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Introduction

e Artificial intelligence (AI) is the simulation of human intelligence in
machines.

e At the forefront of recent advances in Al is Machine Learning (ML), with
the goal of developing algorithms capable of learning from and adapt to
new data, without human assistance.

e The past decade has witnessed the rise of ML impacting countless areas.
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Introduction

e The most astonishing advances in ML are based on Neural Networks
(NN), powered by Deep Learning (DL) algorithms.
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Introduction

e The scientific community has increasingly become interested in its
potential for fundamental research in diverse areas of knowledge.

e In particular, ML have become powerful tools for addressing several
problems in physics, such as particle physics, gravitational waves, dark
matter, as well as theoretical high-energy physics and mathematical physics.

e ML-based models make connections that have shown, with real-life
examples, to be highly counterintuitive, as well as unveiling patterns that
can go unnoticed by human intuition. The question is: Could it notice
something we have overlooked?

e An uncharted territory to be explored by ML techniques lies at the very
foundations of fundamental interactions. Among them, the least
understood is the gravitational interaction. Despite its impressive success,
General Relativity fails at the microscopic level.



Introduction

e The main goal is to delve into fundamental questions concerning our
Universe in the context of gravitational theories, by training a machine to
learn how massive objects interact.

e The approach relies in Physics-informed Deep Learning
architectures which will be used to encode physically meaningful features
that could potentially help to delve into some relevant questions regarding
gravity.

e If achieved, this could contribute with a new way of approaching
fundamental problems in physics. This is what makes the research line
ambitious and potentially ground-breaking.



Physics-Informed Neural Networks (PINNs)

e In a nutshell, PINNs are DNN trained to solve (un)supervised learning
tasks while respecting any symmetries, invariances, or conservation
principles that can be modeled by general time-dependent and nonlinear
partial differential equations.

Iteration

e The differential equations are not solved in the usual way by time
evolution; instead, the neural network provides a solution across the entire
domain at once.



Applications of PINNs

e PINNs algorithm has
been extensively used in
the last 6 years in many
different physics problems.

e The original article has
18329 citations [M. Raissi,
P. Perdikaris, G.E. Karni-
adakis (2019)].

e There are very few exam-
ples of its applications to
gravity.
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Applications of PINNs

e It is then part of this work to deepen into the scope of physics-informed
Neural, looking for a more efficient and scalable way of simulating
dynamical systems in General Relativity.

e The expected advantage of the method is that PINNs trained with a
simpler data set, will allow to encode a more complex dynamical evolution.
For instance, in the case of binary black hole coalescence, the PINNs can be
trained (or ”informed”) by the data from numerical methods, effective
one-body (EOB) or from Post-Newtonian (PN) approximations, so that the
entire evolution, including merger, can be ultimately obtained from the
PINNS.

e First we need to control some of the state-of-the-art approaches.



Numerical Relativity in a Nutshell

e 341 Decomposition: Split spacetime into spatial
hypersurfaces evolving in time (ADM / BSSN).

e Gauge Choices: Choose lapse function and shift
vector to control coordinate evolution.

e Initial Data: Solve constraint equations to obtain
consistent starting conditions.

e Numerical Methods:

Grid-based: Discretize spacetime on a mesh;
robust for binaries.

Spectral: Represent fields as global basis
expansions; high precision for smooth fields.

e Stability and Boundaries: Proper outer
boundary conditions.

e Diagnostics: Extract gravitational waves,
apparent horizons, and conserved quantities.




Gravity in its Hamiltonian form for numerical relativity

e Arnowitt—Deser—Misner (ADM) decomposition: For globally hyperbolic
spacetimes (M, g): M =R x %. They can be foliated M = |J, .5 2

‘ _ (—a2 + BiB* &-)
I Bi Yig

z

t+dt 1 51

z, g = s a?
B8 ij _ BB
o2 0 )

Where n = —aVt = é(l, —f%) is the unit vector to the hypersurface.

e ADM leads to Baumgarte, Shapiro, Shibata, Nakamura (BSSN)
formalism by introducing conformally related variables
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where ¢ the conformal factor satisfying det(%;;) = 1.



BSSN equations
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e Since every step involves differential equations, PINNs offer a natural
alternative to numerical relativity.

e Despite the impressive advances in waveforms generation through PN,
EOB and NR, challenges such as mismatches and accuracy problems are
still present. These issues could become critical as the next generations of
GW detectors achieve unprecedented precision. It is this context that
exploring alternative approaches will become essential and therefore, worth
to be developed.

e The most natural problem to address is the relativistic 2-body dynamics.

e We begin by simplifying the problem for exploratory purposes,
considering the post-Newtonian approximation to general relativity.



Post-Newtonian expansion

e In General Relativity, the exact equations of motion are too complex to
solve for most systems.

e For systems where the gravitational field is weak and velocities are small
compared to the speed of light (v < ¢), an expansion around the
Newtonian limit provides excellent approximations.

e Expand in powers of (v/c) such that gy, = Nuw + huw for hy, = (9(2—2) .

PN Order | Approximation Meaning Typical Terms / Effects
M
0PN Newtonian Classical gravity P = _GM
r
1PN (v/c)? corrections  Special relativistic and curved-space effects | Mercury’s perihelion precession, gravita-

tional time dilation

1.5PN

/o)

Gravitational radiation reaction appears

Energy loss due to gravitational waves

2PN-3PN

Higher orders

Precise corrections for compact binaries

Accurate waveform models for inspiraling
black holes and neutron stars




Post-Newtonian expansion

e For instance, the eom up to 2PN is (center-of-mass frame)
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e Applications:
— Binary pulsar dynamics and gravitational-wave templates.
— Modeling of coalescing black holes and neutron stars.

e Conservative dynamics; radiation reaction enters at 1.5PN.

e The approach starts to fail at 5PN for the merger phase, so the use of NR
becomes necessary.



Gravity-informed Neural Networks

e As a warm up, we can train the neural network to provide Mercury’s
orbit.

© Moun = 1,9 X 10°°, Myercury = 3,2 x 10?3, a= 0.387, e=0.21.

e 1PN correction (perihelion precession) needs over 1000 orbits to become
obvious in the simulation.
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Gravity-informed Neural Networks

Orbit (Epoch 199999)

r vs theta (zoom)
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e To have into consideration: weighted loss functions, architecture of the

NN, initial conditions, ...




Gravity-informed Neural Networks

e What happens if we consider a vanilla NN?

—— Exact Solution
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Gravity-informed Neural Networks

e Considering the same setup, we can artificially magnify the relativistic
1PN effects by decreasing the value of the speed of light.
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Gravity-informed Neural Networks

Orbit (Epoch 999999)

r vs theta (zoom)
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to the full Einstein equations.



PN expansion and PINNs: Symplectic Hamiltonian

e Symplectic Hamiltonian Neural Networks (SHNN) enforce the
Hamiltonian structure H(q,p), ensuring long-term stability and physical
consistency.

e Compute dynamics via the symplectic form:

_om . om
q = op’ b= aq
e So that, the loss function is given by
L= y — 8£ ’ + ; + aiH ’
=95 Pt g

e Advantages: Preserves symplectic structure and energy over long
trajectories, provides physically consistent extrapolation, ideal for learning
conservative dynamical systems.

e Fasily generalized via Hamiltonian corrections; compatible with EOB
implementation.



Symplectic Hamiltonian: Results
e The setup is more interesting: binary system with m= 1.4 Mg, each, d=
120 Km.

e Better control on the initial conditions, conservation of energy and
angular momentum in the loss functions (closer to NR).

Orbits comparison at iter 2000 (current model) Orbits comparison at iter 54000 (current model)
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Symplectic Hamiltonian: Results

y (km)
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e To have into consideration: weighted loss functions, architecture of the
NN, initial conditions, ...




Sympectic Hamiltonian: Transfer Learning

e To facilitate training on the full Einstein equations, we propose an
incremental approach: pretrain the network on simplified data and refine it
through Transfer Learning.

e Motivation:
— Solving PDEs from scratch is costly.

— Many PDEs share similar structures (e.g., parameters, domains,
boundary conditions).

— Use a previously trained PINN as a starting point.

e Procedure:

— Train a PINNs on a source problem by minimizing E}(fg_trained.

— Then transfer this knowledge by minimizing (1 — NT)Eéj}:;sics + Egga,

where N1 goes from 0 to 1 in a controlled way.

e Benefit: Faster convergence and better generalization to new but related
physics.



Sympectic Hamiltonian: Transfer Learning results

y (km)

e Binary Black Hole system.

Orbits comparison at iter 2000 (current model) Orbits comparison at iter 8000 (current model)
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Sympectic Hamiltonian: Transfer Learning results
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e 17 minutes vs 2 hours.

e To emulate progressively richer gravitational physics, we initially freeze
selected biases and weights and then selectively unfreeze them as
higher-order interactions are introduced.



Further directions

e Full Einstein’s equations.

e Realistic astrophysical scenarios involve the gravitational interaction with
matter. Notably, PINNs have already been successfully applied to problems
in fluid dynamics.

e Many body problem for structure formation. There are interesting
examples.

e Alternative approach: Hamiltonian NN.



