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Regular black hole: Black hole without curvature singularities

®* Do black holes in this universe actually have a singularity?

Quantum way? Classical way?
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* How are regular black holes realized?
At this time, there are some possibilities;

® Einstein gravity + Nonlinear electromagnetism Lagrangian
@ (Fine-tuning is needed.) 1. Macda, J. High Energ. Phys. 2022, 108 (2022).
® Asymptotically safe gravity r puudaetar, phys. Rev. D 111, 126017 2025).

® QuaSi't0P0|OQica| graVity P. Bueno, et al. Physics Letters B 861, 139260 (2025).
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The allowed curvature order of Lovelock gravity n is restricted as

D -1
n< ———.
-2



Quasi-topological gravity
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Quasi-topological gravity

1 0%
Ep = P, ogo Ry — 5 Gabr-L + 2VeVIP,0a =0 (P“de = ) .

B 8Rabcd
V9P, g = 0 for arbitraly spacetime <= Lovelock gravity
\ 4 (Birkhoft)

V2P, a = 0 for spherically symmetric spacetime <= Quasi-topological gravity

Equations of motion become a second-derivative equation

nmax

No restrictions for the curvature order £ = R+ Z UnZn,
n=2

Black holes do not have curvature singularities if 7max —

Satisfying the Birkhoff theorem

AN N N RN

Defined only D > 5



Two-dimensional reduced action

In the general spherically symmetric spacetime ds® = ~v4 pdxdz® + r2d02,
the action of Birkhoff QT gravity can be reduced as

ha = 222002 [ 2oy a0,
Zra = Galip, X) — DpGa(p, X) + Galip, X)R — 2G4 x (0, X) [(Op)* = VaVpV V7],
fh(iﬁ) = %Xanw, Y= 1 ;QX, X = V.apVip,
) Ga(p, X) = P=2((D — Dh() — 20K (),
Gs(p, X) = 2¢ngg’<w>, |
Gilex) =-F—ute [

P This theory takes the Horndeski form!



Construction regular black holes

Putting a metric as ds* = —N2(t,7) f(t,r)dt* + f~ (¢, r)dr? + r2dO°.
If the spaceitm is a vacuum, Birkhoff QT gravity predicts

2M
N=N(@), f=[(r), )= 5=,
where, h(1)) = Z anh”, )= 1 T—2f

Lemma 1 A sufficient condition that spacetimes do not have curvature

singularities is Nmax = 00, @, > 0, and lim (an)l/” = C > 0.
n— oo

P (1)) has a radius of convergence vy = 1/C'.

P In the vicinity of » = 0, f behaves as f =2 1 — ¢gr?

Regular black holes behave like de Sitter spacetime!!



Example of regular black hole

n—1
If the coupling constants satisty «,, = , the corresponding function f(r) is
n

=17 (1o (2202

We refer to this as a Dymnikova-like regular black hole.

Proof.

n—1

h(%b)zza ¢n:_log(1—a¢)

n 84

n=1

f—l—wr2—1—7j(1—exp(—zi\f?))
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1. predicts regular black holes naturally,

2. is defined only for D > 5.

@& Our universe is effectively described as D = 4.
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v

To describe our universe with Birkhoff QT gravity,

We consider the brane world cosmology!



Brane world scenario

e Inspired by the Horava—Witten scenario in M-theory, the brane world picture treats our
universe as a 3+1-dimensional hypersurface embedded in a higher-dimensional bulk.

e This provides a geometric framework to unify gravity and gauge interactions.

e The Z; symmetry is imposed to ensure the brane acts as a physical boundary of the
bulk P. Hor"ava and E. Witten, Nucl. Phys. B460, 506 (1996); Nucl. Phys. B475, 94 (1996).

Consider a D-dimensional spherically symmetric spacetime
ds® = —f(r)dt* + f~1(r)dr® + r2dQ%D_2>,

and a spherically symmetric brane r = a(7), t = T'(71).
The induced metric of the brane is

ds® = —dr* + CLQ(T)dQ%D_2).

The brane behaves as the closed FLRW universe!!



Brane world cosmology on Einstein gravity
1. Einstein gravity (f =1-— 73)—]%3 - ?—j),

2. Sap = pusup + P(hap + uaup) — chag,

3. Zo symmetry,
v Israel junction condition (D = 5)

D. Ida, J. High Energy Phys. 2000, 014 (2000).
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The brane world picture reproduces the Friedmann equation.




Brane world cosmology on QT gravity
1. QT gravity,

2. Sap = puaup + P(hap +uaup) — chap,
3. Zs symmetry,

v Israel junction condition

D —9 \/f+d2 -2 2 > 1 —
/ th, (1-|-CL2 < ) :47TGN(p_|_O-) <h(¢) = Zan¢n7 Qp;: r2f>
n=1

a 0 a

1. Examining the modified Friedmann equation, taking an
example of the coupling constant

2. Deriving some universal properties.



Example - Dymnikova-like black hole

an—l

Taking coupling constants a,, = :

n
2 2M
ie., f(r)y=1-— T [1 — exp (— c_ aA)] leads to a modified Friedmann equation

L\ 2 N 2
a 1 1 1 2M o 5 a 1 1 47GNn(p+0)a
(a) +¥_E:_56Xp[_aD—l_O‘A]wS [\/() “2ta T -3 |

% It has an Einstein gravity limit.

% The brane behaves as de Sitter spacetime near a = 0 and depend only «.

2
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L\ 2 N 2
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% It has an Einstein gravity limit.

% The brane behaves as de Sitter spacetime near a = 0 and depend only «.
N 2
Qa 1 1 T — Tmin
<5> —I_?_EZO — a:\/acosh( Ta )

We have shown that this de Sitter inflation happens generally!!




Z,symmetry predicts the de Sitter inflation

In a brane world cosmology based on quasi-topological gravity,
Zo symmetry induces a de Sitter inflation in the vicinity of a = 0.
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[Proof]
Since h(1) has a radius of convergence 1y = 1/a, we obtain
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Z,symmetry predicts the de Sitter inflation

In a brane world cosmology based on quasi-topological gravity,
Zo symmetry induces a de Sitter inflation in the vicinity of a = 0.

D —9 \/f+d2 1 -2 2
/ dzh’( T Z>:47TGN(p+a).

a Jo a
[Proof]
Since h(1) has a radius of convergence 1y = 1/a, we obtain
1+ a? 1 1 - 1
z=0] — +2a < —, [z:\/eraQ} o 2f§—.
a o) a o)
S02 — f_|_&2
2 _ 2\ 2 i : .
pm (L _1-jy (1_1_fa P de Sitter inflation
a? Q a? a  a? a




Summary

(Birkhoff) Quasi-Topological gravity generally predicts
regular black holes. This theory is defined only by D > 5.

To describe our universe, we considered a brane world
cosmology.

In brane world cosmology based on QT-gravity,
Z, symmetry induces de Sitter inflation.

As future work, we wish to investigate whether this
brane world model describes the actual universe.



