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Part I: Background and motivations
Why black hole thermodynamics?

A black hole is a thermodynamic object: it has temperature and entropy.

e Connect geometry with thermodynamics through known relations (first law &
Smarr formula)

e Works as a lab for study effects of gravity beyond GR: gravity plus scalar fields,
higher-order corrections, etc.

e In particular, I will focus in the role role of scalar charges in black hole
thermodynamics.
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Part I: Background and motivations
Why scalar charges?

¢ The study of scalar charges is relevant since they are understood as “hair” in
gravity theories evolving scalar fields.
e For hairy black holes, scalar charges are secondary hair.

® Just as bodies in thermal equilibrium are normally characterized by a small number of "state
parameters” (such as E and P), a stationary black hole is uniquely characterized by (M, Q, J).
This is known as “No-hair theorem”.

e Scalar charges are not protected by any conservation law.

¢ The role they play in black hole thermodynamics is still not clear and finding a covariant
definition can give us some insights.



It is in the asymptotic expansion of the scalar field ¢(r) for asymptotically flat
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It is in the asymptotic expansion of the scalar field ¢(r) for asymptotically flat
spacetimes:

Br) = 0me + = +O(?)

where X is the scalar charge and r is the standard radial coordinate.

Find a covariant definition of the scalar charge that recover this result. Then, see how
this charge enters into the thermodynamical relations and study its role.




@ The black holes solutions considered here, are all static, asymptotically flat,
spherically symmetric and by regular we means that exists a bifurcation surface.

® | will define the charges using Wald's formalism.



Part II: BH thermodynamics: First law & Smarr formula

Source: The #1 Clue to Quantum Gravity Sits on the Surfaces of Black Holes. Quanta Magazine.
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Part II: BH thermodynamics: First law & Smarr formula
Comment about the first law for hairy black holes [Gibbons et. al 1996]

@ Oth law: The surface gravity « (then, its temperature Ty) is constant over the
bifurcate horizon of a stationary black hole.

® 1st law : When the black hole switches from one stationary state to another, its
mass (or energy) changes by

SM = 8£5A L QuoT + B50Q — Y,
Y5

where Qy is the angular velocity of the horizon, §.J is the variation of the angular
momentum, @ is the electrostatic potential (defined as the difference of the
electric potential at infinity and at the event horizon) and §Q is the variation of
the electric charge. The conjugate chemical potentials Q25 and @y are constant
over the event horizon according to the generalized Oth law. ¢ is the value of
the scalar field at infinity.

® 2nd law: In any process, the area of a black hole (so its entropy), do not decrease

05 > 0.



e Athermodynamic relationship between quantities measured at spatial infinity
and those defined at the horizon

M =2TygS +2QgJ.



e Athermodynamic relationship between quantities measured at spatial infinity
and those defined at the horizon

M =2TygS +2QgJ.

e Quantities measured at infinity, such as the energy M and angular momentum }J,
represent the global properties of the spacetime.



Part II: BH thermodynamics: First law & Smarr formula

The Smarr formula

A thermodynamic relationship between quantities measured at spatial infinity
and those defined at the horizon

M =2TygS +2QgJ.

® Quantities measured at infinity, such as the energy M and angular momentum }J,
represent the global properties of the spacetime.

¢ In contrast, the thermodynamic quantities at the horizon are directly linked to
the geometric characteristics of the black hole: the entropy S is proportional to
the area of the event horizon and the temperature T depends on the surface
gravity , which is constant across the horizon by virtue of the zeroth law.
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matter fields [Ortin et al.].

e The formalism is based on generally covariant theories.

@ Described by a d—form Lagrangian L(p) such that S = [, L(yp)
® Under a general variation of the fields 65 = [, E, A dp 4 dO(p, dp)
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Part II: BH thermodynamics: First law & Smarr formula
The Wald’s formalism

The first law and the Smarr formula can be found integrating the following on-shell

identities over a spacelike hypersurface with boundaries at spatial infinity S2 and at
the bifurcation sphere B#H and using Stokes theorem

® The first law

dW [k]=0 & Wk] = W k]

52 BH

where

WIk] = 6Q[k] + uO(p,0p) —wr, 0y, Op,6¢p) = dwy.
® The Smarr formula
dK[kK=0& [ Kk= [ K[ (1)

52, BH

where K[k] = —QIk] + wLon-shel is the generalized Komar charge.
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@ The first law and the Smarr formula are given by surface integrals.
® The surface integrals are consequence of the closedness of a 2—form charge.

® For black hole spacetimes, the charges that characterize them are necessarily a
result of surface integrals.



Consider a 4-dimensional Einstein-Maxwell-Dilaton theory given by the action
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where ¢ is a real scalar field.
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Consider a 4-dimensional Einstein-Maxwell-Dilaton theory given by the action

1 1 1
Sle?, ¢] = —D / [— * (e“ A e”) ARy + ~d Axdp + ~e F AxF
167Gy 2 2
where ¢ is a real scalar field. A general variation of the action is
5S[e, ¢] = / [Eq A 5e® + ES¢ + dO(e®, 6, 5¢%, 56)]

where E is the scalar equation of motion

E=—dxdp— ge_“¢F A %F.



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law

Theories with global symmetries

Consider a 4-dimensional Einstein-Maxwell-Dilaton theory given by the action
a 1 1 —ag
Sle?, ¢] I e /\e /\Rab—i—qub/\*dqb—l—fe FAxF|.
167rG( ) 2 2

From the scalar eom we are going to construct a closed-form scalar charge i.e.,
1. E = dQg[k] Assuming:

© 0rp = —Li¢ = —ydd = 0.

® By hypothesis 6y x dp = —1xd * dp — day, x dp = 0.

® And 0, A = —(dP, + u.F) = 0 (field with gauge-freedom).



Consider a 4-dimensional Einstein-Maxwell-Dilaton theory given by the action

1 1 1
Sle*, 9l = —5 / [— * (e” A eb) A Rap + =do A *dop + —e " F A *F] .
167Gy 2 2
The closed 2—form scalar charge is
Qulk] = b [zk*dqﬁ—i— —Pre” a¢*F]
¢ 167

after integrating

ah _

1
by h=
2(a?+1) 477

a2+1[

o — \/MQ—HL(CLQ—l)eaff’ooq2



©® We found that the existence of a bifurcation surface enforces ¥ # 0.

® The scalar charge depends on the other conserved quantities, hence is a
secondary-hair.

® We computed the first law (¢W[k]=0) and obtained
OM =TH6S + PHQ — Yoo,

recovering the result of Gibbons et al.



We also constructed closed scalar charges +,E = dQg|k| for the theory given by

1

Sle,dl = ——
167TG§$)

/{— (€% A YA Ry + %dg{)/\*dd)Jr*V(qS)} .
Under a general variation of the fields
55, ¢ = / [Eq A 66" + E66 + dO(c%, &, 6%, 56)],

where E is the scalar eom

E = —dxdp + «V', V' =dV/de.



We also constructed closed scalar charges 1 E = dQg[k| for the theory given by

Sle, 9] = 16%(;(]3)/{— *(e“/\eb)/\Rab-l—%dd)/\*dd)+*V(¢)}.

where E is the scalar eom
E = —dxdp + «V', V' =dV/de.

We assumed §,.¢ = 0, and for the scalar potential 6 x V' = di, x V' = 0 implies the
local existence of AW, = 1, x V.



We also constructed on-shell closed scalar charges ,E = dQ[k] for the theory given
by

1 1
Sle, 9] = —M)/{_ * (e® /\eb) A Rgp + —dd)/\*dd)—l—*V((b)} .
167Gy 2
Thus we defined the closed 2—form scalar charge as

1
Q¢[k] = —W[’Lk*dgb-f-Wk], deZLk*V/.
4rGy



From the closed 2—form scalar charge

1

_W[Zk*dsﬁJer], AWy, = 1 % V.
drGy

Qulk] =

o After integrating Q,[k] at spatial infinity and at the bifurcation surface, one can
find conditions that the scalar potential V' (¢) must satisfy. These are no-hair
theorems:

V(o) = V'doc] = V" [6c] = VP [go] = VP[] = 0.
e The Smarr formula (dK|[k]=0)

1
M = 25T + 2a®,, where &, = ——(4)/ i
167Gy Jes o Oa



From the closed 2—form scalar charge

1
Qulk] = —W[%*d¢+Wk], AWy =1 % V'
4rGy

e The first law (dW[k]=0)’

SM = ToS — izaqsoo + By o

"o’ is a dimensionful constant.



@ We recover again the result of Gibbons et al.

® The covariant definition of scalar charges enables the formulation of no-hair
theorems.

® The closedness of the charge, ensures that it will satisfy a Gauss law.

@ The assumption
0V =0

was the key condition that ensured its closedness.



From closed to non-closed scalar charges: what changes and why it matters



For the theories

16 G(4)/[ (e*Ae®) A Rap + = d¢A*d¢+a f(®) G
T

where G is the Gauss-Bonnet term written in differential form as
1 ab cd
g= §€abcdR N R,
The eom for the scalar field

Ey = —d*dp+ o/ 0y f(6)G
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For the theories

16 G(4)/[ (e* Ae’) A Rgp + = d¢A*d¢+a f(®) G
Y

The eom for the scalar field
Ey=—dxdp+d'0,f(¢)G.

Constructing a form scalar charge

1By = —udxdo + a’8¢f(¢)zkg
Using N

wG = dX, Xy = —2PP Ry
one obtains

3By = —pd x do + a’6¢f(¢)dé\,’k



For the theories
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one obtains
1By = —pd*x do + o/8¢f(¢)ka.

® For the first term
O *xdop =0 = —1pdxdo = dig * do



For the theories

(4)/[ (e*Ne’) A Rgp + = dgb/\*dgb+a flo)g
167rG
one obtains
1By = —pd*x do + a'3¢f(¢)ka.
® For the first term
O *xdop =0 = —1pdxdo = dig * do
® For the second term, we use the chain-rule

95/ (¢) dXy, = d(0.f (9) Xi) — (0 f () N X



For the theories

(4)/[ (e*Ne®) A Rgp + = dgb/\*dgb+a f(®) G
167TG
The form scalar charge Q, is non-closed

’LkE¢ = dQ¢ =W, Wy = d(3¢f(¢)) N X, Q¢ = — % [’Lk * d(,b + o 8¢f((;5) Xk} .



For the theories

(4)/[ (e*Ne®) A Rgp + = dgb/\*dgb+a f(®) G
167TG
The form scalar charge Q, is non-closed

wBy =dQyp =Wy, Wy =d0sf(¢) N X,  Qp=— i [0, xdp + o Dy f(d) Xi] -

After using Stoke’s theorem

a/
/Sgqus = /BHQqs— EL3Wk-



For the theories

16 G(4)/[ (e® /\e YA Rap + = d¢A*d¢+a f(®) G
T

After using Stoke's theorem, the balance eq. reads

a/
/Sgow _ /BH% _ E/ngk-

where

_ 92 D
Qs =13, } / Qo = 20"k, f(d11), } /ank—%f(qﬁ)dWR- J
52 BH




New results: non-closed scalar charge and its role in the Smarr formula
& the first law

Einstein-scalar-Gauss-Bonnet theories: the scalar charge

For the theories

Szlw/ {_ *(ea/\eb)/\Rab+ld¢/\*d¢+0‘/f(¢)g ;
167Gy 2

The no-hair theorem comes from the volume integral. After the asymptotic
expansion,

—ZT/EWk——a’/rjaif@oo).(’)(r5)dr.

Which ensures absolute convergence for any coupling f(¢) that is smooth near ¢,
and explains the wide range of black hole solutions reported for these theories.



For the theories

_ 1 . a b 1 /
S_167.‘.—CTY(]3)/|: *(6 Ae)/\Rab+2d¢A*d¢+a f(¢)g s

The generalized Komar charge is non-closed (K[k] = —Q[k] + 2 Lon-shell)



For the theories

S = L@)/ [_ *(e“/\eb)/\Rab+1d¢/\*d¢+0/f(¢)g )
167Gy 2
The generalized Komar charge is non-closed (K[k] = —Q[k] + 2. Lon shell)

dK[k] = ' Zy,  Zp = Wi + M, Ve = df (¢) N X
The Smarr formula reads

¥
M =2TS — 7+ 20/ P,



For the theories

— 1 o a b 1 /
S—m/[ *(6 Ae)/\Rab+2d¢A*d¢+O& f(¢)g s

The generalized Komar charge is non-closed (K[k] = —Q[k] + 2 Lon-shell)

dK[k] = ' Zy,  Zp = Wi + M, Ve = df (¢) N X
The Smarr formula reads

¥
M =278 — 7 +20'®y,

where § = o (A-+20f(6)) and @y = Loy [ (9 (6m) — 2/ (6m)) — § s 2.

1
nelw



For the theories

16 G(4)/[ (e® /\e YA Rap + = dgb/\*dgb—i—a f(®) G
T

Varying the entropy with respect to M, ¢, and ' is found the first law
% /
SM =T6S — Zéqboo + 29,00,

Recovering again the result of [Gibbons et al.]



Linear coupling: f(¢) = ¢

Y =2k
5= 1! ——(A+2d6n)
1Gy o

by = 87%‘1\; [ (1—2¢pn) - —/ yk]

The scalar charge is closed on-shell.



Consistency check

Linear coupling: f(¢) = ¢
Y =2dk

S = A+2a¢H)

merd

leN[ (1 —2¢H)—/yk]

The scalar charge is closed on-shell.

Dy =

Dilatonic coupling: f(¢) = e~

/
Y = —2a'ke PH — a/ Wi
47'[' b))

1
S = ( ) ¢H>
1Gn A+2de
3K
d ., = — —ou
@ 87TGN6

The generalized Komar charge is
closed on-shell.



For the theories

16 G(4)/[ (e AN e’) A Ry + = dgb/\*dgb+oz f(®) G
T
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non-closed forms and an explicit volume integral will contribute.
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@ In general couplings, the scalar charge and the generalized Komar charge are
non-closed forms and an explicit volume integral will contribute.

® It has a direct interpretation within the spontaneous scalarization mechanism.



New results: non-closed scalar charge and its role in the Smarr formula
& the first law

Einstein-scalar-Gauss-Bonnet theories: results

For the theories

1 1
S (4)/[—*(e“Aeb>ARab+2d¢m*d¢>+a’f(¢>>g :

167G

@ In general couplings, the scalar charge and the generalized Komar charge are
non-closed forms and an explicit volume integral will contribute.

® It has a direct interpretation within the spontaneous scalarization mechanism.

® The finiteness of the scalar charge clarifies why exists black hole solutions for a
wide class of coupling functions, beyond the shift-symmetric case.
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Letting small perturbations around ¢, of the form

¢ = doo + €00 + O(e?), for e<1.
A Taylor expansion of the coupling function and its derivative yields

F(9) = f(hoo) + €50Wy f(hoo) + O(e?),
05 (8) = 0f (9o0) + € 06O f(hoo) + O(€?).

Plugging these expansions into the scalar equation of motion and keeping terms up
to O(e), we obtain

Ep = —edxdoo") + 0sf(doc) G + €563 f(d0) G + O(€2).
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requires 0, f (¢~ ) = 0, so that the unperturbed configuration solves the equation at
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Imposing that the scalar-free solution ¢ = ¢, satisfies the background equation
requires 0, f (¢~ ) = 0, so that the unperturbed configuration solves the equation at
zeroth order. At linear order in ¢, the perturbation obeys the equation

dx d 51 + m2e(r) 5o = 0,

where the m2¢(r)is the effective mass squared and given by m2q(r) = —ajf(gzsoo) G(r).



New results: non-closed scalar charge and its role in the Smarr formula
& the first law

Einstein-scalar-Gauss-Bonnet theories: spontaneous scalarization

Imposing that the scalar-free solution ¢ = ¢, satisfies the background equation
requires J, f(¢s) = 0, SO that the unperturbed configuration solves the equation at
zeroth order. At linear order in ¢, the perturbation obeys the equation

dx d o) +mie(r) 5oV = 0,

where the mZx(r)is the effective mass squared and given by mZq(r) = =93 f (¢o0) G (7).
Since G(r) > 0 outside the event horizon of a Schwarzschild spacetime, the sign of
m2g is determined by the second derivative of the coupling function. When this
quantity is positive, c’ﬁf(gboo) > 0, the scalar perturbation becomes tachyonic and
grows dynamically, indicating the onset of spontaneous scalarization and the
formation of a nontrivial scalar configuration.



A particular coupling in EsGB admits spontaneous scalarization when the following
two conditions are simultaneously satisfied:

@ The scalar-free background must solve the field equations,

f(9oo) = const, 0 f(¢o0) = 0. (2)

® The trivial configuration must be unstable under scalar perturbations,

03 f (o) > 0. (3)



A linearized scalar charge of the form

(1)___/ 92 (ds0) d(36V) A X, (4)

where 81 = —L [0, 1 d(5pM).



A linearized scalar charge of the form

1) — _i/ 2 (1)
20—~ [ 0 d(Eo) A @

where 2 = —L [, 1 d(5¢1)). The last equation, together with the first condition

implies that scalarization may occur since the perturbation §¢(") can generate a
non-vanishing perturbed scalar charge proportional to 83,f(¢>oo).



New results: non-closed scalar charge and its role in the Smarr formula
& the first law

Einstein-scalar-Gauss-Bonnet theories: spontaneous scalarization

A linearized scalar charge of the form

-2 [ A a6 @

where (U = —L [, 1% d(5¢). The last equation, together with the first condition

implies that scalarization may occur since the perturbation §¢(") can generate a
non-vanishing perturbed scalar charge proportional to 82f(<;5oo) Additionally, it gives

support to the non-closedness of the scalar charge and the bulk term provides a
geometric measure of the instability.



¢ The role of scalar charges is still not clear...
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Part V: Conclusions and future directions

e The role of scalar charges is still not clear...

e |tis also possible to investigate how the restrictions on the scalar potential affect
the existence of hairy black hole solutions in asymptotically Anti-de Sitter
spacetimes.

¢ Extend the study to other hairs in black hole spacetimes.

e Extend the Wald's formalism to define charges for extremal black holes.
e More...



e This presentation was supported by Vicerrectoria de Investigacion y Doctorados
from the Universidad San Sebastian — Proyecto USS-FIN-25-PDOC-05.
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