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3 Ballesteros, R., Gómez-Fayrén, C., Ort́ın, T. Zatti, M. On scalar charges and black
hole thermodynamics. JHEP 05 (2023) 158. arXiv:2302.11630 [hep-th].



Presentation Overview

1 Background and motivations

2 Black hole thermodynamics: First law & Smarr formula

3 Previous results: closed scalar charge and its role in the Smarr formula & the first law

4 New results: non-closed scalar charge and its role in the Smarr formula & the first law

5 Conclusions and future directions



Part I: Background and motivations
Why black hole thermodynamics?

A black hole is a thermodynamic object: it has temperature and entropy.

Hawking temperature [Hawking, 1975]
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Bekenstein’s Entropy [Bekenstein, 1973]
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Part I: Background and motivations
Why scalar charges?

• The study of scalar charges is relevant since they are understood as “hair” in
gravity theories evolving scalar fields.

• For hairy black holes, scalar charges are secondary hair.
• Just as bodies in thermal equilibrium are normally characterized by a small number of ”state
parameters” (such as E and P ), a stationary black hole is uniquely characterized by (M,Q, J).
This is known as ”No-hair theorem”.

• Scalar charges are not protected by any conservation law.
• The role they play in black hole thermodynamics is still not clear and finding a covariant

definition can give us some insights.
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Part I: Background and motivations
Why scalar charges?

It is in the asymptotic expansion of the scalar field ϕ(r) for asymptotically flat
spacetimes:

ϕ(r) = ϕ∞ +
Σ

r
+O(r−2)

where Σ is the scalar charge and r is the standard radial coordinate.

GOAL

Find a covariant definition of the scalar charge that recover this result. Then, see how
this charge enters into the thermodynamical relations and study its role.
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Warnings

1 The black holes solutions considered here, are all static, asymptotically flat,
spherically symmetric and by regular we means that exists a bifurcation surface.

2 I will define the charges using Wald’s formalism.
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Source: The #1 Clue to Quantum Gravity Sits on the Surfaces of Black Holes. Quanta Magazine.



Part II: BH thermodynamics: First law & Smarr formula
The laws of BH thermodynamics

1 0th law: The surface gravity κ (then, its temperature TH ) is constant over the
bifurcate horizon of a stationary black hole.

2 1st law : When the black hole switches from one stationary state to another, its
mass (or energy) changes by

δM =
κ

8π
δA+ΩHδJ +ΦHδQ

where ΩH is the angular velocity of the horizon, δJ is the variation of the angular
momentum, ΦH is the electrostatic potential (defined as the difference of the
electric potential at infinity and at the event horizon) and δQ is the variation of
the electric charge. The conjugate chemical potentials ΩH and ΦH are constant
over the event horizon according to the generalized 0th law.

3 2nd law: In any process, the area of a black hole (so its entropy), do not decrease

δS ≥ 0.
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Part II: BH thermodynamics: First law & Smarr formula
Comment about the first law for hairy black holes [Gibbons et. al 1996]

1 0th law: The surface gravity κ (then, its temperature TH ) is constant over the
bifurcate horizon of a stationary black hole.

2 1st law : When the black hole switches from one stationary state to another, its
mass (or energy) changes by

δM =
κ

8π
δA+ΩHδJ +ΦHδQ− Σδϕ∞

where ΩH is the angular velocity of the horizon, δJ is the variation of the angular
momentum, ΦH is the electrostatic potential (defined as the difference of the
electric potential at infinity and at the event horizon) and δQ is the variation of
the electric charge. The conjugate chemical potentials ΩH and ΦH are constant
over the event horizon according to the generalized 0th law. ϕ∞ is the value of
the scalar field at infinity.

3 2nd law: In any process, the area of a black hole (so its entropy), do not decrease
δS ≥ 0.



Part II: BH thermodynamics: First law & Smarr formula
The Smarr formula

• A thermodynamic relationship between quantities measured at spatial infinity
and those defined at the horizon

•
M = 2THS + 2ΩHJ.

• Quantities measured at infinity, such as the energy M and angular momentum J,
represent the global properties of the spacetime.

• In contrast, the thermodynamic quantities at the horizon are directly linked to
the geometric characteristics of the black hole: the entropy S is proportional to
the area of the event horizon and the temperature T depends on the surface
gravity κ, which is constant across the horizon by virtue of the zeroth law.
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Part II: BH thermodynamics: First law & Smarr formula
The Wald’s formalism

• Wald and his collaborators, developed a covariant framework that can be
applied to black holes for computing charges [Wald et al].

Within the Lie-Lorentz
derivative, it was shown that this formalism can be used for gravity theories with
matter fields [Ort́ın et al.].

• The formalism is based on generally covariant theories.
1 Described by a d−form Lagrangian L(φ) such that S =

∫
M L(φ)

2 Under a general variation of the fields δS =
∫
M Eφ ∧ δφ+ dΘ(φ, δφ)
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Part II: BH thermodynamics: First law & Smarr formula
The Wald’s formalism

The first law and the Smarr formula can be found integrating the following on-shell
identities over a spacelike hypersurface with boundaries at spatial infinity S2

∞ and at
the bifurcation sphere BH and using Stokes theorem

1 The first law
dW[k]=̇0 ⇔

∫
S2
∞

W[k] =

∫
BH

W[k]

where
W[k] = δQ[k] + ıkΘ(φ, δφ)−ϖk, δλk

Θ(φ, δφ) = dϖk.

2 The Smarr formula
dK[k]=̇0 ⇔

∫
S2
∞

K[k] =

∫
BH

K[k] (1)

where K[k] = −Q[k] + ıkLon-shell is the generalized Komar charge.
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The Wald’s formalism

1 The first law and the Smarr formula are given by surface integrals.

2 The surface integrals are consequence of the closedness of a 2−form charge.
3 For black hole spacetimes, the charges that characterize them are necessarily a

result of surface integrals.
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Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with global symmetries

Consider a 4-dimensional Einstein-Maxwell-Dilaton theory given by the action

S[ea, ϕ] =
1

16πG
(4)
N

∫ [
− ⋆

(
ea ∧ eb

)
∧Rab +

1

2
dϕ ∧ ⋆dϕ+

1

2
e−aϕF ∧ ⋆F

]
where ϕ is a real scalar field.

A general variation of the action is

δS[ea, ϕ] =

∫
[Ea ∧ δea +Eδϕ+ dΘ(ea, ϕ, δea, δϕ)]

where E is the scalar equation of motion

E = −d ⋆ dϕ− a

2
e−aϕF ∧ ⋆F.
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(4)
N
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− ⋆

(
ea ∧ eb

)
∧Rab +

1

2
dϕ ∧ ⋆dϕ+
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2
e−aϕF ∧ ⋆F

]
.

From the scalar eom we are going to construct a closed-form scalar charge i.e.,
ıkE = dQϕ[k] Assuming:

1 δkϕ = −Lkϕ = −ıkdϕ = 0.
2 By hypothesis δk ⋆ dϕ = −ıkd ⋆ dϕ− dık ⋆ dϕ = 0.
3 And δkA = −

(
dPk + ıkF

)
= 0 (field with gauge-freedom).
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∧Rab +
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2
dϕ ∧ ⋆dϕ+

1

2
e−aϕF ∧ ⋆F

]
.

The closed 2−form scalar charge is

Qϕ[k] = − 1

16π

[
ık ⋆ dϕ+

a

2
Pke

−aϕ ⋆ F
]

after integrating

a h

2 (a2 + 1)
=

1

4
Σ , h = − a2 + 1

a2 − 1

[
M −

√
M2 + 4 (a2 − 1) eaϕ∞ q2

]
.



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with global symmetries

1 We found that the existence of a bifurcation surface enforces Σ ̸= 0.
2 The scalar charge depends on the other conserved quantities, hence is a

secondary-hair.
3 We computed the first law (dW[k]=̇0) and obtained

δM = THδS +ΦHδQ− Σδϕ∞,

recovering the result of Gibbons et al.



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with no-global symmetries

We also constructed closed scalar charges ıkE = dQϕ[k] for the theory given by

S[e, ϕ] =
1

16πG
(4)
N

∫ {
− ⋆ (ea ∧ eb) ∧Rab +

1

2
dϕ ∧ ⋆dϕ+ ⋆V (ϕ)

}
.

Under a general variation of the fields

δS[ea, ϕ] =

∫
[Ea ∧ δea +Eδϕ+ dΘ(ea, ϕ, δea, δϕ)] ,

where E is the scalar eom

E = − d ⋆ dϕ + ⋆V ′ , V ′ = dV/dϕ.
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where E is the scalar eom
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We assumed δkϕ = 0, and for the scalar potential δk ⋆ V ′ = dık ⋆ V
′ = 0 implies the

local existence of dWk = ιk ⋆ V
′ .



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with no-global symmetries

We also constructed on-shell closed scalar charges ıkE = dQϕ[k] for the theory given
by

S[e, ϕ] =
1

16πG
(4)
N

∫ {
− ⋆ (ea ∧ eb) ∧Rab +

1

2
dϕ ∧ ⋆dϕ+ ⋆V (ϕ)

}
.

Thus we defined the closed 2−form scalar charge as

Qϕ[k] ≡ − 1

4πG
(4)
N

[ ık ⋆ dϕ + Wk] , dWk = ιk ⋆ V
′ .



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with no-global symmetries

From the closed 2−form scalar charge

Qϕ[k] ≡ − 1

4πG
(4)
N

[ ık ⋆ dϕ + Wk] , dWk = ιk ⋆ V
′ .

• After integrating Qϕ[k] at spatial infinity and at the bifurcation surface, one can
find conditions that the scalar potential V (ϕ) must satisfy. These are no-hair
theorems:

V (ϕ∞) = V ′[ϕ∞] = V ′′[ϕ∞] = V (3)[ϕ∞] = V (4)[ϕ∞] = 0 .

• The Smarr formula (dK[k]=̇0)

M = 2ST + 2αΦα , where Φα ≡ − 1

16πG
(4)
N

∫
Σ3

ιk ⋆
∂V

∂α



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with no-global symmetries

From the closed 2−form scalar charge

Qϕ[k] ≡ − 1

4πG
(4)
N

[ ık ⋆ dϕ + Wk] , dWk = ιk ⋆ V
′ .

• The first law (dW[k]=̇0)1

δM = T δS − 1

4
Σ δϕ∞ + Φα δα .

1α′ is a dimensionful constant.



Part III: Previous results: closed scalar charge and its role in the
Smarr formula & the first law
Theories with no-global symmetries

1 We recover again the result of Gibbons et al.
2 The covariant definition of scalar charges enables the formulation of no-hair

theorems.
3 The closedness of the charge, ensures that it will satisfy a Gauss law.
4 The assumption

δkV = 0

was the key condition that ensured its closedness.



New results: non-closed scalar charge and its role in the Smarr formula
& the first law

From closed to non-closed scalar charges: what changes and why it matters



New results: non-closed scalar charge and its role in the Smarr formula
& the first law
Einstein-scalar-Gauss-Bonnet theories

For the theories

S =
1

16πG
(4)
N

∫ [
− ⋆ (ea ∧ eb) ∧Rab +

1

2
dϕ ∧ ⋆dϕ+ α′ f(ϕ)G

]
,

where G is the Gauss-Bonnet term written in differential form as

G =
1

2
ϵabcdR

ab ∧Rcd.

The eom for the scalar field

Eϕ = −d ⋆ dϕ+ α′∂ϕf(ϕ)G
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S2
∞

Qϕ = Σ,
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BH

Qϕ = 2α′κ∂ϕf(ϕH),

∫
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Wk = ∂2
ϕf(ϕ)dϕPR̃.
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The no-hair theorem comes from the volume integral. After the asymptotic
expansion,

− α′

4π

∫
Σ
Wk = −α′

∫ ∞

rH

∂2
ϕf(ϕ∞) · O(r−5) dr .

Which ensures absolute convergence for any coupling f(ϕ) that is smooth near ϕ∞,
and explains the wide range of black hole solutions reported for these theories.
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Varying the entropy with respect to M,ϕ∞ and α′ is found the first law

δM = TδS − Σ

4
δϕ∞ + 2Φα′δα′.

Recovering again the result of [Gibbons et al.]



Consistency check

Linear coupling: f(ϕ) = ϕ

Σ = 2α′κ

S =
1

4GN

(
A+ 2α′ϕH

)

Φα′ =
1

8πGN

[
κ(1− 2ϕH)− 1

2

∫
Σ
Yk

]
The scalar charge is closed on-shell.

Dilatonic coupling: f(ϕ) = e−ϕ

Σ = −2α′κe−ϕH − α′

4π

∫
Σ
Wk

S =
1

4GN

(
A+ 2α′e−ϕH

)
Φα′ = − 3κ

8πGN
e−ϕH

The generalized Komar charge is
closed on-shell.
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1 In general couplings, the scalar charge and the generalized Komar charge are
non-closed forms and an explicit volume integral will contribute.

2 It has a direct interpretation within the spontaneous scalarization mechanism.
3 The finiteness of the scalar charge clarifies why exists black hole solutions for a

wide class of coupling functions, beyond the shift-symmetric case.
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& the first law
Einstein-scalar-Gauss-Bonnet theories: spontaneous scalarization

Letting small perturbations around ϕ∞ of the form

ϕ = ϕ∞ + ϵ δϕ(1) +O(ϵ2), for ϵ ≪ 1.

A Taylor expansion of the coupling function and its derivative yields

f(ϕ) = f(ϕ∞) + ϵ δϕ(1)∂ϕf(ϕ∞) +O(ϵ2),

∂ϕf(ϕ) = ∂ϕf(ϕ∞) + ϵ δϕ(1)∂2
ϕf(ϕ∞) +O(ϵ2).

Plugging these expansions into the scalar equation of motion and keeping terms up
to O(ϵ), we obtain

Eϕ = −ϵ d ⋆ d δϕ(1) + ∂ϕf(ϕ∞)G + ϵ δϕ(1)∂2
ϕf(ϕ∞)G +O(ϵ2).
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New results: non-closed scalar charge and its role in the Smarr formula
& the first law
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Imposing that the scalar-free solution ϕ = ϕ∞ satisfies the background equation
requires ∂ϕf(ϕ∞) = 0, so that the unperturbed configuration solves the equation at
zeroth order.

At linear order in ϵ, the perturbation obeys the equation

d ⋆ d δϕ(1) +m2
eff(r) δϕ

(1) = 0,

where the m2
eff(r)is the effective mass squared and given by m2

eff(r) = −∂2
ϕf(ϕ∞)G(r).

Since G(r) > 0 outside the event horizon of a Schwarzschild spacetime, the sign of
m2

eff is determined by the second derivative of the coupling function. When this
quantity is positive, ∂2

ϕf(ϕ∞) > 0, the scalar perturbation becomes tachyonic and
grows dynamically, indicating the onset of spontaneous scalarization and the
formation of a nontrivial scalar configuration.
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A particular coupling in EsGB admits spontaneous scalarization when the following
two conditions are simultaneously satisfied:

1 The scalar-free background must solve the field equations,

f(ϕ∞) = const, ∂ϕf(ϕ∞) = 0. (2)

2 The trivial configuration must be unstable under scalar perturbations,

∂2
ϕf(ϕ∞) > 0. (3)
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A linearized scalar charge of the form

Σ(1) = − α′

4π

∫
Σ3

∂2
ϕf(ϕ∞) d(δϕ(1)) ∧ Xk , (4)

where Σ(1) = − 1
4π

∫
S2
∞
ιk⋆ d(δϕ

(1)).

The last equation, together with the first condition
implies that scalarization may occur since the perturbation δϕ(1) can generate a
non-vanishing perturbed scalar charge proportional to ∂2

ϕf(ϕ∞). Additionally, it gives
support to the non-closedness of the scalar charge and the bulk term provides a
geometric measure of the instability.
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Part V: Conclusions and future directions

• The role of scalar charges is still not clear...

• It is also possible to investigate how the restrictions on the scalar potential affect
the existence of hairy black hole solutions in asymptotically Anti-de Sitter
spacetimes.

• Extend the study to other hairs in black hole spacetimes.
• Extend the Wald’s formalism to define charges for extremal black holes.
• More...
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