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o Generic prediction of General Relativity renose; Hawking
= They occur in the interior of black holes

o Expected to be an artifact of an incomplete description...
= Fundamental question: how do they get resolved?

= Possibility 1: A fully quantum description is necessary

% Possibility 2: They can be resolved within a regime in
which the classical metric description is valid
= regular black holes
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REGULAR BLACK HOLES

o Black holes with no singularities

O Many mOdelS proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]
= Not actual GR solutions: postulated metrics as theoreti-
cal test beds...
...In the absence of a dynamical framework, all these ideas
are very poorly justified

o The success of all previous attempts at embedding RBHs
into actual theories has been quite limited
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Example: Hayward black hole

2 2
]fl(rr)+r2deD_2), where f(r)=1 2Mr

o Deformation parametrized by «
o It looks like Schwarzschild at long distances...

ds® = —f(r)dt*+

flr)=*1- == 4.

o ...but the curvature singularity gets replaced by a de Sitter
core

All curvature invariants remain finite everywhere

P-4 2Ma
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o In principle, singularities should be cured by some modifi-
cation of Einstein gravity

o Corrections from top-down models (e.g., String Theory) =
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of o)

o Perhaps those would resolve singularities somehow

o Understanding such effects is in general out of reach...
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REGULAR BLACK HOLES FROM PURE GRAVITY

o Last year we considered a bottom-up setup where we can
control the effects of infinite towers of higher-curvature cor-
rections to Einstein gravity

o The result is a generic resolution of the Schwarzschild sin-
gularity

o RBHSs arise as the unique spherically symmetric solutions of
Einstein gravity coupled to infinite towers of higher-curvature
terms

o First complete dynamical models of matter collapse leading
to the formation of regular black holes

6]
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...however, any gravitational effective action can be mapped, via
a field redefinition, to a Quasi-topological gravity

[PB, Cano, Hennigar, Moreno, Murcia]
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...however, any gravitational effective action can be mapped, via
a field redefinition, to a Quasi-topological gravity

[PB, Cano, Hennigar, Moreno, Murcia]
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QUASI-TOPOLOGICAL GRAVITIES AND GRAVITATIONAL EFT

This set up may seem very restrictive...
...however, any gravitational effective action can be mapped, via
a field redefinition, to a Quasi-topological gravity

dPx/
lepT = / |g R+ ZﬂaneIn

R+Z anZn

= QT theories capture the most general perturbative effects arising
from any (purely) gravitational action
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Here we will go beyond the perturbative regime...
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Consider a general spherically symmetric ansatz

dr?
f(r.t)
The full non-linear EOM of a general QT gravity

ds® = —N(r, t)f (r,t)dt> +

+r2dQfp ) -

Nmax

imply the conditions 9,N(r,t) = 0, dif(r,t) = 0. Hence, N(r,t) =
N(t), f(r,t) = f(r) and we can set N(t) = 1.

= QT theo rieS Satisfy a BirkhOﬂ: theOI’emZ [Oliva, Ray; PB, Cano, Hennigar, Murcia]
every spherically symmetric vacuum solution is also static.
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[PB, HENNIGAR, MURCIA]

type | QTGs

Eably(r) = 2" order

type Il QTGs
Eablgss < 2" order

type Il QTGs
g%&, < 2" order

Lovelock
Eap <= 2" order

Birkhoff

Weyl"

Birkhoff = Quasi-topological
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m Similar densities of arbitrary order exist (identical recursion for-
mulas as in the D > 5 polynomial cases).
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A UNIFIED DIMENSIONAL REDUCTION

Consider a dimensional reduction of our D-dimensional models
on the (D — 2)-sphere (both the polynomial D > 5 and non-
polynomial D = 4 ones)

ds® = 7, dXdX” + o(X)*dQp_s)
One finds:
Inpyar = lad[yw, @] + 1ogY  (two-dim. Horndeski gravity)

As long as we inquire about spherically symmetric problems, the
dynamics can be studied by means of this 2d action.
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QUASI-TOPOLOGICAL BLACK HOLES

Both for polynomial D > 5 and non-polynomial D = 4 QT theo-
ries, the full non-linear EOM for a general spherically symmetric
ansatz reduce to an algebraic equation for f(r):

+I§( D — 2n) {1—f(r)}":2M

r2

where M is an integration constant proportional to the mass.
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QUASI-TOPOLOGICAL BLACK HOLES

o Case 1: Einstein gravity, a, = 0Vn > 2:

(Schwarzschild black hole)

o Case 2: Quasi-topological gravity with a finite number of cor-
rections, a, = 0V N > Ny

oM \ Mmooy
f(r) 201 - ( ) g
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(Singularity persists, but weaker)

Note that exponent tends to 2 as n,,., — oc...
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SCHWARZSCHILD SINGULARITY RESOLUTION

o Case 3: Quasi-topological gravity with an infinite number of
corrections, Ny — 00,

dS core emerges and resolves the singularity

o This occurs quite generically. Sufficient condition:
ap>0Vn, lim(a)=C>0
n—oo
o Example:

(D —2)
(D —2n)

2Mr?
"' = f(N=1—- ——
f(r) rb=1 4+ 2Ma

(Hayward black hole)
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Is there a universal upper bound on spacetime curvature? o

K= RabcdRade < #/64

o In our context, this would
mean that for each QT the-
ory (fixed «,), there exist 08
some fixed maximum value £ 06
of K which cannot be sur- §0.4
passed regardless of the
value of the RBHs mass M.

o General proof o 1 2 3 4 3

[Frolov, Koek, Pinedo Soto, Zelnikov] T/\/a




x 2.3 Dynamical formation of RBHs
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m Collapse of a very thin spherical shell of dust
Tap = 00(r — R(7))UqUp .
Inside the shell, flat spacetime.

m Collapse of a spherical star of pressureless dust
(Oppenheimer-Snyder model)

Tab = pUqgUp .
Inside the star, FLRW spacetime.

m Birkhoff’s theorem =- the exterior is given by the unique
static and spherically symmetric vacuum solution.
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REGULAR BLACK HOLES FROM MATTER COLLAPSE

Find and solve the modified Israel junction conditions using the
two-dimensional Horndeski effective action.

lgr = ba[vu, ] + L (two-dim. Horndeski gravity)
o Continuity of the induced metric:
hyg = hXB

o Discontinuity of boundary equations of motion:
Mas — Mig = 87GTag, Where Mag ~ 51057 /5h"E
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m Ashell/star that starts collapsing at some finite radius R, >
r. keeps on decreasing its size, eventually giving rise to a
regular black hole.

m As it continues to collapse, it crosses r = r_ and the inner
horizon forms.

m Ultimately, the shell/star reaches a turning point at which
R = o and R = R,. At that point, a bounce occurs.

m It starts to grow, crosses the inner and outer horizons and
emerges in a new universe from a white hole.

m The shell/star grows up to r = R,, at which point the process
of collapse starts over.



REGULAR BLACK HOLES FROM MATTER COLLAPSE
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x 3. RBHs from pure gravity: perspectives
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m Buchdahl limit & maximum de-
gree of compactness attainable by 12
perfect-fluid, isotropic stars with

1.160 +
positive, outward-decreasing en- 5 S,/g_f\\\

ergy densities. In GR, L1

Rmin/rb

Rmin o 9

R > R, where >GM — 8 1

4 6 8 10 12 14
m Arbitrarily high curvatures reached D
as R — Ruin
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m In GR, Buchdahl’s inequality is saturated by infinite-central
pressure constant-density stars.

m A generalized inequality can be found for QT models with
RBHs. This is also saturated by infinite-central pressure,
constant-density stars at least for broad classes of such mod-
els.
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m The universal Markov-like upper bound on the curvature in-
variants of vacuum solutions can in principle be violated:
stars within the blue region reach arbitrarily high curvatures
as the purple Buchdhal-like limit is approached.

m One way to avoid this = impose the dominant energy con-
dition on matter (non-negative energy density for every ob-
server and non-spacelike local energy flow). More gener-
ally, this suggests that less-naive matter couplings may be
needed in order to preserve regularity beyond the vacuum
sector.
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o Stability of the inner horizons? (mass-inflation)
Inner-extremal black holes

[Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]

- Transient states — spatial/null singularities

[Poisson, Israel; Ori]

- Transient states — extremal regular black holes

[Barcelo, Boyanov, Carballo-Rubio, Garay]

- Transient states — trapped region disappears completely

[Hayward; Carballo-Rubio, Di Filippo, Liberati, Visser]

= study classical+semiclassical perturbations

o Stability of the solutions beyond spherical symmetry?
= study gravitational perturbations

o Stability on other backgrounds?
= can be healed by including explicit non-local f(OJ) terms
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Evaporation process

o Take 0 = black body approximation:
x early times: analogous to Schwarzschild
x late times: Schwarzschild fully evaporates; for Hayward, emis-
sion rate gradually decreases towards extremality (remnant scale
set by a).

o Take 1 = greybody factors

o Take 2 = JT gravity corrections near extremality

Comparison with 2d toy models (fully backreacted geometries)

[Barenboim, Frolov, Kunstatter]

Role of “overextremal” horizonless solutions?
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e}

Critical collapse

Microstate counting
Holographic probes

Rotation

Black bounces

Classical string interpretation?
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x The Schwarzschild black hole singularity gets generically re-
solved in D > 5 by the effect of infinite towers of higher-
curvature densities (and, less generically, also in D = 4).

*~ The resulting RBHs are the only vacuum spherically-
symmetric solutions of these theories (Birkhoff theorem
holds).

% First fully dynamical models in which the collapse of matter
leads to the formation of regular black holes.

% This framework allows us to address many questions re-
garding the fate/viability of regular black holes.
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THE END



