Brane world cosmology and inflation based on a regular black hole predicted from pure gravity theory

Osaka Metropolitan University
Kensuke Sueto
Nagoya University
Riku Yoshimoto

Singularity theorem with Einstein equations

Black holes generally have a singularity

Singularity theorem with Einstein equations

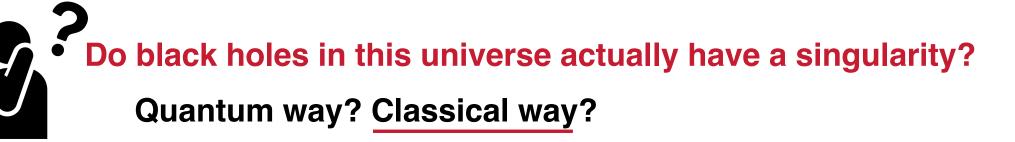
Black holes generally have a singularity

Do black holes in this universe actually have a singularity?

Quantum way? Classical way?

Singularity theorem with Einstein equations

Black holes generally have a singularity



Singularity theorem with Einstein equations

Black holes generally have a singularity

Do black holes in this universe actually have a singularity?

Quantum way? Classical way?

Regular black hole: Black hole without curvature singularities

How are regular black holes realized?

How are regular black holes realized?

At this time, there are some possibilities;

- Einstein gravity + Nonlinear electromagnetism Lagrangian
 - (Fine-tuning is needed.) H. Maeda, J. High Energ. Phys. 2022, 108 (2022).
- Asymptotically safe gravity T. Harada et al, Phys. Rev. D 111, 126017 (2025).
- Quasi-topological gravity
 P. Bueno, et al. Physics Letters B 861, 139260 (2025).

How are regular black holes realized?

How are regular black holes realized?

At this time, there are some possibilities;

- Einstein gravity + Nonlinear electromagnetism Lagrangian
 - (Fine-tuning is needed.) H. Maeda, J. High Energ. Phys. 2022, 108 (2022).
- Asymptotically safe gravity T. Harada et al, Phys. Rev. D 111, 126017 (2025).
- Quasi-topological gravity
 P. Bueno, et al. Physics Letters B 861, 139260 (2025).

Quasi-topological gravity P. Bueno, P. A. Cano, and R. A. Hennigar Physics Letters B 861, 139260 P. Bueno, P. A. Cano, R. A. Hennigar, and Á. J. Murcia, Phys. Rev. D 111, 104009

To define the Quasi-topological gravity, we first consider the general theory of gravity constructed from the metric and the Riemann tensor;

$$S = \frac{1}{16\pi G_N} \int d^D x \sqrt{-g} \mathcal{L}(g^{ab}, R_{abcd}).$$

Equations of motion
$$\mathcal{E}_{ab} \coloneqq P_{acde} R_b{}^{cde} - \frac{1}{2} g_{ab} \mathcal{L} + 2 \nabla^c \nabla^d P_{acbd} = 0 \quad \left(P^{abcd} \coloneqq \frac{\partial \mathcal{L}}{\partial R_{abcd}} \right).$$

Quasi-topological gravity P. Bueno, P. A. Cano, and R. A. Hennigar Physics Letters B 861, 139260 P. Bueno, P. A. Cano, R. A. Hennigar, and Á. J. Murcia, Phys. Rev. D 111, 104009

To define the Quasi-topological gravity, we first consider the general theory of gravity constructed from the metric and the Riemann tensor;

$$S = \frac{1}{16\pi G_N} \int d^D x \sqrt{-g} \mathcal{L}(g^{ab}, R_{abcd}).$$

Equations of motion

$$\mathcal{E}_{ab} := P_{acde} R_b{}^{cde} - \frac{1}{2} g_{ab} \mathcal{L} + 2 \nabla^c \nabla^d P_{acbd} = 0 \quad \left(P^{abcd} := \frac{\partial \mathcal{L}}{\partial R_{abcd}} \right).$$

Origin of a higher derivative term

 $\nabla^d P_{acbd} = 0$ for arbitraly spacetime \iff Lovelock gravity

Quasi-topological gravity P. Bueno, P. A. Cano, and R. A. Hennigar Physics Letters B 861, 139260 P. Bueno, P. A. Cano, R. A. Hennigar, and Á. J. Murcia, Phys. Rev. D 111, 104009

To define the Quasi-topological gravity, we first consider the general theory of gravity constructed from the metric and the Riemann tensor;

$$S = \frac{1}{16\pi G_N} \int d^D x \sqrt{-g} \mathcal{L}(g^{ab}, R_{abcd}).$$

V Equations of motion

$$\mathcal{E}_{ab} := P_{acde} R_b{}^{cde} - \frac{1}{2} g_{ab} \mathcal{L} + \underline{2} \nabla^c \nabla^d P_{acbd} = 0 \quad \left(P^{abcd} := \frac{\partial \mathcal{L}}{\partial R_{abcd}} \right).$$

Origin of a higher derivative term

 $\nabla^d P_{acbd} = 0$ for arbitraly spacetime \iff Lovelock gravity

The allowed curvature order of Lovelock gravity n is restricted as

$$n \le \frac{D-1}{2}.$$

Quasi-topological gravity

$$\mathcal{E}_{ab} := P_{acde} R_b{}^{cde} - \frac{1}{2} g_{ab} \mathcal{L} + \underline{2\nabla^c \nabla^d P_{acbd}} = 0 \quad \left(P^{abcd} := \frac{\partial \mathcal{L}}{\partial R_{abcd}} \right).$$

$$\nabla^d P_{acbd} = 0$$
 for arbitraly spacetime

Quasi-topological gravity

$$\mathcal{E}_{ab} := P_{acde} R_b{}^{cde} - \frac{1}{2} g_{ab} \mathcal{L} + \underline{2 \nabla^c \nabla^d P_{acbd}} = 0 \quad \left(P^{abcd} := \frac{\partial \mathcal{L}}{\partial R_{abcd}} \right).$$

$$\nabla^d P_{acbd} = 0$$
 for arbitraly spacetime \iff Lovelock gravity

$$\iff$$
 Lovelock gravity

(Birkhoff)

 $\nabla^d P_{acbd} = 0$ for spherically symmetric spacetime \iff Quasi-topological gravity

- Equations of motion become a second-derivative equation
- No restrictions for the curvature order $\mathscr{L}=R+\sum a_n\mathcal{Z}_n$
- Black holes do not have curvature singularities if $n_{\rm max} \to \infty$
- Satisfying the Birkhoff theorem
- **Defined only** D > 5

Two-dimensional reduced action

In the general spherically symmetric spacetime $ds^2 = \gamma_{AB} dx^A dx^B + r^2 d\Omega^2$, the action of Birkhoff QT gravity can be reduced as

$$\begin{split} I_{2d} &= \frac{(D-2)\Omega_{D-2}}{16\pi G} \int d^2x \sqrt{-\gamma} \mathcal{L}_{2d}(\gamma_{AB},\varphi), \\ \mathcal{L}_{2d} &= G_2(\varphi,X) - \Box \varphi G_3(\varphi,X) + G_4(\varphi,X)R - 2G_{4,X}(\varphi,X) \left[(\Box \varphi)^2 - \nabla_A \nabla_B \varphi \nabla^A \nabla^B \varphi \right], \\ \begin{cases} h(\psi) &:= \sum_{n=1}^{n_{\text{max}}} \alpha_n \psi^n, \ \psi \coloneqq \frac{1-X}{\varphi^2}, \ X \coloneqq \nabla_A \varphi \nabla^A \varphi, \\ G_2(\varphi,X) &= \varphi^{D-2}((D-1)h(\psi) - 2\psi h'(\psi)), \\ G_3(\varphi,X) &= 2\varphi^{D-3}h'(\psi), \\ G_4(\varphi,X) &= -\frac{\varphi^{D-2}}{2}\psi^{\frac{D-2}{2}} \int d\psi \frac{h'(\psi)}{\psi^{\frac{D}{2}}}. \end{split}$$

This theory takes the Horndeski form!

Construction regular black holes

Putting a metric as $ds^2 = -N^2(t,r)f(t,r)dt^2 + f^{-1}(t,r)dr^2 + r^2d\Omega^2$. If the spaceitm is a vacuum, Birkhoff QT gravity predicts

$$N = N(t), \ f = f(r), \ h(\psi) = \frac{2M}{r^{D-1}},$$

where,

$$h(\psi) \coloneqq \sum_{n=1}^{n_{\text{max}}} \alpha_n \psi^n, \quad \psi \coloneqq \frac{1-f}{r^2}.$$

Lemma 1 A sufficient condition that spacetimes do not have curvature singularities is $n_{\text{max}} = \infty$, $\alpha_n \ge 0$, and $\lim_{n \to \infty} (\alpha_n)^{1/n} = C > 0$.

- $h(\psi)$ has a radius of convergence $\psi_0 = 1/C$.
- In the vicinity of r = 0, f behaves as $f \cong 1 \psi_0 r^2$

Regular black holes behave like de Sitter spacetime!!

Example of regular black hole

If the coupling constants satisfy $\alpha_n = \frac{a^{n-1}}{n}$, the corresponding function f(r) is

$$f(r) = 1 - \frac{r^2}{\alpha} \left(1 - \exp\left(-\frac{2M\alpha}{r^{D-1}}\right) \right).$$

We refer to this as a Dymnikova-like regular black hole. *Proof.*

$$h(\psi) = \sum_{n=1}^{\infty} \frac{\alpha^{n-1}}{n} \psi^n = -\frac{\log(1 - \alpha\psi)}{\alpha}$$
$$f = 1 - \psi r^2 = 1 - \frac{r^2}{\alpha} \left(1 - \exp\left(-\frac{2M\alpha}{r^{D-1}}\right) \right)$$

Motivation of my research

(Birkhoff) QT gravity

- 1. predicts regular black holes naturally,
- 2. is defined only for $D \geq 5$.
- **Our universe is effectively described as** D=4.

Motivation of my research

(Birkhoff) QT gravity

- 1. predicts regular black holes naturally,
- 2. is defined only for $D \geq 5$.
- **©** Our universe is effectively described as D=4.

To describe our universe with Birkhoff QT gravity,

We consider the brane world cosmology!

Brane world scenario

- Inspired by the Hořava–Witten scenario in M-theory, the brane world picture treats our universe as a 3+1-dimensional hypersurface embedded in a higher-dimensional bulk.
- This provides a geometric framework to unify gravity and gauge interactions.
- The Z_2 symmetry is imposed to ensure the brane acts as a physical boundary of the bulk.

 P. Hor ava and E. Witten, Nucl. Phys. B460, 506 (1996); Nucl. Phys. B475, 94 (1996).

Consider a D-dimensional spherically symmetric spacetime

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega_{(D-2)}^{2},$$

and a spherically symmetric brane $r = a(\tau)$, $t = T(\tau)$. The induced metric of the brane is

$$ds^{2} = -d\tau^{2} + a^{2}(\tau)d\Omega_{(D-2)}^{2}.$$

The brane behaves as the closed FLRW universe!!

Brane world cosmology on Einstein gravity

1. Einstein gravity
$$\left(f = 1 - \frac{2M}{r^{D-3}} + \frac{r^2}{l^2}\right)$$
,

2.
$$S_{AB} = \rho u_A u_B + P(h_{AB} + u_A u_B) - \sigma h_{AB}$$

3. \mathbb{Z}_2 symmetry,

The brane world picture reproduces the Friedmann equation.

Brane world cosmology on QT gravity

- 1. QT gravity,
- 2. $S_{AB} = \rho u_A u_B + P(h_{AB} + u_A u_B) \sigma h_{AB}$
- 3. \mathbb{Z}_2 symmetry,

Israel junction condition

$$\frac{D-2}{a} \int_0^{\sqrt{f+\dot{a}^2}} dz h' \left(\frac{1+\dot{a}^2-z^2}{a^2}\right) = 4\pi G_N(\rho+\sigma). \left(h(\psi) \coloneqq \sum_{n=1}^{\infty} \alpha_n \psi^n, \ \psi \coloneqq \frac{1-f}{r^2}\right)$$

- 1. Examining the modified Friedmann equation, taking an example of the coupling constant
- 2. Deriving some universal properties.

Example - Dymnikova-like black hole

Taking coupling constants $\alpha_n = \frac{a^{n-1}}{n}$,

i.e.,
$$f(r) = 1 - \frac{r^2}{\alpha} \left[1 - \exp\left(-\frac{2M\alpha}{r^{D-1}} - \alpha\Lambda\right) \right]$$
 leads to a modified Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} - \frac{1}{\alpha} = -\frac{1}{\alpha} \exp\left[-\frac{2M\alpha}{a^{D-1}} - \alpha\Lambda\right] \cos^2\left[\sqrt{-\left(\frac{\dot{a}}{a}\right)^2 - \frac{1}{a^2} + \frac{1}{\alpha}} \cdot \frac{4\pi G_N(\rho + \sigma)\alpha}{D - 2}\right].$$

- ★ It has an Einstein gravity limit.
- \bigstar The brane behaves as de Sitter spacetime near a=0 and depend only α .

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} - \frac{1}{\alpha} = 0 \quad \to \quad a = \sqrt{\alpha} \cosh\left(\frac{\tau - \tau_{min}}{\sqrt{\alpha}}\right)$$

Example - Dymnikova-like black hole

Taking coupling constants $\alpha_n = \frac{a^{n-1}}{n}$,

i.e.,
$$f(r) = 1 - \frac{r^2}{\alpha} \left[1 - \exp\left(-\frac{2M\alpha}{r^{D-1}} - \alpha\Lambda\right) \right]$$
 leads to a modified Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} - \frac{1}{\alpha} = -\frac{1}{\alpha} \exp\left[-\frac{2M\alpha}{a^{D-1}} - \alpha\Lambda\right] \cos^2\left[\sqrt{-\left(\frac{\dot{a}}{a}\right)^2 - \frac{1}{a^2} + \frac{1}{\alpha}} \cdot \frac{4\pi G_N(\rho + \sigma)\alpha}{D - 2}\right].$$

- ★ It has an Einstein gravity limit.
- \bigstar The brane behaves as de Sitter spacetime near a=0 and depend only α .

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{1}{a^2} - \frac{1}{\alpha} = 0 \quad \to \quad a = \sqrt{\alpha} \cosh\left(\frac{\tau - \tau_{min}}{\sqrt{\alpha}}\right)$$

We have shown that this de Sitter inflation happens generally!!

Z_2 symmetry predicts the de Sitter inflation

In a brane world cosmology based on quasi-topological gravity, Z_2 symmetry induces a de Sitter inflation in the vicinity of a = 0.

$$\frac{D-2}{a} \int_0^{\sqrt{f+\dot{a}^2}} dz h' \left(\frac{1+\dot{a}^2-z^2}{a^2} \right) = 4\pi G_N(\rho+\sigma).$$

[Proof]

Since $h(\psi)$ has a radius of convergence $\psi_0 = 1/\alpha$, we obtain

$$\begin{aligned} [z = 0] &\rightarrow \frac{1 + \dot{a}^2}{a^2} \le \frac{1}{\alpha}, \quad \left[z = \sqrt{f + \dot{a}^2} \right] &\rightarrow \frac{1 - f}{a^2} \le \frac{1}{\alpha}. \\ \varphi^2 &\coloneqq f + \dot{a}^2 \\ \frac{\varphi^2}{a^2} &= \left[\frac{1}{\alpha} - \frac{1 - f}{a^2} \right] - \left[\frac{1}{\alpha} - \frac{1}{a^2} - \left(\frac{\dot{a}}{a} \right)^2 \right] \end{aligned}$$

Z_2 symmetry predicts the de Sitter inflation

In a brane world cosmology based on quasi-topological gravity, Z_2 symmetry induces a de Sitter inflation in the vicinity of a = 0.

$$\frac{D-2}{a} \int_0^{\sqrt{f+\dot{a}^2}} dz h' \left(\frac{1+\dot{a}^2-z^2}{a^2} \right) = 4\pi G_N(\rho+\sigma).$$

[Proof]

Since $h(\psi)$ has a radius of convergence $\psi_0 = 1/\alpha$, we obtain

$$[z=0] \rightarrow \frac{1+\dot{a}^2}{a^2} \le \frac{1}{\alpha}, \quad \left[z=\sqrt{f+\dot{a}^2}\right] \rightarrow \frac{1-f}{a^2} \le \frac{1}{\alpha}.$$

$$\varphi^2 := f+\dot{a}^2$$

$$\frac{\varphi^2}{a^2} = \left[\frac{1}{\alpha} - \frac{1-f}{a^2}\right] - \left[\frac{1}{\alpha} - \frac{1}{a^2} - \left(\frac{\dot{a}}{a}\right)^2\right]$$

$$\rightarrow +0$$

Z_2 symmetry predicts the de Sitter inflation

In a brane world cosmology based on quasi-topological gravity, Z_2 symmetry induces a de Sitter inflation in the vicinity of a = 0.

$$\frac{D-2}{a} \int_0^{\sqrt{f+\dot{a}^2}} dz h' \left(\frac{1+\dot{a}^2-z^2}{a^2} \right) = 4\pi G_N(\rho+\sigma).$$

[Proof]

Since $h(\psi)$ has a radius of convergence $\psi_0 = 1/\alpha$, we obtain

$$\begin{split} [z=0] &\rightarrow \frac{1+\dot{a}^2}{a^2} \leq \frac{1}{\alpha}, \quad \left[z=\sqrt{f+\dot{a}^2}\right] \rightarrow \frac{1-f}{a^2} \leq \frac{1}{\alpha}. \\ \varphi^2 &\coloneqq f+\dot{a}^2 \\ \frac{\varphi^2}{a^2} = \left[\frac{1}{\alpha} - \frac{1-f}{a^2}\right] - \left[\frac{1}{\alpha} - \frac{1}{a^2} - \left(\frac{\dot{a}}{a}\right)^2\right] \blacktriangleright \text{ de Sitter inflation} \\ &\rightarrow +0 \qquad \rightarrow +0 \end{split}$$

Summary

- ✓ (Birkhoff) Quasi-Topological gravity generally predicts regular black holes. This theory is defined only by $D \ge 5$.
- ✓ To describe our universe, we considered a brane world cosmology.
- In brane world cosmology based on QT-gravity, \mathbb{Z}_2 symmetry induces de Sitter inflation.
- ✓ As future work, we wish to investigate whether this brane world model describes the actual universe.