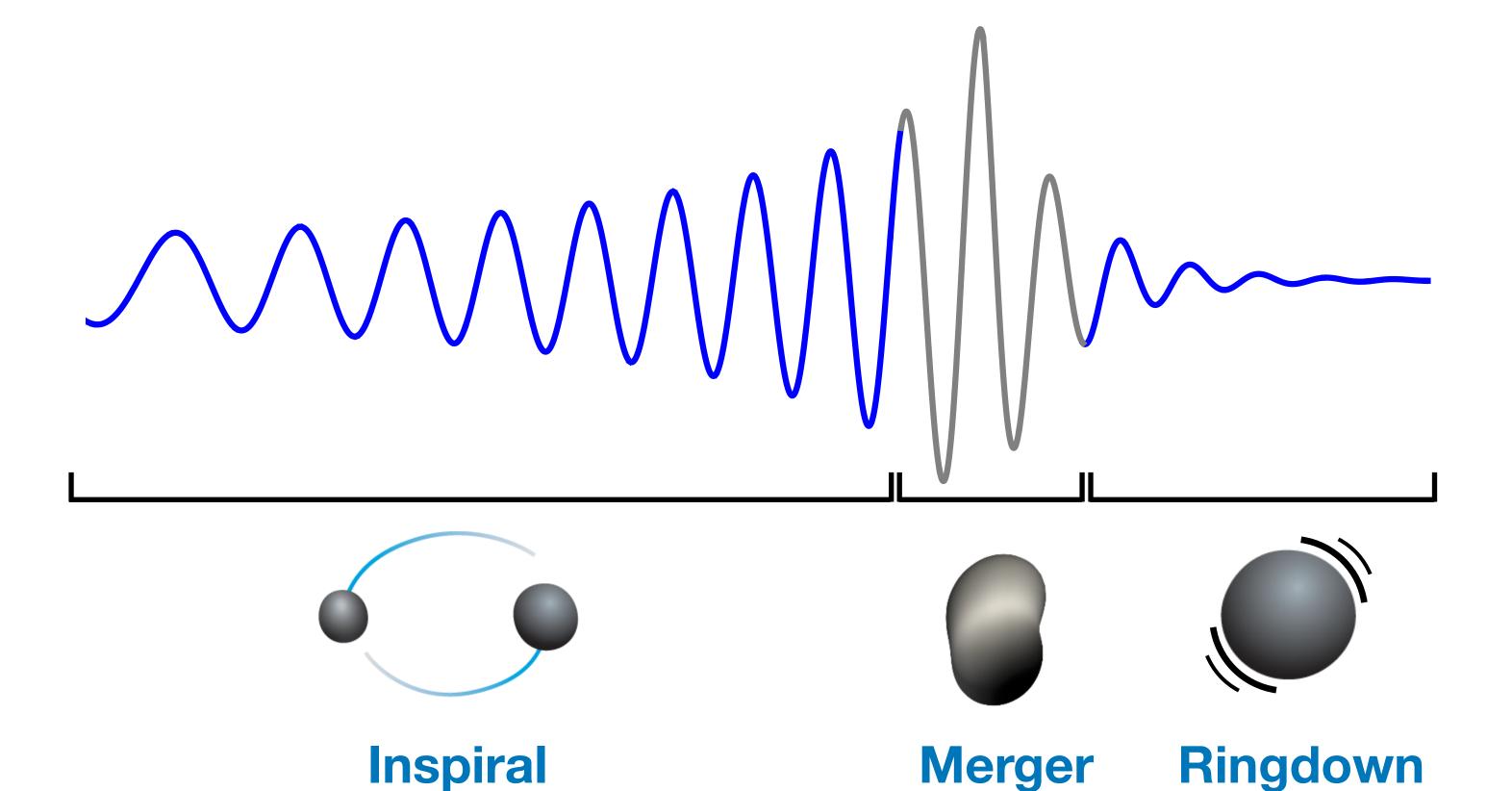
Amplification of new physics in the QNM spectrum of highly-rotating black holes

Pablo A. Cano University of Murcia

Based on PRL 134 (2025) 19, 191401 w/ Marina David 2509.08664, 2510.17962 w/ M. David and Guido Van der Velde

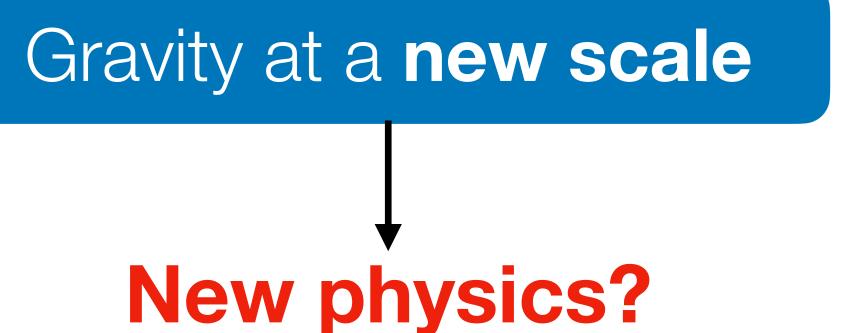
GRASS-SYMBHOL Meeting Toledo, November 13 2025

Testing GR with black hole binaries



Einstein field equations

$$R_{\mu\nu}=0$$
?



GR as an Effective Field Theory

Agnostic and universal approach to include new physics

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left[R + \ell^4 \mathcal{R}^3 + \ell^6 \mathcal{R}^4 + \ldots \right]$$
Einstein
Beyond Einstein
$$\ell : \text{scale of new physics}$$

- Extreme gravity = new window to observe beyond-GR effects
- Potential for discovery

Ringdown as a test of new physics

$$\omega = \omega_R + i\omega_I, \qquad \omega_I = -\frac{1}{\tau}$$

$$\Psi = \sum_{l,m,n} A_{lmn} e^{-i\omega_{lmn}t}$$

QNM frequencies —— underlying gravitational theory

Ringdown as a test of new physics

$$\Psi = \sum_{l,m,n} A_{lmn} e^{-i\omega_{lmn}t}$$

$$\omega = \omega_R + i\omega_I, \qquad \omega_I = -\frac{1}{\tau}$$

$$\Psi = \sum_{l,m,n} A_{lmn} e^{-i\omega_{lmn}t}$$

QNM frequencies —— underlying gravitational theory

Challenge: QNMs of rotating black holes in theories beyond GR

$$\omega_{lmn} = \omega_{lmn}^{\text{Kerr}} + \delta\omega_{lmn}$$

Ringdown as a test of new physics

$$\omega = \omega_R + i\omega_I, \qquad \omega_I = -\frac{1}{\tau}$$

$$\Psi = \sum_{l,m,n} A_{lmn} e^{-i\omega_{lmn}t}$$

QNM frequencies —— underlying gravitational theory

Challenge: QNMs of rotating black holes in theories beyond GR

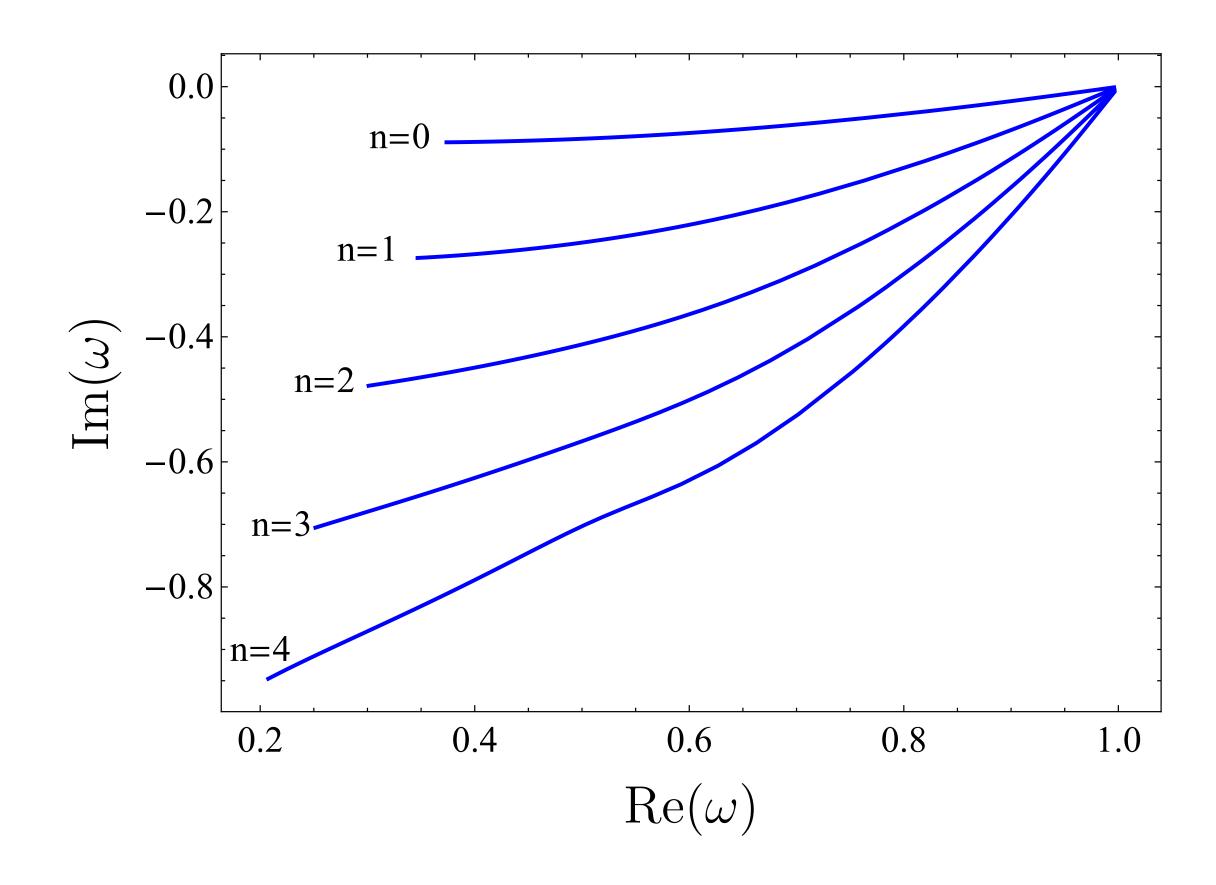
$$\omega_{lmn} = \omega_{lmn}^{\text{Kerr}} + \delta\omega_{lmn}$$

- Modified Teukolsky equations [Li, Wagle, Chen, Yunes '22] [Hussain, Zimmerman '22] [PAC, Fransen, Hertog, Maenaut '23],...
- Spectral methods [Chung, Yunes '24] [Blázquez-Salcedo+ '24],...
- No method yet can probe the near-extremal regime

Near-extremal black holes: amplification of new physics?

Classical GR:

- Aretakis instability
- QNM spectrum: long-lived modes



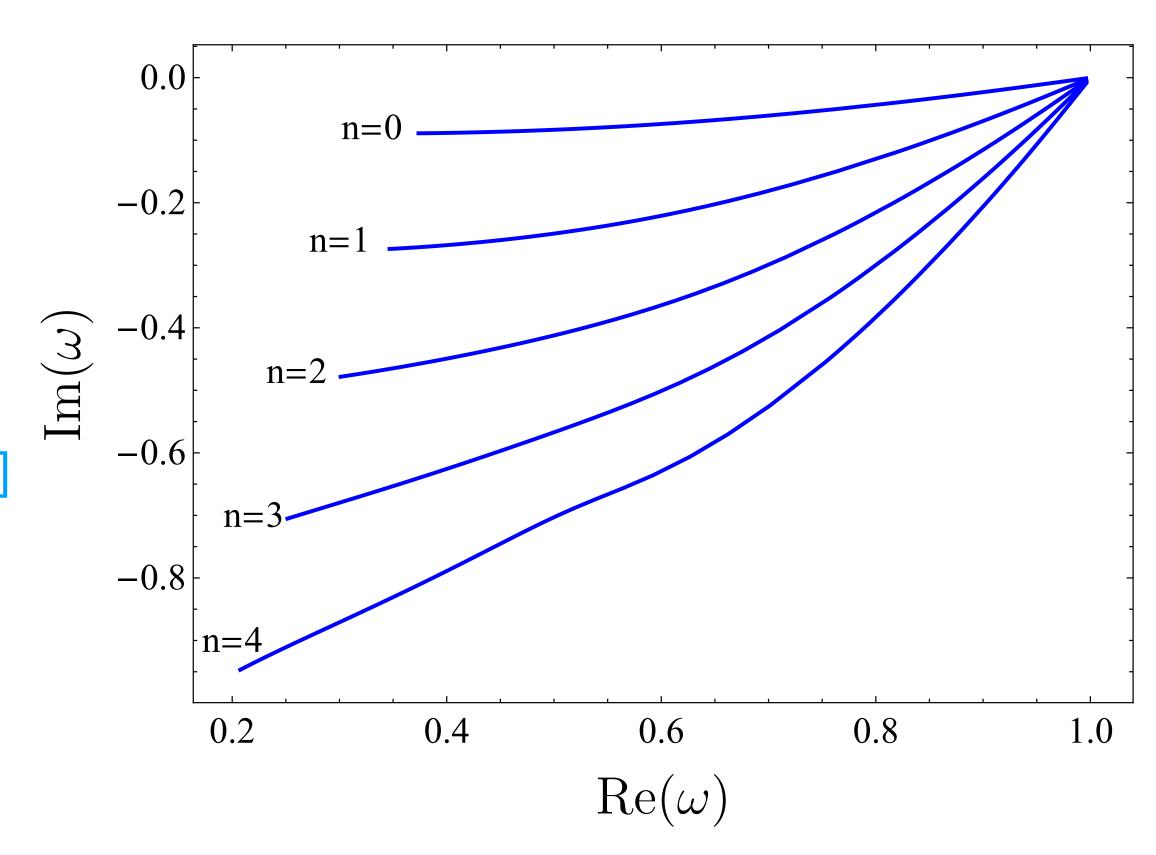
Near-extremal black holes: amplification of new physics?

Classical GR:

- Aretakis instability
- QNM spectrum: long-lived modes

New physics:

- Quantum effects [Heydeman, Iliesiu, Turiaci, Zhao]
- Divergence of tidal forces [Horowitz, Kolanowski, Remmen, Santos]
- Singular horizon [Kleihaus, Kunz, Mojica, Radu]
- QNM spectrum???



Plan of the talk

- 1. Spectrum of near-extremal Kerr
- 2. Isospectral EFTs
- 3. BH perturbations in isospectral EFTs
- 4. Results for QNMs

Part 1: QNM spectrum of nearextremal Kerr

Kerr metric

$$ds^{2} = -\frac{\Delta}{\Sigma} \left(dt - a \sin^{2}\theta d\phi \right)^{2} + \Sigma \left(\frac{dr^{2}}{\Delta} + d\theta^{2} \right) + \frac{\sin^{2}\theta}{\Sigma} \left((r^{2} + a^{2}) d\phi - a dt \right)^{2},$$
$$\Delta = r^{2} - 2Mr + a^{2}, \quad \Sigma = r^{2} + a^{2} \cos^{2}\theta$$

M o mass, a o angular momentum per mass

Extremal limit: a = M

Near-extremal regime: $\epsilon = 1 - \frac{a}{M} \ll 1$

Teukolsky equation

Decoupled, 2nd order equation for curvature perturbations on top of Kerr

$$\mathcal{O}(\Psi) = 0$$
, $\Psi = \text{component of the Weyl tensor}$

Separable:
$$\Psi = e^{-i\omega t + im\phi} {}_{S}S_{lm}(\theta; a\omega)\psi_{lm}(r)$$

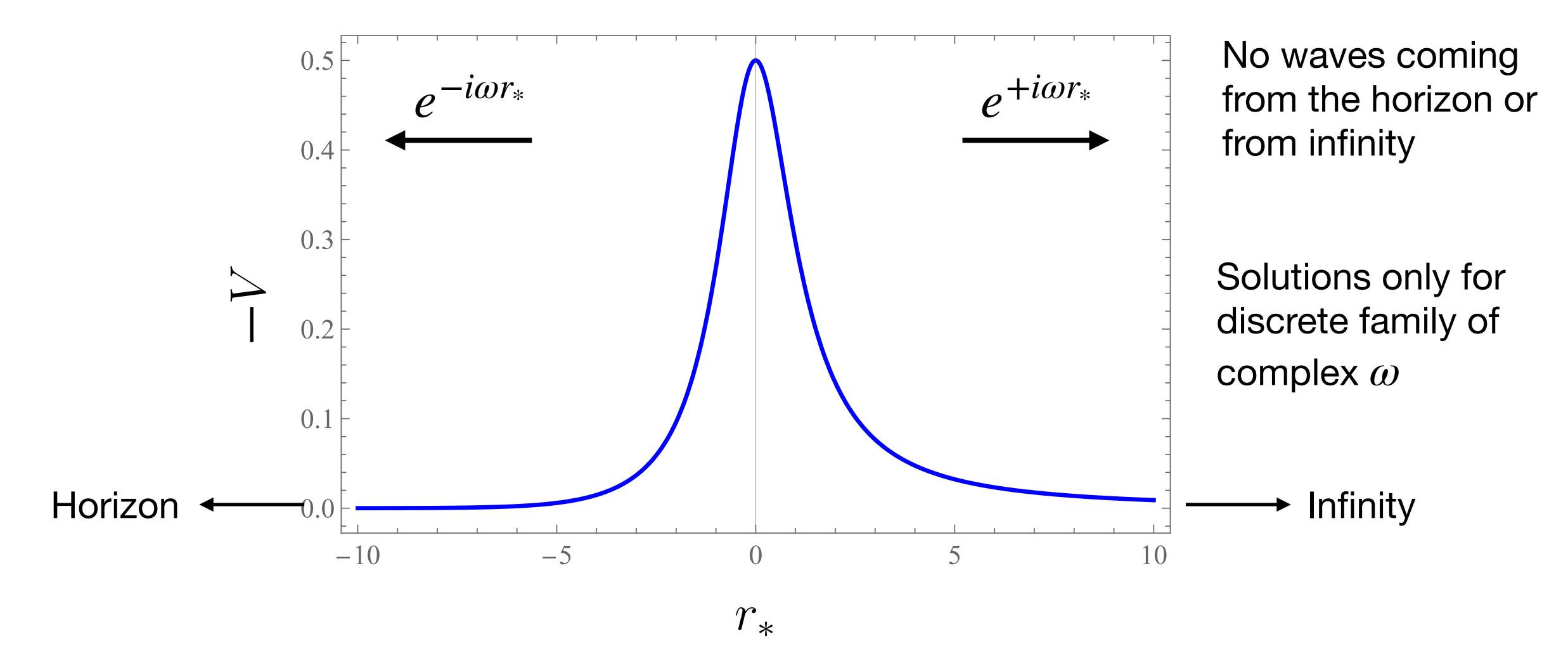
 $_{S}S_{lm}(\theta;a\omega) \rightarrow \text{Spin-weighted spheroidal harmonics (s = spin = <math>\pm 2$)

 $\psi_{lm}(r) \rightarrow$ Satisfies master radial equation

$$\Delta^{s+2} \frac{d}{dr} \left[\Delta^{2-s} \frac{d}{dr} \psi_{lm} \right] + V(r) \psi_{lm}$$

V(r) effective potential

Definition of QNMs



Eikonal limit and WKB method

In the eikonal limit $l \to \infty$, QNMs are related to the maximum of the potential

$$V = \left[\omega(r^2 + a^2) - am\right]^2 - \Delta\left(A_{lm} - 2ma\omega + (a\omega)^2\right)$$
 a: Angular separation constants

WKB formula:

$$V(r_0) = \frac{dV}{dr} \Big|_{r_0, \omega_R} = 0, \qquad \omega_I = -\left(n + \frac{1}{2}\right) \Delta \frac{\sqrt{2\partial_r^2 V}}{\partial_\omega V} \Big|_{r_0, \omega_R}$$

Real part of ω

Imaginary part of ω

Modes labeled by the ratio
$$\mu = \frac{m}{L}$$
, where $L = l + 1/2$

Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

For $\mu > \mu_{\rm cr} \approx 0.74$, $r_0 \to M$ at extremality. Modes live near the horizon and are **long lived**

→ Zero-damping modes (ZDMs)

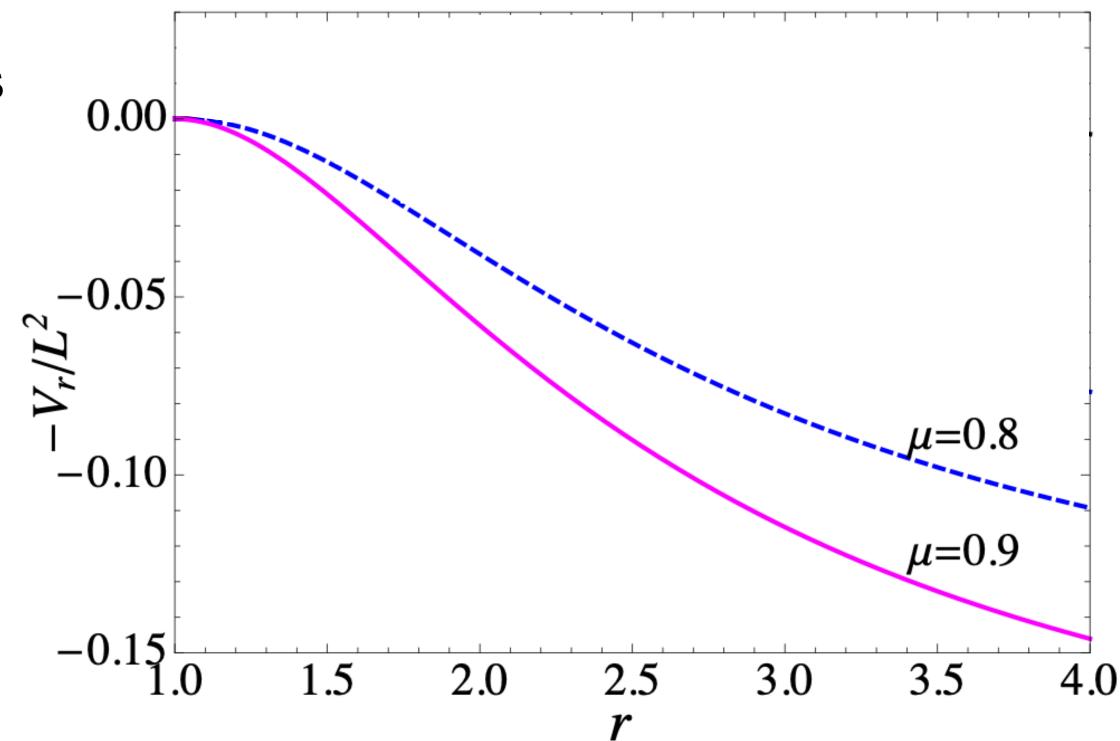


Figure taken from 1212.3271

Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

For $\mu > \mu_{\rm cr} \approx 0.74$, $r_0 \to M$ at extremality. Modes live near the horizon and are **long lived**

→ Zero-damping modes (ZDMs)

For $\mu < \mu_{\rm cr}$, the maximum is located outside the horizon

→ Damped modes (DMs)

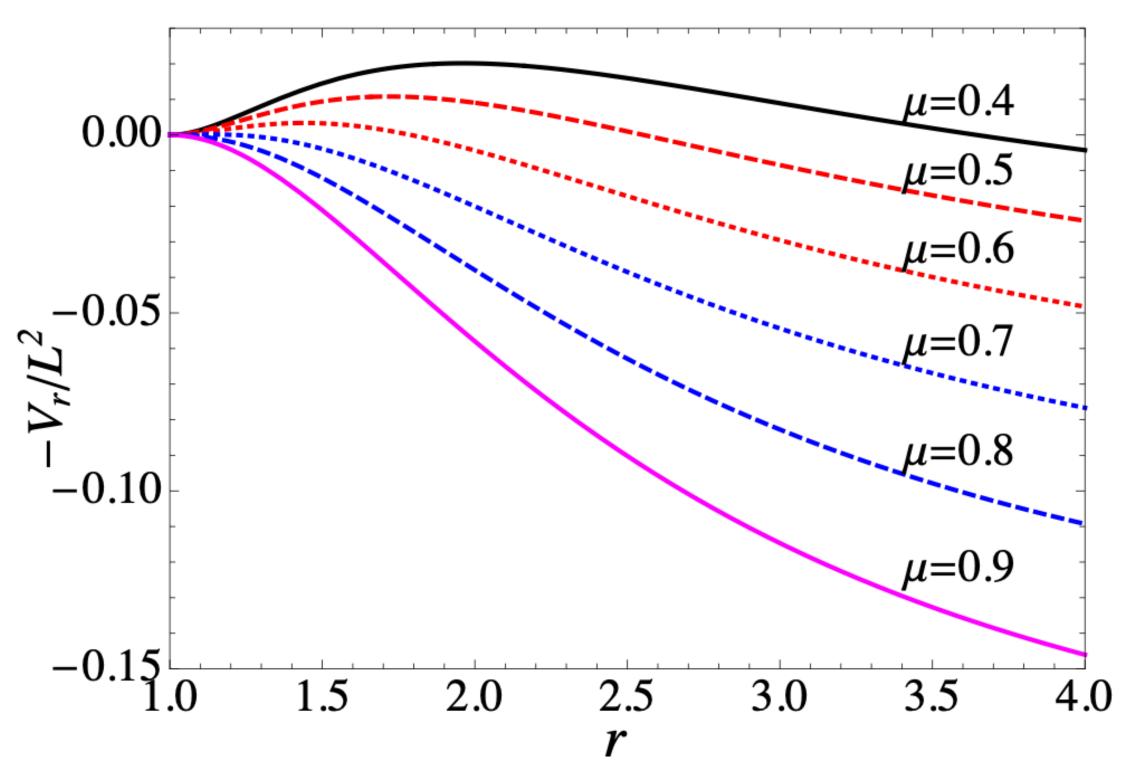


Figure taken from 1212.3271

Eikonal limit and WKB method

Maximum of the potential in the extremal limit?

For $\mu > \mu_{\rm cr} \approx 0.74$, $r_0 \to M$ at extremality. Modes live near the horizon and are **long lived**

→ Zero-damping modes (ZDMs)

For $\mu < \mu_{\rm cr}$, the maximum is located outside the horizon

→ Damped modes (DMs)

In addition, ZDMs also exist for $0 \le \mu \le \mu_{\rm cr}$, but they are unrelated to the maximum of the potential [Yang+ '12, '13]

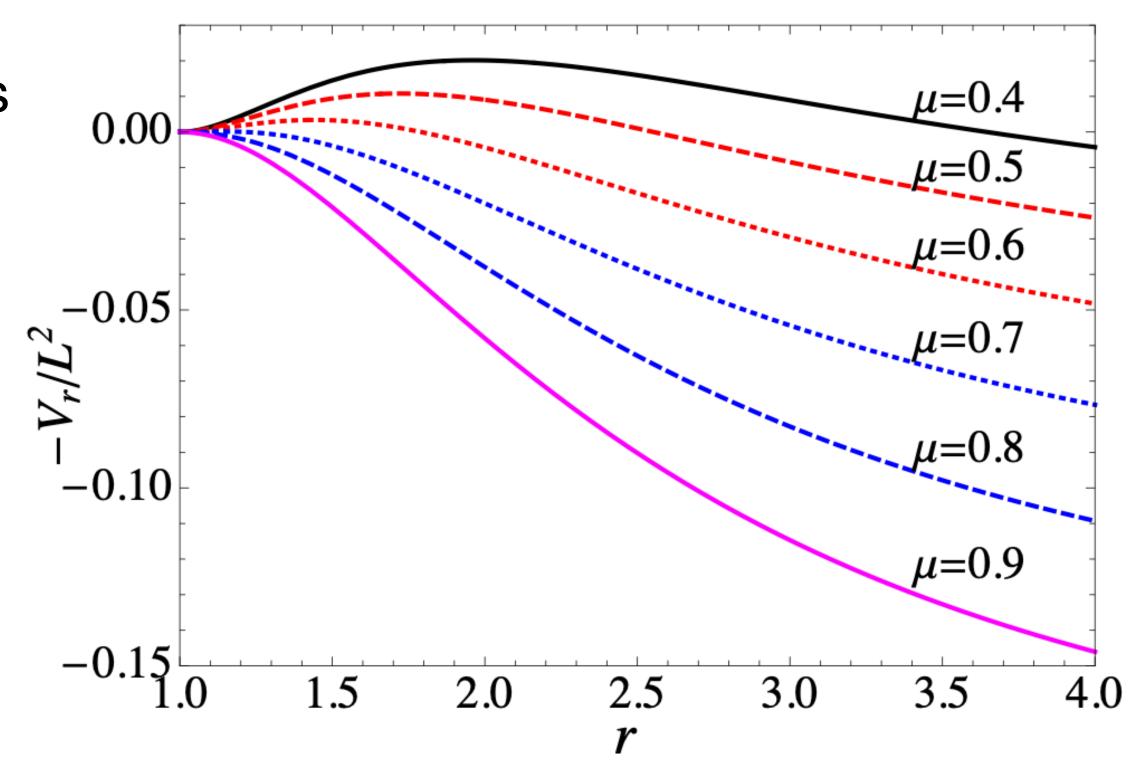


Figure taken from 1212.3271

Branching of the spectrum

Conclusion: the QNM spectrum of near-extremal Kerr bifurcates in two families of modes [Yang, Zhang, Zimmerman, Nichols, Berti, Chen '12, '13]

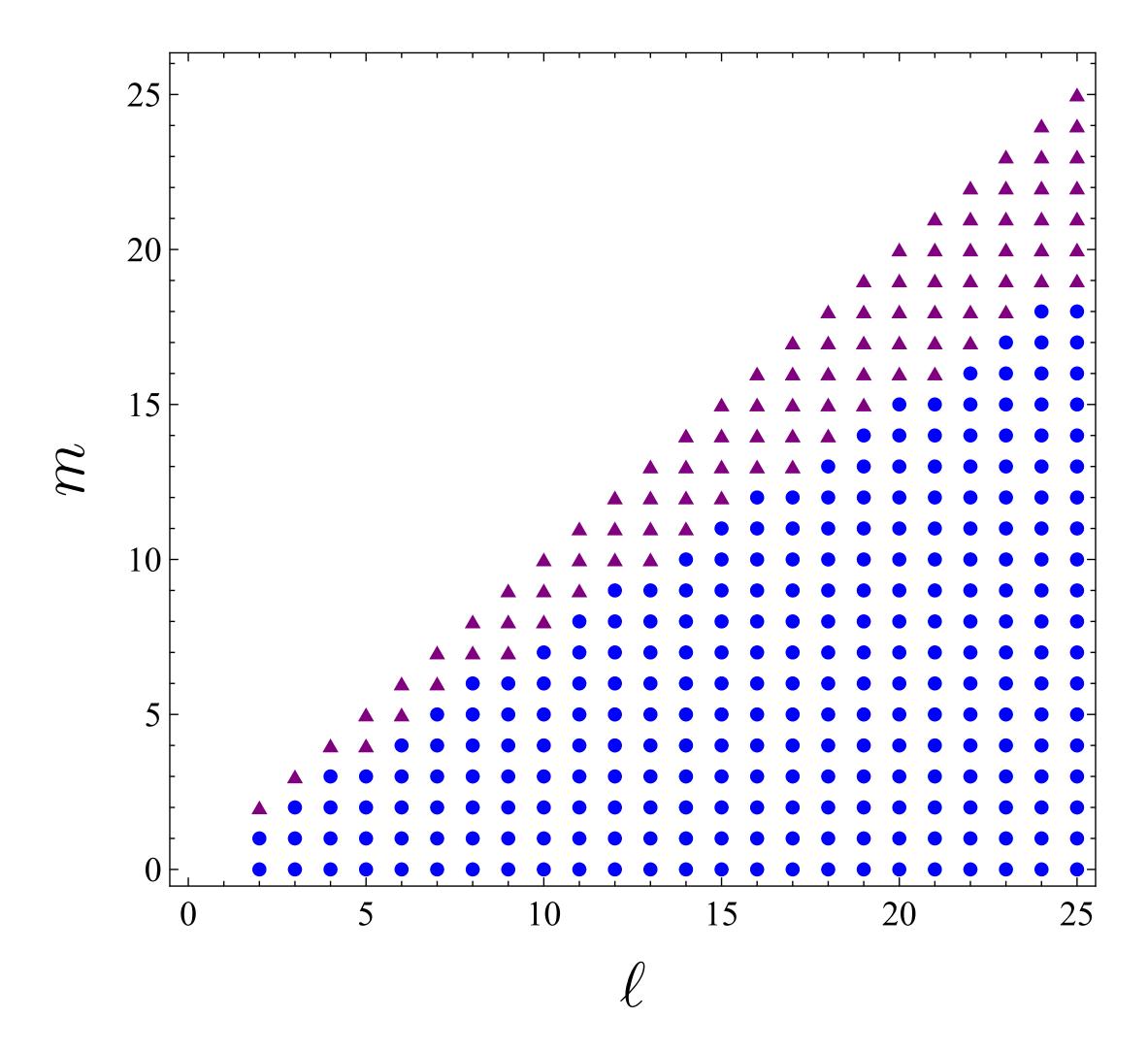
Zero-damping modes (ZDMS) (exist for $\mu \ge 0$)

$$\omega = m\Omega - \frac{i}{M}\left(n + \frac{1}{2}\right)\sqrt{\frac{\epsilon}{2}}, \qquad \epsilon = 1 - \frac{a}{M}$$

Infinitely long-lived

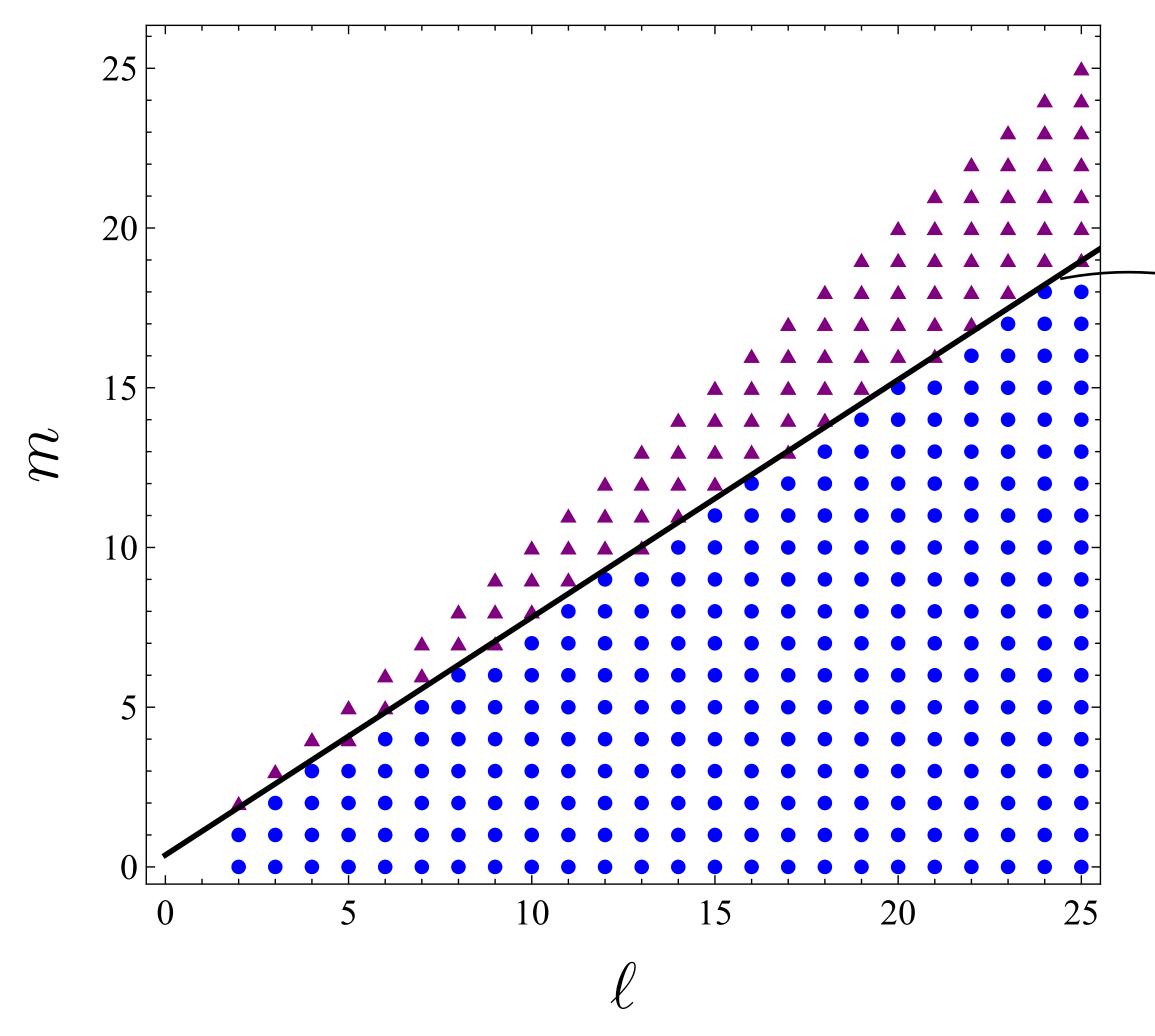
Damped modes (DMs) (exist for $\mu \le 0.744$) \rightarrow finite damping times

Branching of the spectrum



- = only ZDMs exist (GR)
- = ZDMs and DMs exist (GR)

Branching of the spectrum



= only ZDMs exist (GR)

= ZDMs and DMs exist (GR)

Phase boundary obtained from the eikonal limit

$$\frac{m}{\ell + 1/2} = \bar{\mu}_{\rm cr} \approx 0.744$$

Part 2: Isospectral EFTs

EFT extension of GR

$$S_{\text{EFT}} = \frac{1}{16\pi} \int d^4x \sqrt{|g|} \left[R + \ell^4 \left(\lambda_{\text{ev}} R_3 + \lambda_{\text{odd}} \tilde{R}_3 \right) + \ell^6 \left(\epsilon_1 R_2^2 + \epsilon_2 \tilde{R}_2^2 + \epsilon_3 R_2 \tilde{R}_2 \right) + \dots \right]$$

Two cubic invariants:
$$R_3=R_{\mu\nu}^{\rho\sigma}R_{\rho\sigma}^{\delta\gamma}R_{\delta\gamma}^{\mu\nu}$$
, $\tilde{R_3}=R_{\mu\nu}^{\rho\sigma}R_{\rho\sigma}^{\delta\gamma}\tilde{R}_{\delta\gamma}^{\mu\nu}$

Three quartic invariants: formed from $R_2=R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$, $\tilde{R}_2=R_{\mu\nu\rho\sigma}\tilde{R}^{\mu\nu\rho\sigma}$

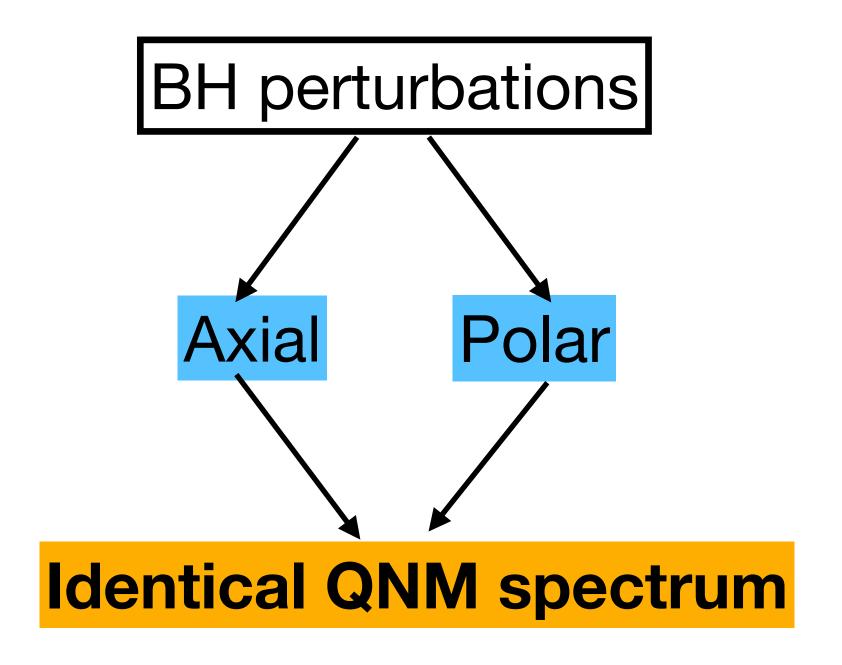
Dual Riemann tensor
$$\tilde{R}_{\mu\nu\rho\sigma}=\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}R^{\alpha\beta}_{\rho\sigma}$$

$$(\lambda_{\rm ev},\,\,\epsilon_1,\,\,\epsilon_2)$$
 even parity $(\lambda_{\rm odd},\,\,\epsilon_3)$ odd parity

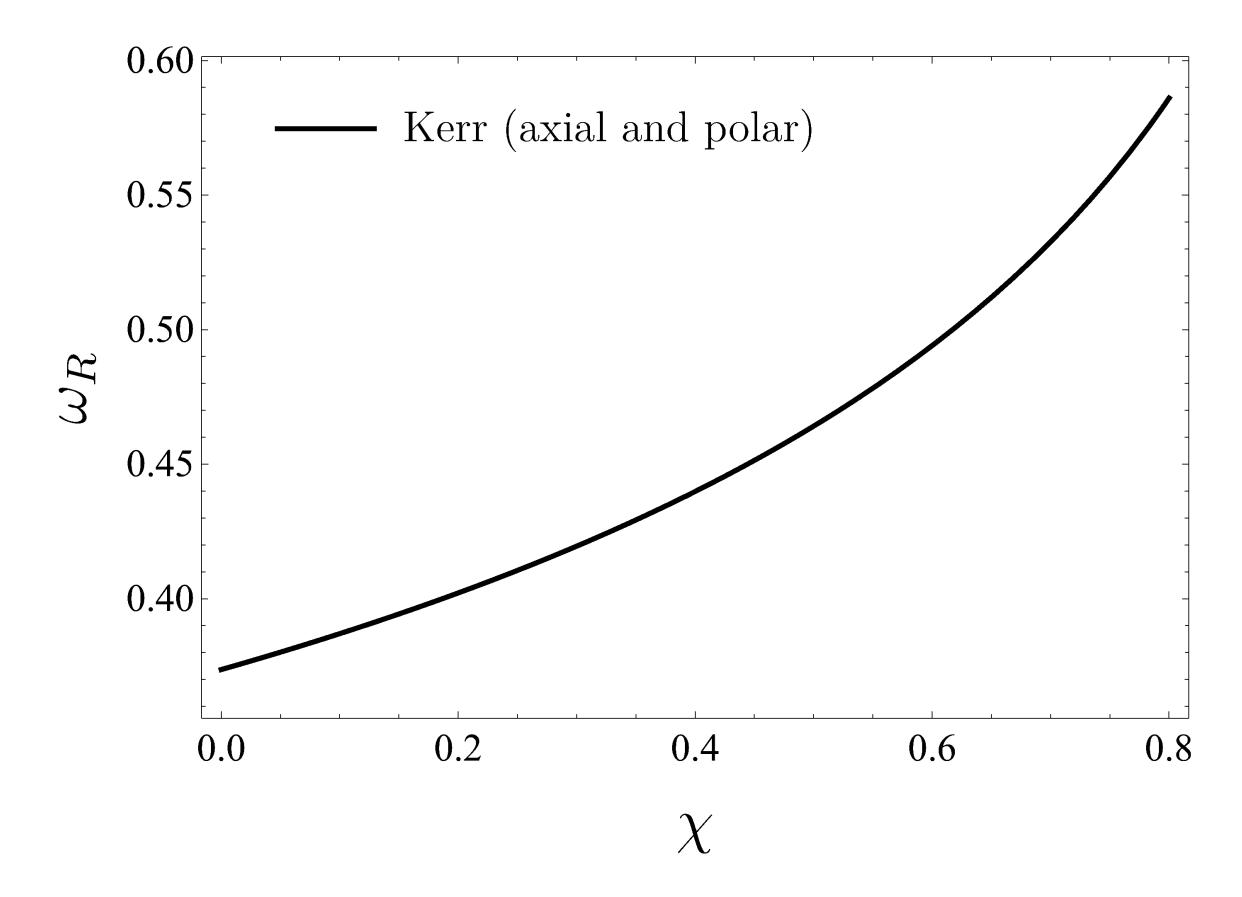
EFT extension of GR

Breaking of isospectrality

Special property in GR: isospectrality



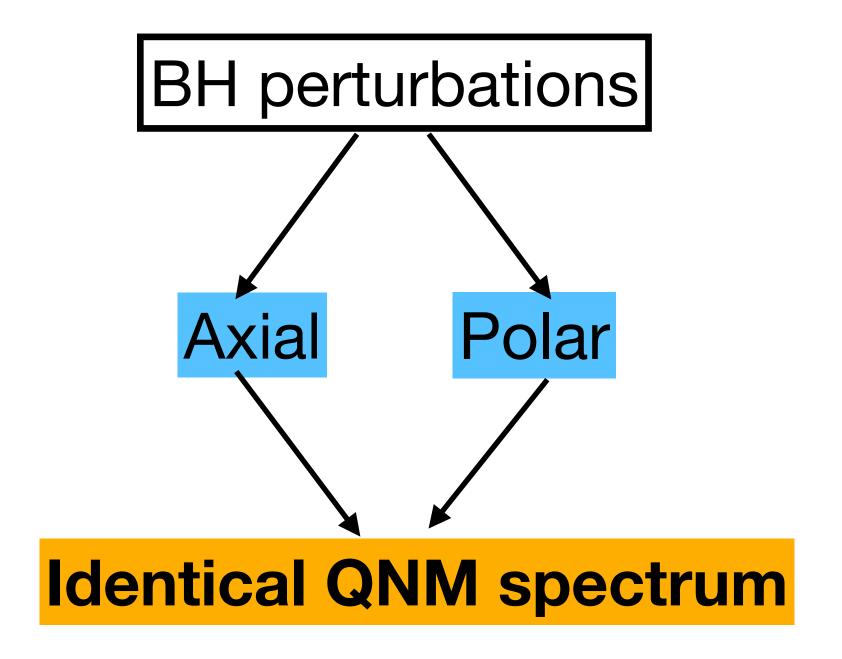
Isospectrality in GR



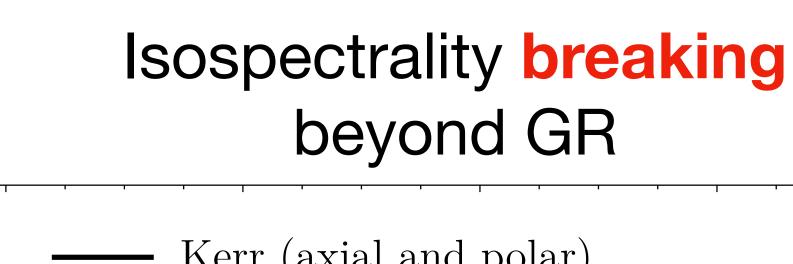
EFT extension of GR

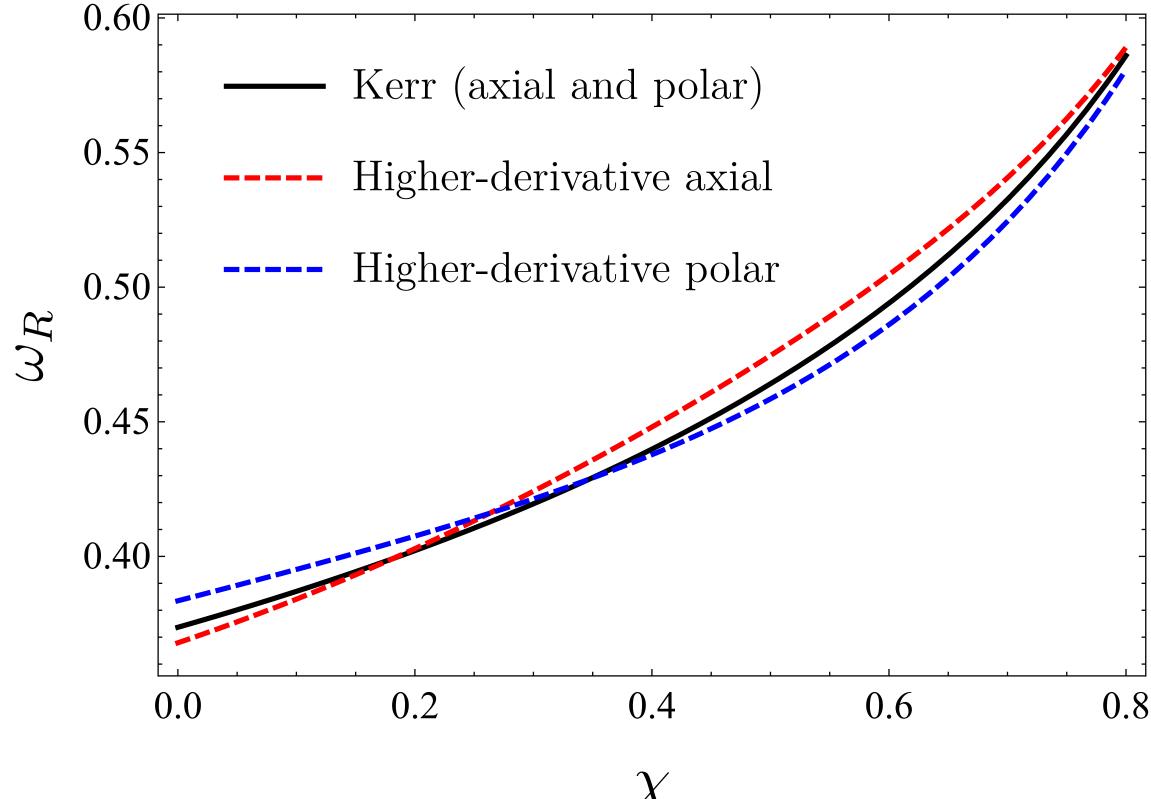
Breaking of isospectrality

Special property in GR: isospectrality



Not true in extensions of GR!





Is there an isospectral theory?

Is there an isospectral theory?

$$S_{\text{iso}} = \frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left[R + \alpha \left(R_2^2 + \tilde{R}_2^2 \right) \right]$$

Unique eikonal-isospectral extension of GR to eight derivatives

Is there an isospectral theory?

$$S_{\text{iso}} = \frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left[R + \alpha \left(R_2^2 + \tilde{R}_2^2 \right) \right]$$

Unique eikonal-isospectral extension of GR to eight derivatives

Key feature: dispersion relation for large-momentum GWs is non-birefringent

$$k^{2} = 64\alpha R^{\lambda}_{\alpha}{}^{\eta}_{\beta} R^{\rho\alpha\sigma\beta} k_{\lambda} k_{\eta} k_{\rho} k_{\sigma}$$

Remark: $k^2 \neq 0 \rightarrow$ GWs no longer follow null geodesics

Eikonal QNMs and photon sphere

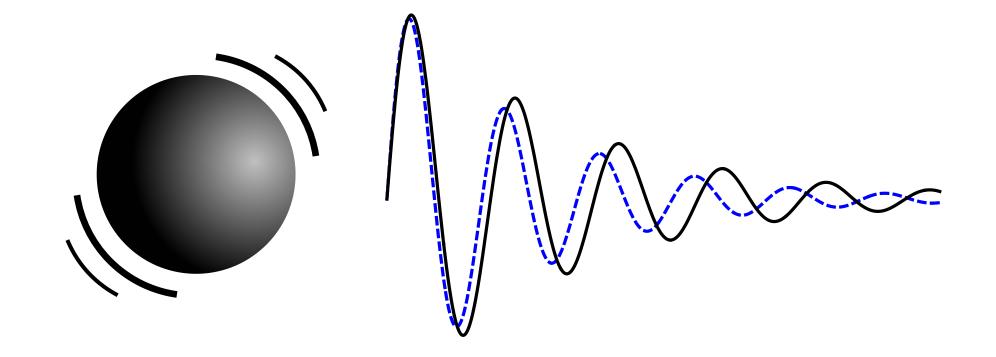
In GR eikonal QNMs are related to unstable photon sphere geodesics

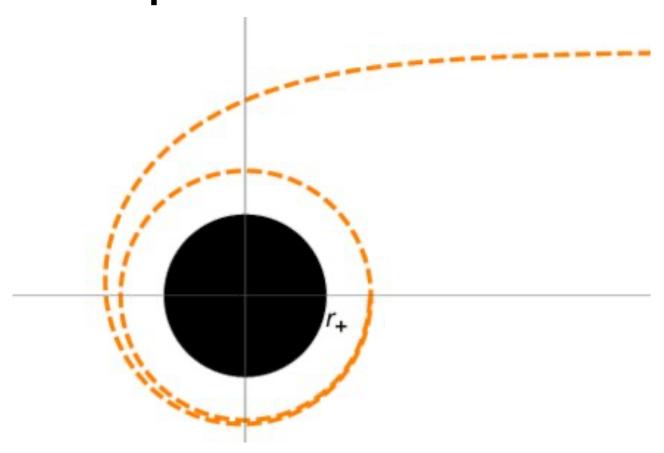
[Cardoso+ '08] [Yang+ '12]

Real frequency

Orbital frequency

Damping time
Lyapunov exponent





Eikonal QNMs and photon sphere

In GR eikonal QNMs are related to unstable photon sphere geodesics

[Cardoso+ '08] [Yang+ '12]

Damping time
Lyapunov exponent

Beyond GR: Generalized correspondence

QNMs

Unstable GW orbits

(not geodesic!)

Isospectrality Non-birefringence

Summary

$$S_{\text{iso}} = \frac{1}{16\pi G} \int d^4x \sqrt{|g|} \left[R + \alpha \left(R_2^2 + \tilde{R}_2^2 \right) \right]$$

- 1. Non-birefringent dispersion relation
- Isospectral eikonal QNMs

Isospectral EFTs
Generalizable to higher orders

Summary

$$S_{\text{iso}} = \frac{1}{16\pi G} \left[d^4x \sqrt{|g|} \left[R + \alpha \left(R_2^2 + \tilde{R}_2^2 \right) \right] \right]$$

- Non-birefringent dispersion relation
 Isospectral EFTs
 Isospectral eikonal QNMs

 Generalizable to higher orders

Isospectrality related to String Theory

$$S_{\rm iso} = S_{II}^{\rm string\ theory}, \qquad \alpha = \frac{\zeta(3)}{256} \alpha^{3}$$

Supersymmetry? Duality? Born-Infeld-like gravity?

Part 3: BH perturbations in the isospectral EFT

Master equation for perturbations

Dispersion relation for GWs

$$k^{2} = 64\alpha R^{\lambda}_{\alpha}{}^{\eta}_{\beta} R^{\rho\alpha\sigma\beta} k_{\lambda} k_{\eta} k_{\rho} k_{\sigma}$$

Intuitive idea: effective scalar equation that yields the same dispersion relation

Master equation for perturbations

Dispersion relation for GWs

$$k^{2} = 64\alpha R^{\lambda}_{\alpha}{}^{\eta}{}_{\beta} R^{\rho\alpha\sigma\beta} k_{\lambda} k_{\eta} k_{\rho} k_{\sigma}$$

Intuitive idea: effective scalar equation that yields the same dispersion relation

$$\left(\nabla^{2} + 64\alpha R^{\lambda}_{\alpha\beta}^{\eta} R^{\rho\alpha\sigma\beta} \nabla_{\lambda} \nabla_{\eta} \nabla_{\rho} \nabla_{\sigma}\right) \Phi = 0$$

Master equation for perturbations

Dispersion relation for GWs

$$k^{2} = 64\alpha R^{\lambda}_{\alpha}{}^{\eta}_{\beta} R^{\rho\alpha\sigma\beta} k_{\lambda} k_{\eta} k_{\rho} k_{\sigma}$$

Intuitive idea: effective scalar equation that yields the same dispersion relation

$$\left(\nabla^{2} + 64\alpha R^{\lambda}_{\alpha\beta}^{\eta} R^{\rho\alpha\sigma\beta} \nabla_{\lambda} \nabla_{\eta} \nabla_{\rho} \nabla_{\sigma}\right) \Phi = 0$$

More rigorously: $\mathcal{D}^2 h_{\mu\nu}^{\rm TT} = 0$ (diagonal operator=isospectrality)

Master equation for perturbations

Dispersion relation for GWs

$$k^{2} = 64\alpha R^{\lambda}_{\alpha}{}^{\eta}_{\beta} R^{\rho\alpha\sigma\beta} k_{\lambda} k_{\eta} k_{\rho} k_{\sigma}$$

Intuitive idea: effective scalar equation that yields the same dispersion relation

$$\left(\nabla^{2} + 64\alpha R^{\lambda}_{\alpha\beta}^{\eta} R^{\rho\alpha\sigma\beta} \nabla_{\lambda} \nabla_{\eta} \nabla_{\rho} \nabla_{\sigma}\right) \Phi = 0$$

More rigorously: $\mathcal{D}^2 h_{\mu\nu}^{\rm TT} = 0$ (diagonal operator=isospectrality)

Remark: it is enough to consider the **Kerr background** (w/o corrections)

Step 1: decompose the field in spheroidal harmonics

$$\Phi = e^{-i\omega t + im\varphi} \left[S_{lm}(x; a\omega) \psi_{lm}(r) + \alpha \sum_{l' \neq l} S_{l'm}(x; a\omega) \psi_{l'm}(r) \right]$$

Step 1: decompose the field in spheroidal harmonics

$$\Phi = e^{-i\omega t + im\varphi} \left[S_{lm}(x; a\omega) \psi_{lm}(r) + \alpha \sum_{l' \neq l} S_{l'm}(x; a\omega) \psi_{l'm}(r) \right]$$

Step 2: project the equation on S_{lm}

$$\int_{-1}^{1} dx S_{lm}(x; a\omega)(r^2 + a^2 x^2) D^2 \Phi = 0$$

Step 1: decompose the field in spheroidal harmonics

$$\Phi = e^{-i\omega t + im\varphi} \left[S_{lm}(x; a\omega) \psi_{lm}(r) + \alpha \sum_{l' \neq l} S_{l'm}(x; a\omega) \psi_{l'm}(r) \right]$$

Step 2: project the equation on S_{lm}

$$\Delta \frac{d}{dr} \left[\Delta \frac{d\psi_{lm}}{dr} \right] + \left(V - \hat{\alpha} \Delta U_{lm} \right) \psi_{lm} = 0$$

$$U_{lm} = -1152M^{8} \left(A_{lm} - 2ma\omega + (a\omega)^{2} \right)^{2} \int_{-1}^{1} dx \frac{S_{lm}(x; a\omega)^{2}}{2\pi (r^{2} + a^{2}x^{2})^{4}}$$

Step 3: simplify the potential

$$U_{lm} = -1152M^8 \lambda_{lm}^2 \int_{-1}^{1} dx \frac{S_{lm}(x; a\omega)^2}{2\pi (r^2 + a^2 x^2)^4}$$

Step 3: simplify the potential

$$U_{lm} = -1152M^8 \lambda_{lm}^2 \int_{-1}^1 dx \frac{S_{lm}(x; a\omega)^2}{2\pi (r^2 + a^2 x^2)^4}$$

$$U_{lm} = -\frac{576M^8 \lambda_{lm}^2}{K(-k)} \int_0^{\pi} \frac{d\theta}{(r^2 + a^2 x_0^2 \sin^2 \theta)^4 \sqrt{1 + k \sin^2 \theta}}$$

$$k = \frac{u^2 x_0^2 (1 - x_0^2)}{\mu^2 - u^2 (1 - x_0^2)}, \quad \mu^2 - (1 - x_0^2) \left(\frac{A_{lm}}{l^2} + u^2 x_0^2\right) = 0, \quad \mu = \frac{m}{l}, \quad u = \frac{a\omega}{l}$$

QNMs through the WKB formula

$$\Delta \frac{d}{dr} \left(\Delta \frac{d\psi}{dr} \right) + V_{\alpha} \psi = 0$$

$$V_{\alpha} = \left[\omega(r^2 + a^2) - am\right]^2 - \Delta\left(\lambda_{lm} + \hat{\alpha}U_{lm}\right)$$

Real part of the frequency:
$$V_{\alpha}(r_0) = \frac{dV_{\alpha}}{dr} \bigg|_{r_0,\omega_R} = 0$$

Imaginary part of the frequency:
$$\omega_I = -\left(n+\frac{1}{2}\right)\Delta\frac{\sqrt{2\partial_r^2V_\alpha}}{\partial_\omega V_\alpha}\Big|_{r_0,\omega_R}$$

Part 4: Results for QNMs

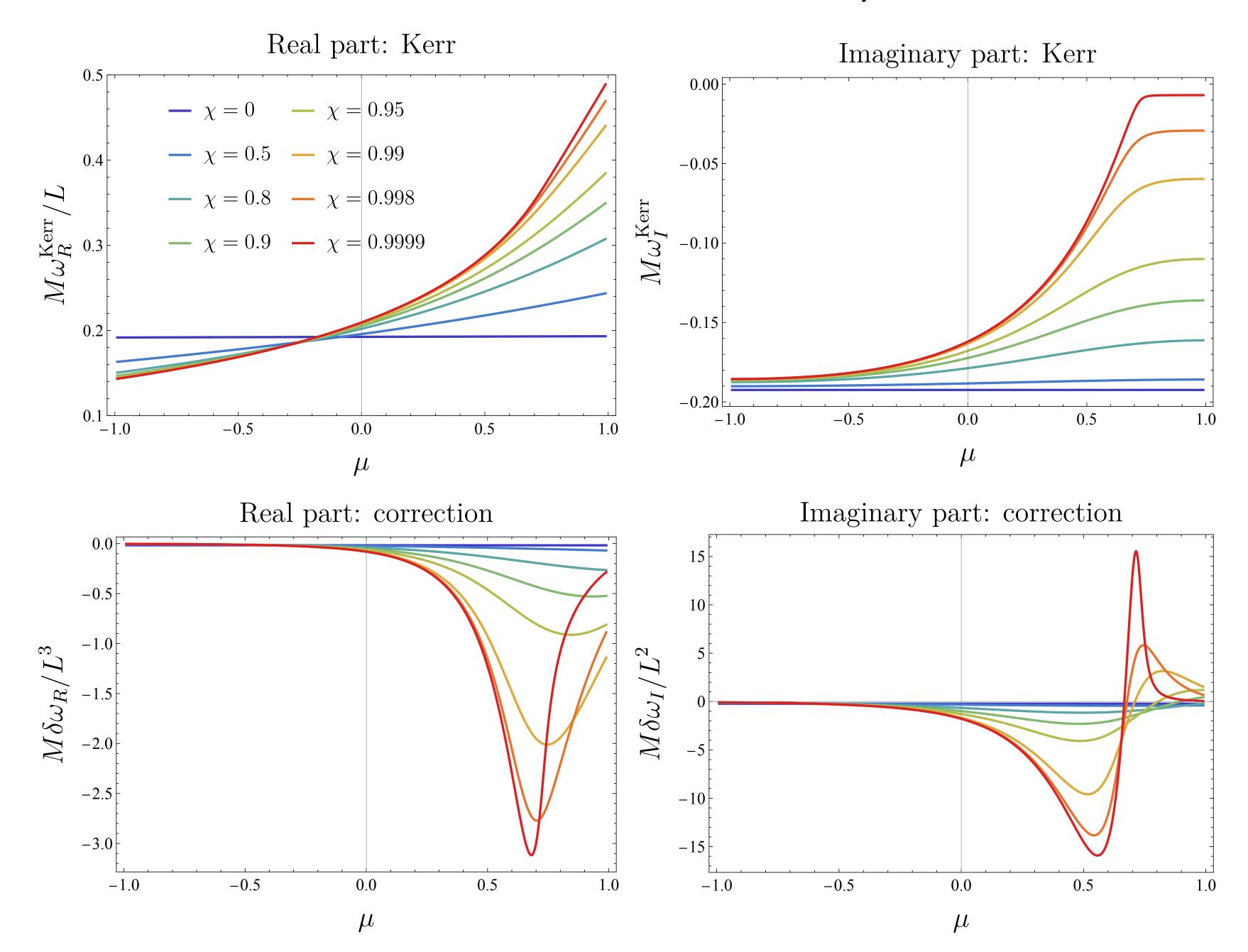
Results for high rotation

Generalities

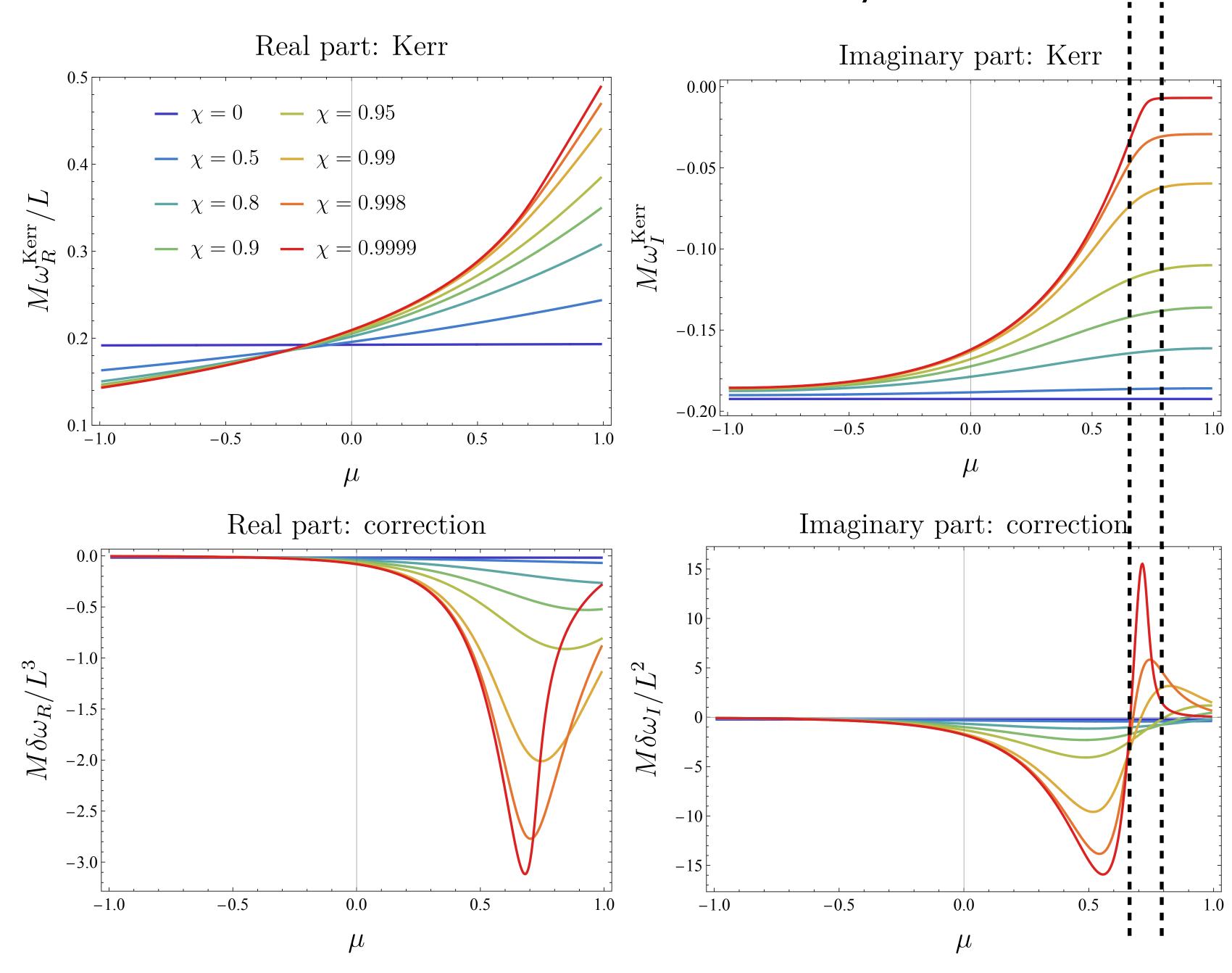
. We write
$$\omega = \omega^{\mathrm{Kerr}} + \hat{\alpha}\delta\omega$$
, $\hat{\alpha} = \frac{\alpha}{M^6}$

- Result depends on $\mu = m/\ell$ and on $\chi = J/J_{\rm max}$
- For $\mu > \mu_{\rm cr} pprox 0.74$ we have "zero damping modes" in the extremal limit
- For $\mu < \mu_{\rm cr}$ the modes are damped
- There are also ZDMs for $\mu < \mu_{\rm cr}$, but these are not captured by the WKB analysis [Yang+ '12, '13]

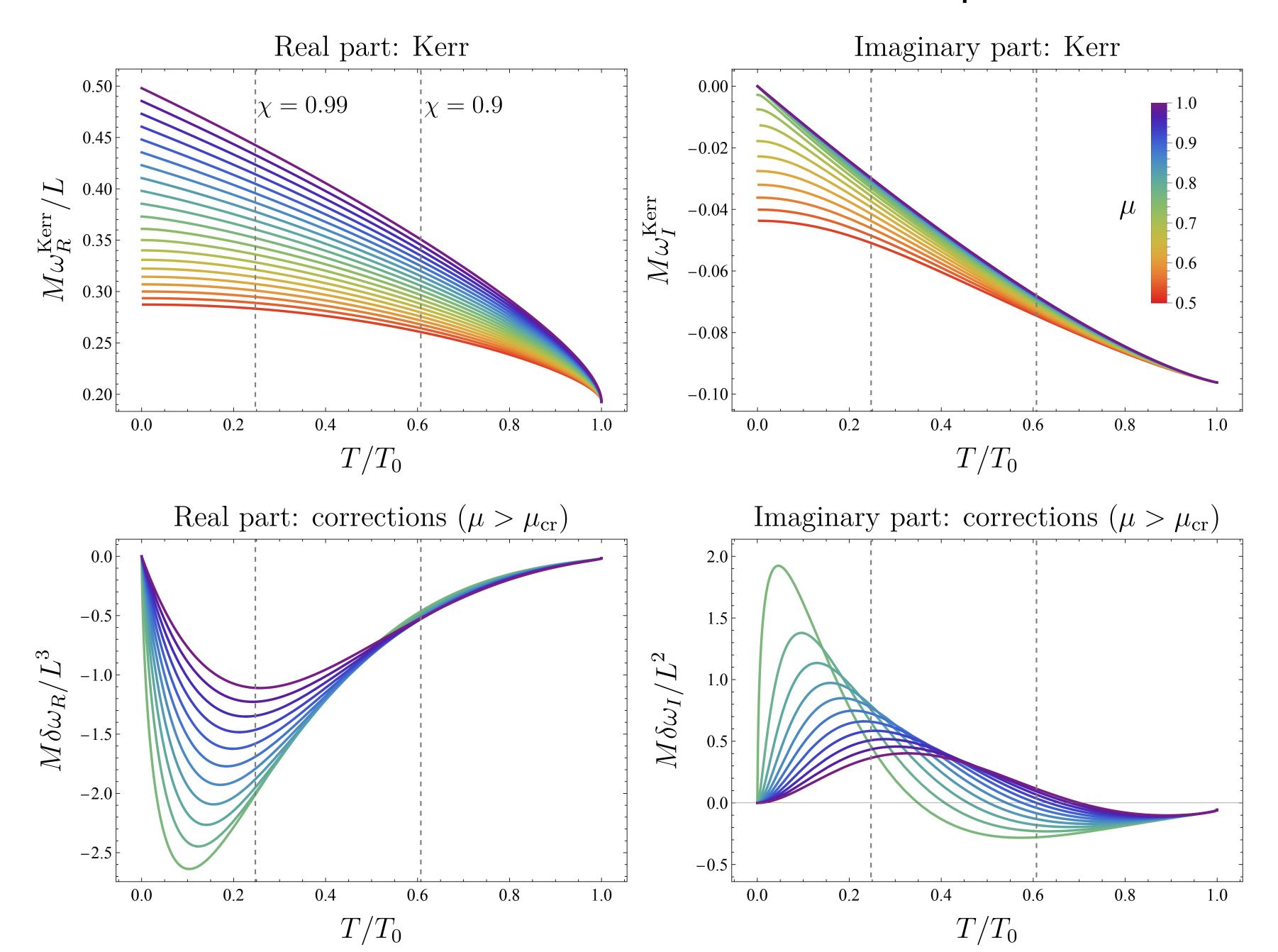
Results as a function of μ



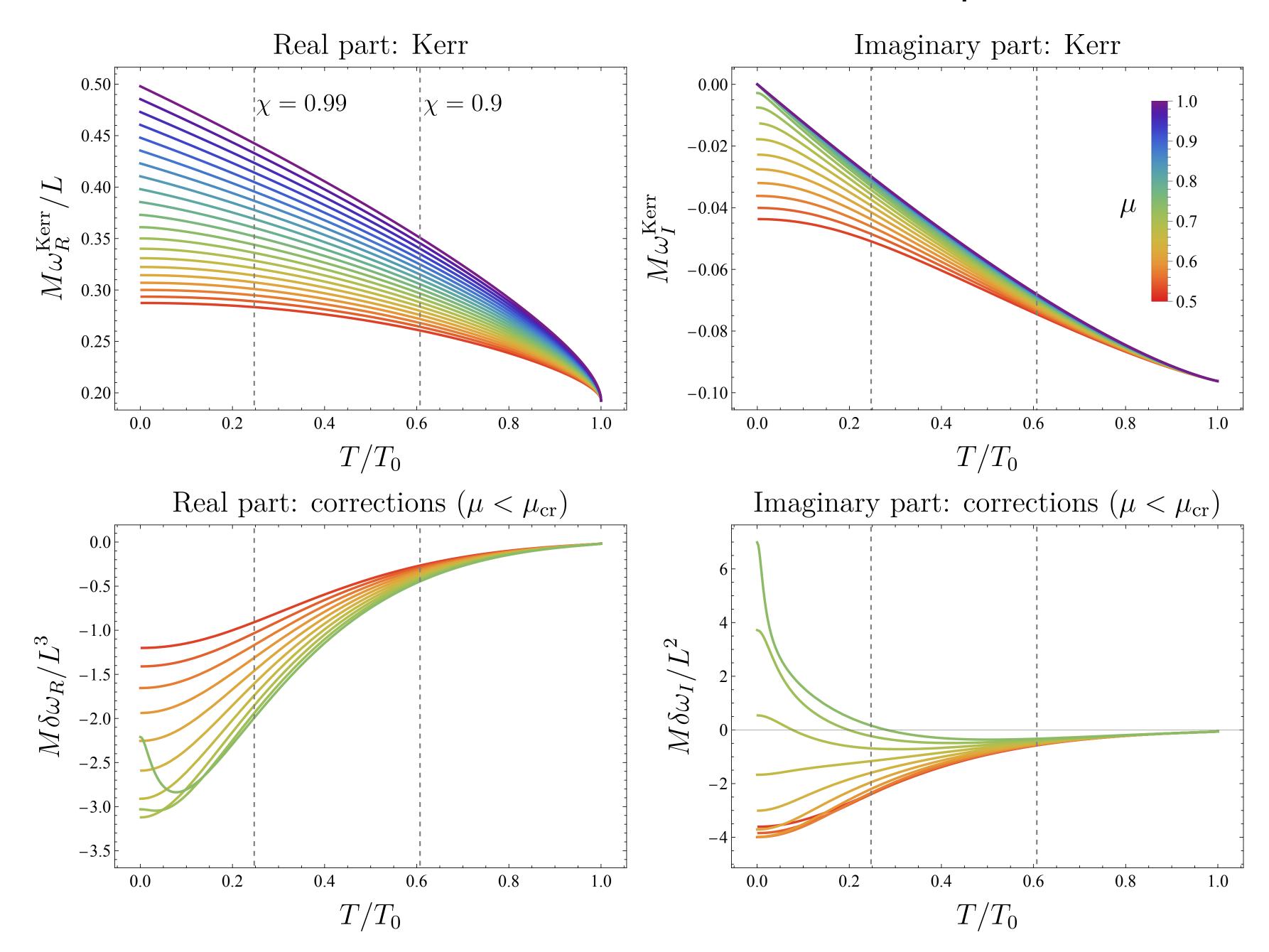
Results as a function of μ



Results as a function of the temperature



Results as a function of the temperature



Reminder: effective potential

$$\Delta \frac{d}{dr} \left(\Delta \frac{d\psi}{dr} \right) + V_{\alpha} \psi = 0$$

$$V_{\alpha} = \left[\omega(r^2 + a^2) - am\right]^2 - \Delta\left(\lambda_{lm} + \hat{\alpha}U_{lm}\right)$$

We look first for perturbative corrections to the Kerr QNMs

$$\omega = \omega^{\text{Kerr}} + \hat{\alpha}\delta\omega$$

Regime I: $\epsilon \ll |\mu - \bar{\mu}_{\rm cr}|^3$, $\mu > \bar{\mu}_{\rm cr}$

$$\omega^{\text{Kerr}} = m\Omega \left[1 - \sqrt{2\epsilon} \sqrt{\frac{7}{4} - \frac{A_{lm}(m/2)}{m^2}} \right] - \frac{i}{M} \left(n + \frac{1}{2} \right) \sqrt{\frac{\epsilon}{2}} + \mathcal{O}(\epsilon)$$

$$\delta\omega = \mathcal{O}(\epsilon^{1/2}) + i\mathcal{O}(\epsilon)$$

No qualitative change to the GR prediction

Regime II: $|\mu - \bar{\mu}_{cr}|^3 \ll \epsilon \ll 1$

$$\omega^{\text{Kerr}} = m\Omega \left[1 - \frac{3\epsilon^{2/3}}{2} \right] - \frac{i}{M} \left(n + \frac{1}{2} \right) \sqrt{\frac{3\epsilon}{4}} + \mathcal{O}(\epsilon)$$

$$\delta\omega = \frac{L^3\bar{\mu}_{\rm cr}^3}{4M}\xi\epsilon^{1/3} - i\left(n + \frac{1}{2}\right)\frac{L^2\bar{\mu}_{\rm cr}^2}{8\sqrt{3}M}\xi\epsilon^{1/6} + \dots, \qquad \xi \approx -601$$

$$\frac{\delta\omega_I}{\omega_I^{\text{Kerr}}} \approx \frac{L^2 \bar{\mu}_{\text{cr}}^2 \xi}{12} \epsilon^{-1/3}$$

Regime III: $\epsilon \ll |\mu - \bar{\mu}_{\rm cr}|^3 \ll 1$, $\mu < \bar{\mu}_{\rm cr}$

$$\omega^{\text{Kerr}} = m\Omega \left[1 + \frac{\eta^2 (\mu - \bar{\mu}_{\text{cr}})^2}{2} \right] - i \left(n + \frac{1}{2} \right) \frac{\eta^{3/2} |\mu - \bar{\mu}_{\text{cr}}|^{3/2}}{2M} + \dots$$

$$\delta\omega = \frac{L^3\bar{\mu}_{\rm cr}^3}{4M}\xi\eta \,|\, \mu - \bar{\mu}_{\rm cr}\,|\, -i\left(n + \frac{1}{2}\right)\frac{3}{8M}L^2\bar{\mu}_{\rm cr}^2\xi\eta^{1/2} \,|\, \mu - \bar{\mu}_{\rm cr}\,|^{1/2} + \dots$$

$$\frac{\delta\omega_I}{\omega_I^{\mathrm{Kerr}}} \approx \frac{3L^2\bar{\mu}_{\mathrm{cr}}^2\xi}{4\eta |\mu - \bar{\mu}_{\mathrm{cr}}|}$$

Summary: amplification of new physics

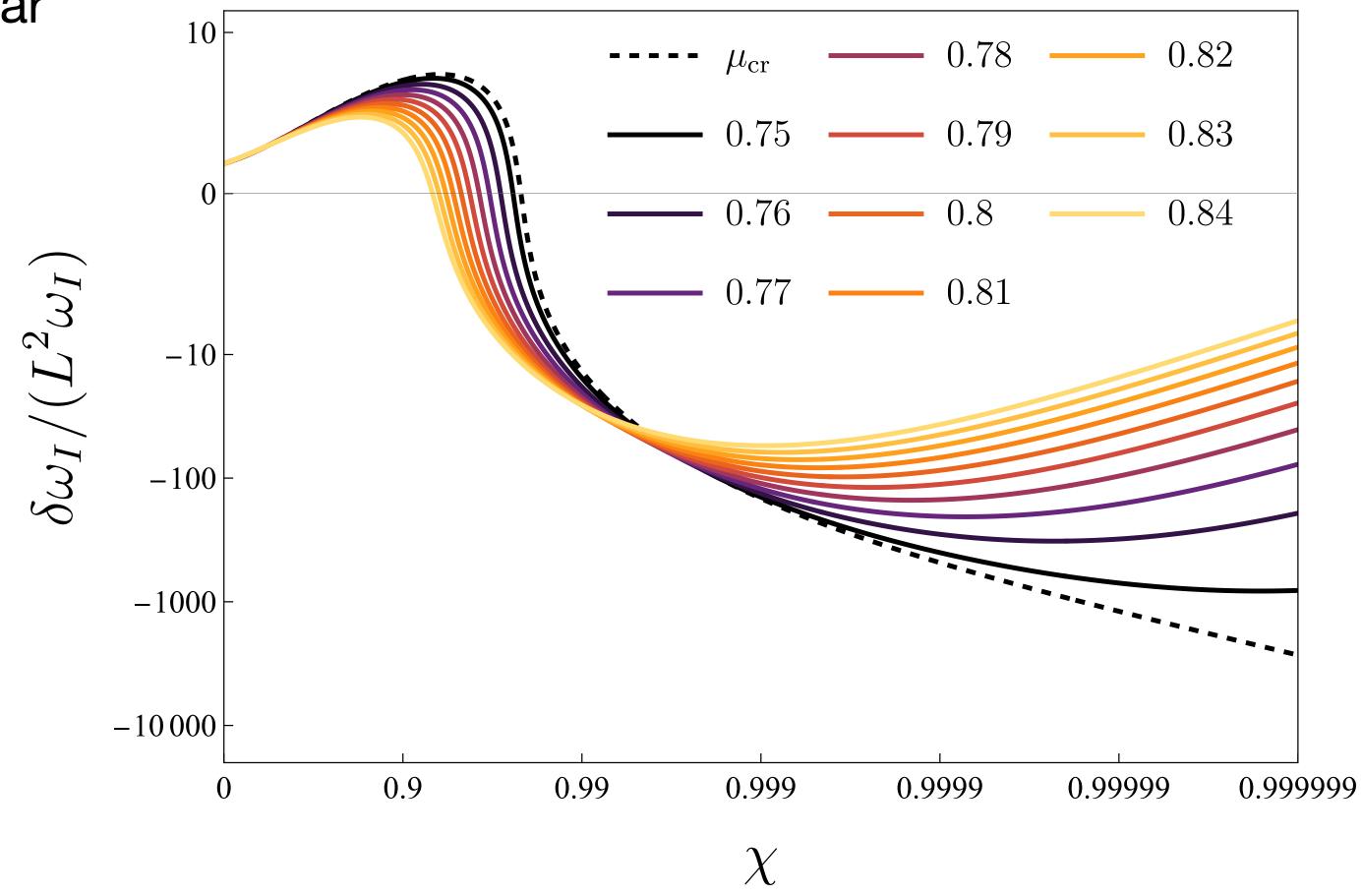
The corrections to ω_I diverge for modes near the critical line

$$\frac{\delta \omega_I}{\omega_I} \propto \hat{\alpha} \epsilon^{-1/3}$$

$$(|\mu - \bar{\mu}_{\rm cr}|^3 \ll \epsilon \ll 1)$$

$$\frac{\delta\omega_I}{\omega_I} \propto \hat{\alpha} |\mu - \bar{\mu}_{cr}|^{-1}$$

$$(\epsilon \ll |\mu - \bar{\mu}_{cr}|^3 \ll 1)$$



Modification of the critical point

Observation: r=M is always an extremum of V_{α} for $a=M, \omega=m\Omega$.

Condition for the existence of DMs is

$$E_{lm} \equiv \frac{1}{2} \frac{d^2 V_{\alpha}}{dr^2} \Big|_{r=M,\alpha=M,\omega=m\Omega} = \frac{7}{4} m^2 - A_{lm} - \hat{\alpha} U_{lm} < 0$$

The phase boundary is modified

$$\mu_{\rm cr} pprox \bar{\mu}_{\rm cr} + \hat{\alpha}\delta\mu_{\rm cr}, \quad \delta\mu_{\rm cr} = \frac{L^2\bar{\mu}_{\rm cr}^2}{2\eta}\xi$$

Full QNMs

When $|\mu - \bar{\mu}_{\rm cr}| \sim \hat{\alpha} \delta \mu_{\rm cr}$, the perturbative expansion in $\hat{\alpha}$ for the QNM frequencies breaks down.

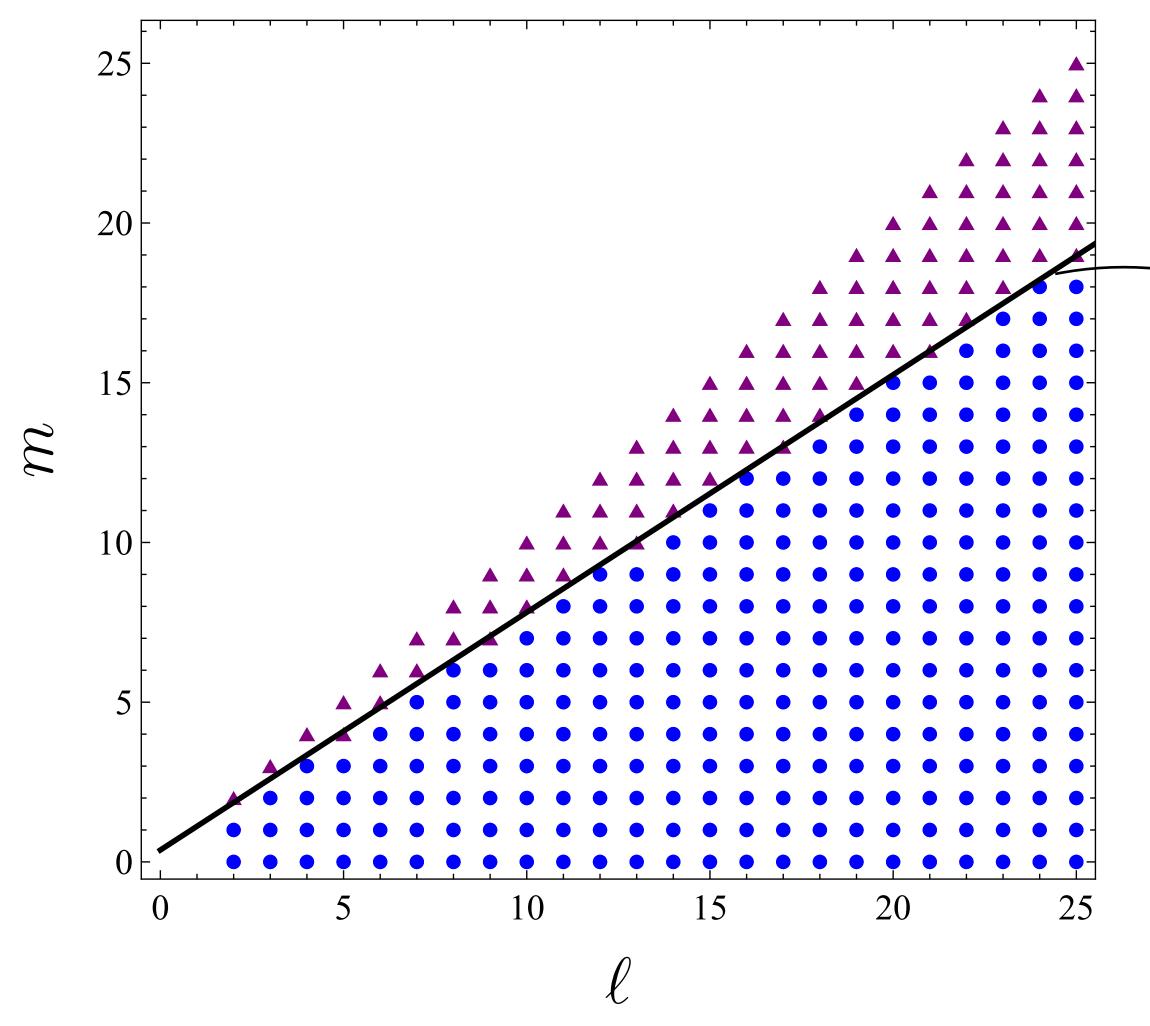
We need to obtain the exact solution. For instance, in regime III:

$$\omega_I \approx -(n+1/2) \frac{\eta^{3/2} |\mu - \mu_{\rm cr}|^{3/2}}{2M} (1 + \mathcal{O}(\hat{\alpha}))$$

$$\frac{\omega_I}{(n+1/2)} \approx -\frac{\eta^{3/2}}{2M} |\mu - \bar{\mu}_{\rm cr}|^{3/2} - \frac{3\eta^{3/2}}{4M} \hat{\alpha} \delta \mu_{\rm cr} |\mu - \bar{\mu}_{\rm cr}|^{1/2} + \dots ,$$

→ The divergence is a consequence of the change in the critical point

Qualitative change in the spectrum



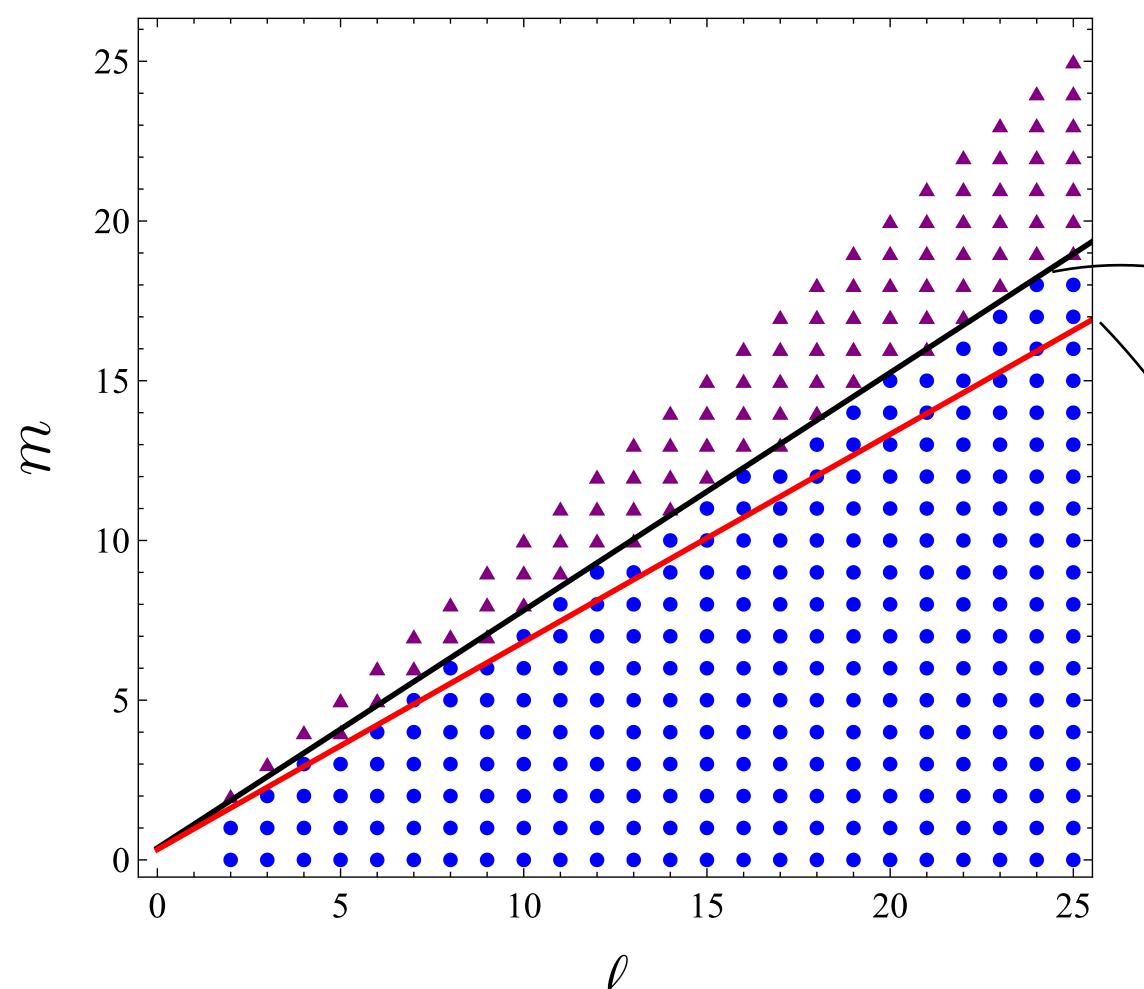
= only ZDMs exist (GR)

= ZDMs and DMs exist (GR)

Phase boundary obtained from the eikonal limit

$$\frac{m}{\ell + 1/2} = \bar{\mu}_{\rm cr} \approx 0.744$$

Qualitative change in the spectrum



= only ZDMs exist (GR)

= ZDMs and DMs exist (GR)

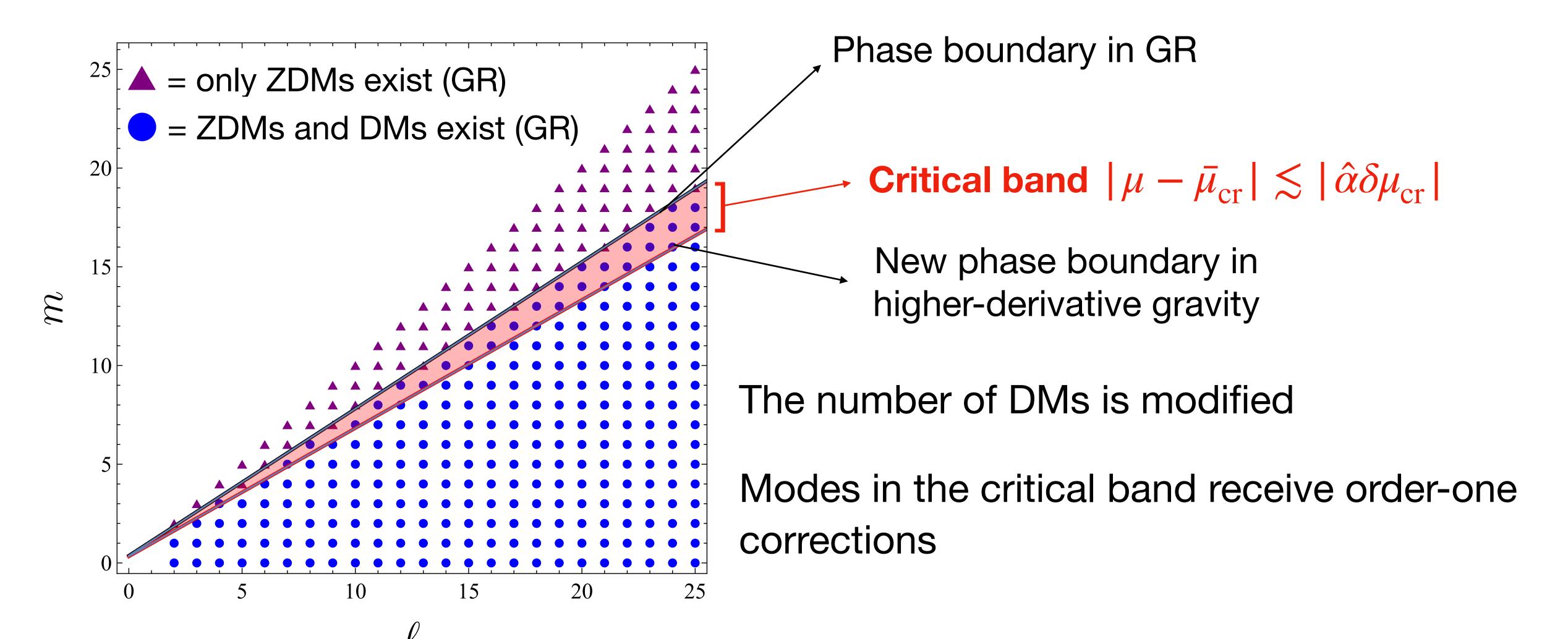
Phase boundary obtained from the eikonal limit

$$\frac{m}{\ell + 1/2} = \bar{\mu}_{\rm cr} \approx 0.744$$

New phase boundary in higher-derivative gravity

$$\mu_{\rm cr} = \bar{\mu}_{\rm cr} + \hat{\alpha}\delta\mu_{\rm cr}$$

Qualitative change in the spectrum



Regime of validity

Are there modes in the critical band within the regime of validity of the EFT?

Remark: $\mu = m/L$ is rational

Dirichlet theorem \Rightarrow many modes with $|\mu - \bar{\mu}_{\rm cr}| \sim 1/L^2$

On the other hand the critical band is $|\mu - \bar{\mu}_{\rm cr}| < |\hat{\alpha}\delta\mu_{\rm cr}| \sim 71.4 |\hat{\alpha}| L^2$

$$71.4 | \hat{\alpha} | L^4 \gtrsim 1$$

Condition for modes in the band

Observe: it can be satisfied even if $|\hat{\alpha}| \ll 1$

Regime of validity

EFT regime 1: Wilsonian point of view

We assume $\alpha \sim \ell_{\rm UV}^6$, with $\ell_{\rm UV} = E_{\rm UV}^{-1}$ related to massive degrees of freedom

The EFT is only reliable for resolving distances grater than ℓ_{UV}

$$|\hat{\alpha}| = \frac{\ell_{\rm UV}^6}{M^6} \ll 1 \text{ (BH radius larger than } \ell_{\rm UV})$$

$$L \ll |\hat{\alpha}|^{-1/6} \text{ (wavelength larger than } \ell_{\rm UV})$$

$$\Rightarrow$$
 71.4 $|\hat{\alpha}| L^4 \ll |\hat{\alpha}|^{1/3} \ll 1 \Rightarrow$ No modes in the critical band for large L

Still, modes near the critical line get corrections of order $|\hat{\alpha}|L^4\gg |\hat{\alpha}|L^2$

Regime of validity

EFT regime 2: convergence of the higher-derivative expansion

The EFT is classically consistent if additional HD corrections can be neglected

Result: in the regime in which $|\hat{\alpha}| \ll 1$ and $|\hat{\alpha}| L^4 \sim 1$, the effect of any additional HD correction on the QNM frequencies is negligible compared to the $\alpha \mathcal{R}^4$ term

→ Large changes in the QNM spectrum can take place consistently

Conclusion: as a classical theory, the EFT is consistent. Whether we can trust these predictions depends entirely on the UV completion

Sensitivity of lower I modes

Exact condition for the phase boundary

[Detweiler '80] [Yang+'12]

$$_{s}E_{lm}^{\text{Kerr}} = \frac{7m^{2}}{4} - s(s+1) - _{s}A_{lm}(m/2) > 0$$
 (No DMs)

This is $V''(r_+)\Big|_{\omega=m\Omega,a=M}$ expressed in a real form of the Teukolsky equation.

Remark: we only need to know the near-horizon extremal Teukolsky equation.

Modified near-horizon Teukolsky equation [PAC, David '24]

$$_{S}A_{lm} \rightarrow _{S}A_{lm} + \hat{\alpha}\delta A_{lm}^{\pm}$$

Sensitivity of lower I modes

Exact condition for the phase boundary

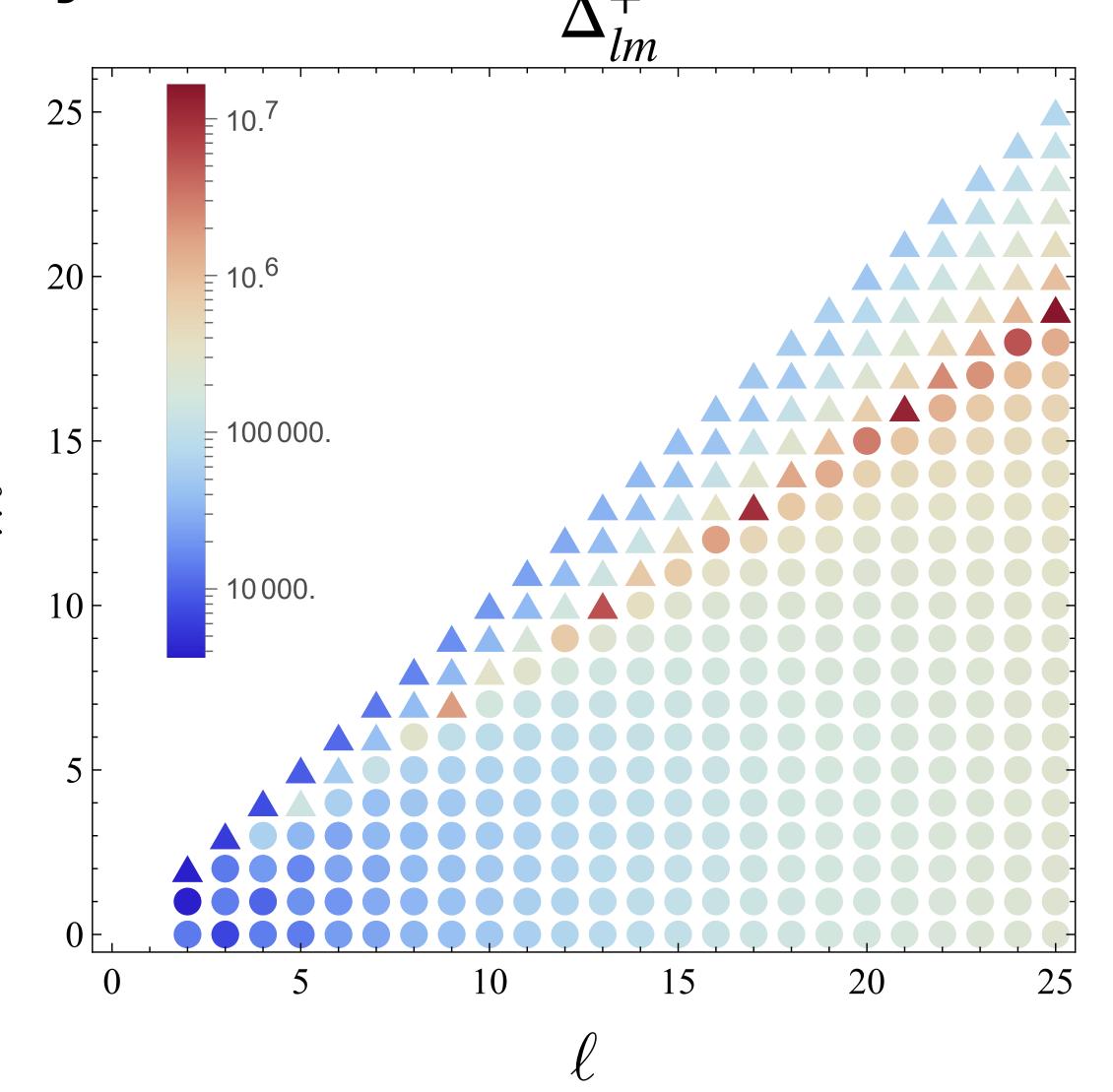
Modified phase boundary

$$_{S}E_{lm} = \frac{7m^{2}}{4} - s(s+1) - _{S}A_{lm} - \hat{\alpha}\delta A_{lm}^{\pm} > 0$$

Relative correction:

$$\Delta_{lm}^{\pm} = \frac{\delta A_{lm}^{\pm}}{\frac{7m^2}{4} - s(s+1) - {}_{s}A_{lm}}$$

$$\omega_I \sim |_{_S} E_{lm}|^{3/2} \Rightarrow \delta \omega_I / \omega_I \sim 3/2 \Delta_{lm}^{\pm}$$



Conclusions

Specific remarks

- First computation of gravitational QNMs with high rotation beyond GR
- Key development: effective scalar equation for eikonal perturbations in "isospectral" theories
- Master equation could have more applications: time domain simulations?
- Future work: extension for non-isospectral theories

Conclusions

General remarks

- Beyond-GR effects increase dramatically for high rotation
- Highly-rotating BHs have long-lived modes: high-precision spectroscopy

Highly rotating BHs ——— Golden events to test new physics

Conclusions

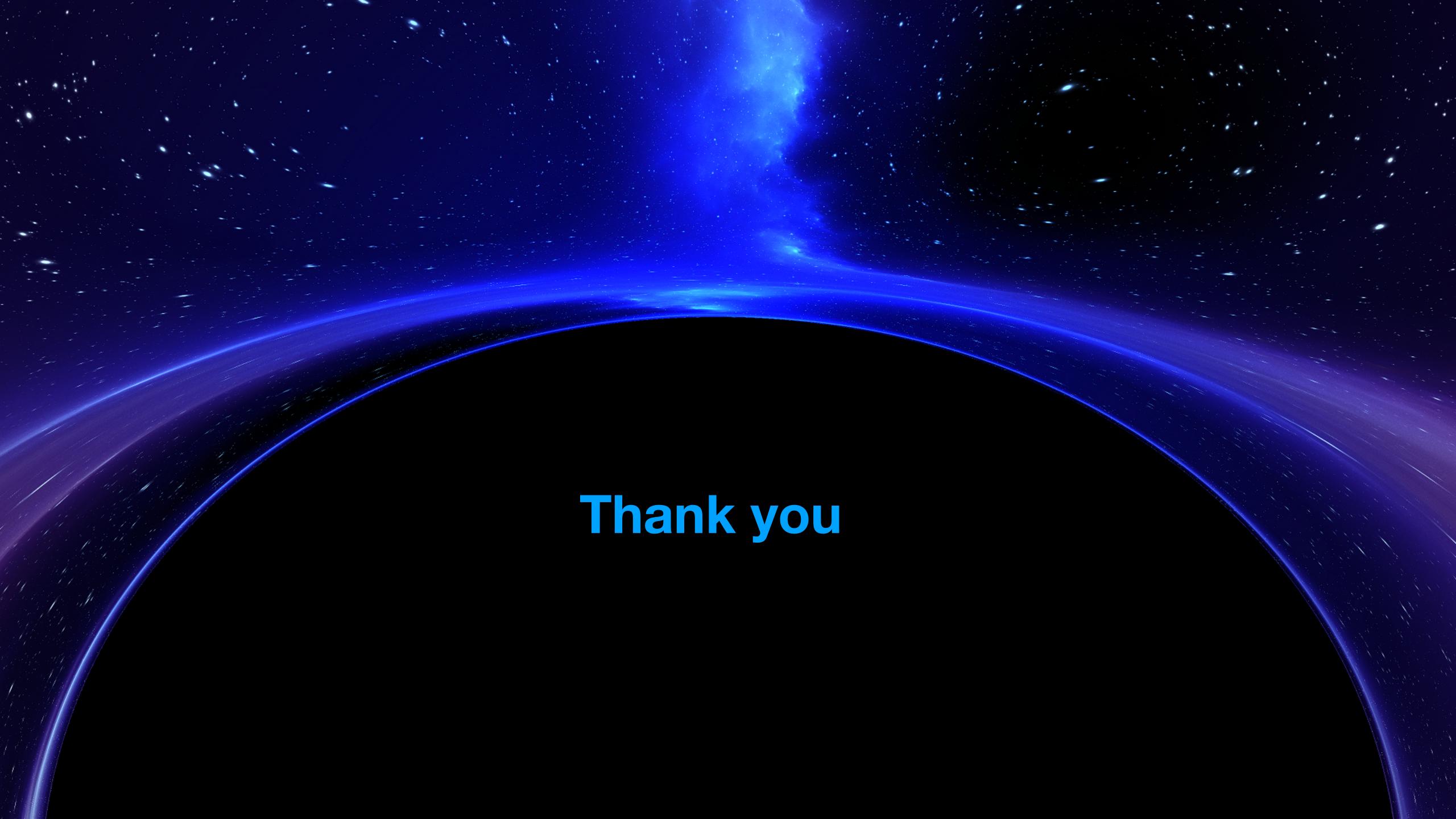
General remarks

- Beyond-GR effects increase dramatically for high rotation
- Highly-rotating BHs have long-lived modes: high-precision spectroscopy

Highly rotating BHs ——— Golden events to test new physics

Open questions

- QNM computation for lower l
- Implications for the time domain signal



Bonus slides

Why test EFT corrections

EFT is the main hypothesis for beyond-GR physics

Conditions for a theory to be viable:

- 1. It's not ruled out by other experiments
- 2. It has full predictive power
- 3. It CAN be tested with GWs

Very few "alternatives" to GR remain. EFT is the best motivated one

Observability of higher-derivative corrections

Relative corrections to GR = Const $\times \Delta$

$$\Delta = \frac{\ell^4 (GM)^2}{r^6}$$

$$\Delta_{\text{Sun}} \sim \left(\frac{\ell}{5 \times 10^8 \text{km}}\right)^4$$
, $\Delta_{\text{Earth}} \sim \left(\frac{\ell}{2 \times 10^8 \text{km}}\right)^4$, $\Delta_{BH}(10M_{\odot}) \sim \left(\frac{\ell}{40 \text{km}}\right)^4$

30 orders of magnitude increase

In addition, "Const" can become large in special cases (high rotation)