2 2
8efpp = 0¢ Gpo + 02 9po = —2eb (k) + T
—_—— (d - 2)
global rescaling of the EH action
global rescaling of the metric




Global Symmetries [C. G6mez-Fayrén, P. Meessen, T. Ortin, M. Zatti]

| Non-trivial topology i bet = bﬂdiﬂ 211}1163 c}(l)?lrcIlIilt?:)lilz irlomm satising
| + — dé=0, dué=0
i . : with
3 Isometry - Killing &k 3 - éﬁam E=eh
4/ /
Scfpp = 6! G + 0290 = —2€b k) + Aiéw
(d—2)

—_———
global rescaling of the EH action
global rescaling of the metric

6.8 =06"S +655 = —eS+€eS=0

20/ 31



SeGpn = 01 Gan + 65000 =

—26[](;1];’[,)

N——
global rescaling of the EH action

(d—2)""

global rescaling of the metric
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SeGpn = 01 Gan + 65000 =

—26[](;1];‘[,)

N——
global rescaling of the EH action

global rescaling of the metric

Ifk=9, dé=0,

M
Il
o
U

deg

My

vydz
~—
global part

_|_

dA(x)
——

exact part
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N 2e
5€AA,;E(5?AAZ>+(5SAA,;E —2eh ks + —Jus
[ an 9i h(u ) (d _ 2) an

global rescaling of the metric

N——
global rescaling of the EH action

Ifk=0, dé=0, dye=0 =

My

= ~dz + dA(x)
~—~— ——
global part  exact part
e Global Part: it’s not a 5-D diffeomorphism
6+§ 2v6% . g 2
G = =276, 95 Gpo
~9i i (i e T (d 2)7 i

and, translating the 5-D metric to 4-D EF fields, we get the 4-D global symmetries
0s9Bw =0 0y Apy=7Ap, Sk =-y5k
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SeGpn = 01 Gan + 65000 =

—26[](;1];‘[,)

N——
global rescaling of the EH action

global rescaling of the metric

Ifk=9, dé=0,

My
Il
o
U

deg

My

vdz
~—
global part

_|_

dA(x)
——

exact part
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SeGpn = 01 Gan + 65000 =

—2eby (k)

N——
global rescaling of the EH action

(d—2)""

global rescaling of the metric

Ifk=9, dé=0,

My

deé =0 =

~—
global part  exact part

ydz 4+ dA(z)
——

e Exact Part: gives a 5-D diffeomorphism generated by A(z)0,

OAGar = —20 (i A (2) sz

and, translating the 5-D metric to 4-D fields, obtains the gauge transformation of the

KK vector

oAgu = 0, 6AAH = _3MA

opk =0
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The 5-D generalized Komar charge

The idea is the following
@ Write L = dJ" = 0 and 0 = ;3" = —dQ”
h

@ Build a 1-parameter family of conserved Komar charges K, [l] = K[I] + aQ;

@ Reducing from 5-D to 4-D and choose the proper «

24 /31



The 5-D generalized Komar charge: Step 1

" AE; = 3L = L=0
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e ANE; = 3L = L=

53_/

I
o

On the other hand, from

=

Eq A 6% +d O, 5é)}
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The 5-D generalized Komar charge: Step 1

~ ~

e ANE; = 3L = L=

I
o

On the other hand, from

5§_/{E&A5é@+dé(é,5é)}

— 1 sizaash\p.
= 167rG§§>*(6 NE) P oi
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The 5-D generalized Komar charge: Step 1

~ ~

e ANE; = 3L = L=

53_/

I
o

On the other hand, from
Ea A 66"+ dO(¢, 6¢) }

=

_ 1
167rG53>

50

*x(e

Aéd)

P
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The 5-D generalized Komar charge: Step 1

I
o

éANE;=3L = L=

On the other hand, from
6§—/{E&/\6é&+d@(é,6é)}

Jh = —K[k]Ab, K[k] = L (e N Py
N

0 S =4S = L=0
= J" is the Noether current associated to the symmetry 6. = 6" + 6°

L= —d{lé(é, (6" + 53)@)} = dj".
€
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The 5-D generalized Komar charge: Step 1

Given a (d — 1)-form current J which is conserved when evaluated over a solution of the
theory with a spacetime symmetry generated by the vector p (i.e. 0, annihilates all the
fields of the solution and, therefore, the current), it is always possible to derive from it a
(d — 2)-form charge Q,, which is also conserved under the same assumptions.
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The 5-D generalized Komar charge: Step 1

Given a (d — 1)-form current J which is conserved when evaluated over a solution of the
theory with a spacetime symmetry generated by the vector p (i.e. 0, annihilates all the
fields of the solution and, therefore, the current), it is always possible to derive from it a
(d — 2)-form charge Q,, which is also conserved under the same assumptions.

In our case the Killing vector is [

[ 4-form: 0 = 5ijh =—d Q? }

Y
[ 3-form: Q;’ = Lijh + K[k }

26 /31



The 5-D generalized Komar charge: Step 2

Why do we expect Q;‘ to remove the scalar charge contribution?
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The 5-D generalized Komar charge: Step 2
Why do we expect Q;‘ to remove the scalar charge contribution?
5-D 4-D
[ 4-form J"

3-form J }

Y Y

—
[ 3-form th H 2-form Q }

Y

“vlea |

[R. Ballesteros, C. Gémez-Fayrén, T. Ortin, M. Zatti]
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The 5-D generalized Komar charge: Step 2

Linear combinations of conserved charges with constant coefficients are conserved
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Let’s define the following 1-parameter family of conserved Komar charges

28 /31



The 5-D generalized Komar charge: Step 2

Linear combinations of conserved charges with constant coefficients are conserved

4

Let’s define the following 1-parameter family of conserved Komar charges

« is an arbitrary coefficient to be determined using some physical criterion
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The 5-D generalized Komar charge: Step 3

The pullback of Ka[f] over hypersurfaces that include z is (up to a total derivative)

Kamb = 16:706‘05\]5) {_*E dlg + (1 — 2@) *E (dlnk/\lE) + (1 — oz)PElk:?’ *g Fgp — oz]sElFE}/\[]
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The 5-D generalized Komar charge: Step 3
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The 5-D generalized Komar charge: Step 3

The pullback of Kam over hypersurfaces that include z is (up to a total derivative)

Kﬂémb = 16:706‘05\]5) {_*E dlg + (1 - 2@) *E (dlnk/\lE) + (1 — Oé)PElkS *g Fg — Oé]sElFE}/\[]

The second term gives an unwanted additional contribution which is proportional to the
scalar charge of the KK scalar k, so choosing av = 1/2 we get

- 5 b
K1/2[l]b = 16:25\?) {_*E dlE + %PElki% *xE FE — %PEZFE} A h = K[l] A ﬁ

which, integrated over the compact direction gives the 4-D generalized Komar 2-form
charge.
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Conclusion and future directions

o We reviewed recent developments in KK theory of gravity
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e Generalization to coupling with matter: N =1, d =5 SUGRA
[GB, J. Luis V. Cerdeira, C. Gémez-Fayrén, P. Meessen and T. Ortin, in progress]
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Thank you so much for the attention!
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