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Introduction to regular black holes

Black holes generally have a singularity

Do black holes in this universe actually have a singularity?
Quantum way? Classical way?

Regular black hole: Black hole without curvature singularities

Singularity theorem with Einstein equations
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At this time, there are some possibilities;

l Einstein gravity + Nonlinear electromagnetism Lagrangian

(Fine-tuning is needed.)

l Asymptotically safe gravity

l Quasi-topological gravity
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Quasi-topological  gravity 
To define the Quasi-topological gravity, we first consider the general theory of
gravity constructed from the metric and the Riemann tensor;

S =
1

16πGN

∫
dDx

√

−gL (gab, Rabcd).

Equations of motion

Eab := PacdeRb
cde

−
1

2
gabL + 2∇

c
∇

dPacbd = 0

(

P abcd :=
∂L

∂Rabcd

)

.
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Origin of a higher derivative term
∇

d
Pacbd = 0 for arbitraly spacetime ⇐⇒ Lovelock gravity

The allowed curvature order of Lovelock gravity n is restricted as

n ≤
D − 1

2
.
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Quasi-topological  gravity 
Eab := PacdeRb

cde
−

1

2
gabL + 2∇

c
∇

dPacbd = 0

(

P abcd :=
∂L

∂Rabcd

)

.

ü Equations of motion become a second-derivative equation

ü No restrictions for the curvature order

ü Black holes do not have curvature singularities if

ü Satisfying the Birkhoff theorem

ü Defined only D ≥ 5

L = R+

nmax∑

n=2

anZn

∇
d
Pacbd = 0 for arbitraly spacetime ⇐⇒ Lovelock gravity

∇
d
Pacbd = 0 for spherically symmetric spacetime ⇐⇒ Quasi-topological gravity

(Birkhoff)

nmax → ∞



Two-dimensional reduced action
In the general spherically symmetric spacetime ds2 = γABdx

AdxB + r2dΩ2,
the action of Birkhoff QT gravity can be reduced as

I2d =
(D − 2)ΩD−2

16πG

∫

d2x
√
−γL2d(γAB ,ϕ),

L2d = G2(ϕ, X)−!ϕG3(ϕ, X) +G4(ϕ, X)R− 2G4,X(ϕ, X)
[

(!ϕ)2 −∇A∇Bϕ∇A∇Bϕ
]

,






































h(ψ) :=
nmax
∑

n=1

αnψ
n, ψ :=

1−X

ϕ2
, X := ∇Aϕ∇Aϕ,

G2(ϕ, X) = ϕD−2((D − 1)h(ψ)− 2ψh′(ψ)),

G3(ϕ, X) = 2ϕD−3h′(ψ),

G4(ϕ, X) = −
ϕD−2

2
ψ

D−2

2

∫

dψ
h′(ψ)

ψ
D

2

.

This theory takes the Horndeski form!



Construction regular black holes 
Putting a metric as ds2 = −N2(t, r)f(t, r)dt2 + f−1(t, r)dr2 + r2dΩ2.
If the spaceitm is a vacuum, Birkhoff QT gravity predicts

N = N(t), f = f(r), h(ψ) =
2M

rD−1
,

where,
h(ψ) :=

nmax∑

n=1

αnψ
n, ψ :=

1− f

r2
.

Lemma 1 A sufficient condition that spacetimes do not have curvature
singularities is nmax = ∞, αn ≥ 0, and lim

n→∞

(αn)
1/n = C > 0.

h(ψ) has a radius of convergence ψ0 = 1/C.

In the vicinity of r = 0, f behaves as f ∼= 1− ψ0r
2

Regular black holes behave like de Sitter spacetime!!



Example of regular black hole 
If the coupling constants satisfy αn =

an−1

n
, the corresponding function f(r) is

f(r) = 1−
r2

α

(

1− exp

(

−

2Mα

rD−1

))

.

We refer to this as a Dymnikova-like regular black hole.
Proof.

h(ψ) =
∞
∑

n=1

αn−1

n
ψn = −

log (1− αψ)

α

f = 1− ψr2 = 1−
r2

α

(

1− exp

(

−

2Mα

rD−1

))



Motivation  of my research

D ≥ 5.

Our universe is effectively described as D = 4.

(Birkhoff) QT gravity

1. predicts regular black holes naturally,

2. is defined only for



(Birkhoff) QT gravity

1. predicts regular black holes naturally,
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Motivation  of my research

D ≥ 5.

Our universe is effectively described as D = 4.

To describe our universe with Birkhoff QT gravity,

We consider the brane world cosmology!



Brane world scenario

Consider a D-dimensional spherically symmetric spacetime

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
(D−2),

and a spherically symmetric brane r = a(τ), t = T (τ).
The induced metric of the brane is

ds2 = −dτ2 + a2(τ)dΩ2
(D−2).

The brane behaves as the closed FLRW universe!!

• Inspired by the Hořava–Witten scenario in M-theory, the brane world picture treats our
universe as a 3+1-dimensional hypersurface embedded in a higher-dimensional bulk.

• This provides a geometric framework to unify gravity and gauge interactions.

• The Z2 symmetry is imposed to ensure the brane acts as a physical boundary of the
bulk. P. Horˇava and E. Witten, Nucl. Phys. B460, 506 (1996); Nucl. Phys. B475, 94 (1996).



Brane world cosmology on Einstein gravity

Cosmological constant

(

ȧ

a

)2

= −

1

a2
+

32π2G2
N
σ

9
ρ+

(

−

1

l2
+

16π2G2
N

9
σ2

)

+
16π2G2

N

9
ρ2 +

2M

a4

Matter Modified matter

Dark radiation

The brane world picture reproduces the Friedmann equation.

1. Einstein gravity
(

f = 1− 2M

rD−3 + r
2

l2

)

,

2. SAB = ρuAuB + P (hAB + uAuB)− σhAB ,

3. Z2 symmetry,

Israel junction condition (D = 5)
D. Ida, J. High Energy Phys. 2000, 014 (2000).



Brane world cosmology on QT gravity

D − 2

a

∫

√

f+ȧ2

0

dzh′

(

1 + ȧ2 − z2

a2

)

= 4πGN (ρ+ σ).

)

h(ψ) :=
∞
∑

n=1

αnψ
n, ψ :=

1− f

r2

)

1. Examining the modified Friedmann equation, taking an 
example of the coupling constant

2. Deriving some universal properties.

1. QT gravity,

2. SAB = ρuAuB + P (hAB + uAuB)− σhAB ,

3. Z2 symmetry,

Israel junction condition



Example - Dymnikova-like black hole 
Taking coupling constants αn =

an−1

n
,

i.e., f(r) = 1−
r2

α

[

1− exp

(

−

2Mα

rD−1
− αΛ

)]

leads to a modified Friedmann equation

(

ȧ

a

)2

+
1

a2
−

1

α
= −

1

α
exp

[

−

2Mα

aD−1
− αΛ

]

cos2





√

−

(

ȧ

a

)2

−

1

a2
+

1

α
·

4πGN (ρ+ σ)α

D − 2



.

! It has an Einstein gravity limit.

! The brane behaves as de Sitter spacetime near a = 0 and depend only α.
(

ȧ

a

)2

+
1

a
2
−

1

α

= 0 → a =
√
α cosh

(

τ − τmin
√
α

)
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ȧ

a

)2

+
1

a2
−

1

α
= −

1

α
exp

[

−

2Mα

aD−1
− αΛ

]

cos2





√

−

(

ȧ
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We have shown that this de Sitter inflation happens generally!!



𝒁𝟐symmetry predicts the de Sitter inflation 
In a brane world cosmology based on quasi-topological gravity,
Z2 symmetry induces a de Sitter inflation in the vicinity of a = 0.

D − 2

a

∫

√

f+ȧ2

0

dzh′

(

1 + ȧ2 − z2

a2

)

= 4πGN (ρ+ σ).

[Proof]
Since h(ψ) has a radius of convergence ψ0 = 1/α, we obtain

[z = 0] →
1 + ȧ2

a2
≤

1

α
,

[

z =
√

f + ȧ2
]

→
1− f

a2
≤

1

α
.

ϕ2 := f + ȧ2

ϕ2

a2
=

[

1

α
−

1− f

a2

[

−

]

1

α
−

1

a2
−

(

ȧ

a

)2
]



𝒁𝟐symmetry predicts the de Sitter inflation 
In a brane world cosmology based on quasi-topological gravity,
Z2 symmetry induces a de Sitter inflation in the vicinity of a = 0.

D − 2

a

∫

√

f+ȧ2
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de Sitter inflation



ü (Birkhoff) Quasi-Topological gravity generally predicts 
regular black holes. This theory is defined only by 𝑫 ≥ 𝟓.

ü To describe our universe, we considered a brane world 
cosmology.

ü In brane world cosmology based on QT-gravity, 
ℤ𝟐 symmetry induces de Sitter inflation. 

ü As future work, we wish to investigate whether this 
brane world model describes the actual universe.

Summary


