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⋆ 1. Regular black holes



Spacetime Singularities

◦ Generic prediction of General Relativity [Penrose; Hawking]

⇒ They occur in the interior of black holes

◦ Expected to be an artifact of an incomplete description...
⇒ Fundamental question: how do they get resolved?

⋆ Possibility 1: A fully quantum description is necessary
⋆ Possibility 2: They can be resolved within a regime in

which the classical metric description is valid
⇒ regular black holes
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Regular black holes

◦ Black holes with no singularities

◦ Many models proposed [Sakharov; Bardeen; Poisson, Israel; Dymnikova; Hayward; ...]

⇒ Not actual GR solutions: postulated metrics as theoreti-
cal test beds...

...In the absence of a dynamical framework, all these ideas
are very poorly justified

◦ The success of all previous attempts at embedding RBHs
into actual theories has been quite limited
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Example: Hayward black hole

ds2 = −f (r)dt2+ dr2

f (r)+r
2dΩ2

(D−2) , where f (r) ≡ 1− 2Mr2

rD−1 + 2Mα

◦ Deformation parametrized by α

◦ It looks like Schwarzschild at long distances...

f (r) r→∞
= 1 − 2M

rD−3 + . . .

◦ ...but the curvature singularity gets replaced by a de Sitter
core

f (r) r→0
= 1 − r2

α
+ . . .

All curvature invariants remain finite everywhere
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Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory) ⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory) ⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory)

⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory) ⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory) ⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



Hints from top-down considerations

◦ In principle, singularities should be cured by some modifi-
cation of Einstein gravity

◦ Corrections from top-down models (e.g., String Theory) ⇒
infinite towers of higher-curvature corrections to Einstein
gravity (in String Theory, weighted by powers of α′)

◦ Perhaps those would resolve singularities somehow

◦ Understanding such effects is in general out of reach...

5 33



⋆ 2. RBHs from pure gravity: lessons



Regular Black Holes from pure gravity

◦ Last year we considered a bottom-up setup where we can
control the effects of infinite towers of higher-curvature cor-
rections to Einstein gravity

◦ The result is a generic resolution of the Schwarzschild sin-
gularity

◦ RBHs arise as the unique spherically symmetric solutions of
Einstein gravity coupled to infinite towers of higher-curvature
terms

◦ First complete dynamical models of matter collapse leading
to the formation of regular black holes
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⋆ 2.1 Quasi-topological gravities



Quasi-topological gravities

◦ Consider a general L(Rabcd,gef ) theory of gravity

◦ Roughly, the theory is Quasi-topological if it possesses 2nd
order EOM on a general static and spherically symmetric
background (Lovelock gravities are particular cases)

◦ In D = 4 only GR satisfies this. Not so for D ≥ 5

◦ Quasi-topological theories constructed at curvature orders:
n = 3 [Oliva, Ray; Myers, Robinson], n = 4 [Dehghani, Bazrafshan, Mann, Mehdizadeh, Ghanaatian,

Vahidinia], n = 5 [Cisterna, Guajardo, Hassaine, Oliva] and ∀n (and ∀D ≥ 5) [PB, Cano,

Hennigar; Moreno, Murcia].
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Quasi-topological gravities

Let Wabcd denote the Weyl tensor and Zab the traceless part of
the Ricci tensor, then:

Z(1) = R ,

Z(2) =
1

(D− 2)

[
WabcdW

abcd

D− 3
−

4ZabZ
ab

D− 2

]
+

Z2
(1)

D(D− 1)
,

Z(3) =
24

(D− 2)(D− 3)

W bd
ac ZabZ

c
d

(D− 2)2 −
WacdeW

bcdeZab
(D− 2)(D− 4)

+
2(D− 3)ZabZ

b
c Z

c
a

3(D− 2)3 +
(2D− 3)Wab

cdW
cd
efW

ef
ab

12(D((D− 9)D + 26) − 22)


+

3Z(1)Z(2)

D(D− 1)
−

2Z3
(1)

D2(D− 1)2 ,

Z(4) =
96

(D− 2)2(D− 3)

 (D− 1)
(
WabcdW

abcd
)2

8D(D− 2)2(D− 3)
−

(2D− 3)ZfeZ
e
f WabcdW

abcd

4(D− 1)(D− 2)2 −
2WacbdW

cefgWd
efgZ

ab

D(D− 3)(D− 4)

−
4ZacZdeW

bdceZab
(D− 2)2(D− 4)

+
(D2 − 3D + 3)

(
ZbaZ

a
b

)2

D(D− 1)(D− 2)3 −
ZbaZ

c
bZ
d
c Z

a
d

(D− 2)3 +
(2D− 1)WabcdW

aecf ZbdZef
D(D− 2)(D− 3)

 +
4Z(1)Z(3) − 3Z2

(2)

D(D− 1)
,
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Quasi-topological gravities

Z(5) =
960(D− 1)

(D− 2)4(D− 3)2

 (D− 2)WghijW
ghijW cd

ab W ef
cd W ab

ef

40D(D3 − 9D2 + 26D− 22)
+

4(D− 3)ZbaZ
c
bZ
d
c Z

e
dZ

a
e

5(D− 1)(D− 2)2(D− 4)

−
(3D− 1)WghijWghijWacdeW

bcdeZab
10D(D− 1)2(D− 4)

−
4(D− 3)(D2 − 2D + 2)ZbaZ

a
bZ

d
c Z

e
dZ

c
e

5D(D− 1)2(D− 2)2(D− 4)

−
(D− 3)(3D− 1)(D2 + 2D− 4)WghijWghijZ

d
c Z

e
dZ

c
e

10D(D− 1)2(D + 1)(D− 2)2(D− 4)
+

(5D2 − 7D + 6)ZhgZ
g
hWabcdZ

acZbd

10D(D− 1)2(D− 2)

+
(D− 2)(D− 3)(15D5 − 148D4 + 527D3 − 800D2 + 472D− 88)W cd

ab W ef
cd W ab

ef ZhgZ
g
h

40D(D− 1)2(D− 4)(D5 − 15D4 + 91D3 − 277D2 + 418D− 242)

−
2(3D− 1)ZabWacbdZ

efW c g
e f Zdg

D(D2 − 1)(D− 4)
−

ZbaZ
c
bZcdZefW

eafd

(D− 1)(D− 2)
+

(D− 3)WacdeW
bcdeZabZ

g
f Z

f
g

5D(D− 1)2(D− 4)

−
(D− 2)(D− 3)(3D− 2)ZabZ

b
cWdaefW

efghWgh
dc

4(D− 1)2(D− 4)(D2 − 6D + 11)
+
WghijW

ghijZacZbdWabcd
20D(D− 1)2


+

5Z(1)Z(4) − 2Z(2)Z(3)

D(D− 1)
+

6Z(1)Z
2
(2) − 8Z2

(1)Z(3)

D2(D− 1)2 .

Z(n+5) =
3(n+ 3)Z(1)Z(n+4)

D(D− 1)(n+ 1)
−

3(n+ 4)Z(2)Z(n+3)

D(D− 1)n
+
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Quasi-topological gravities
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Quasi-topological gravities and gravitational EFT

This set up may seem very restrictive...

...however, any gravitational effective action can be mapped, via
a field redefinition, to a Quasi-topological gravity
[PB, Cano, Hennigar, Moreno, Murcia]

IEFT =

∫
dDx

√
|g|

16πG

[
R+

∑
n

βnRiemn

]
gab→gab+β2Rab+...

=⇒ IQT =

∫
dDx

√
|g|

16πG

[
R+

∑
n

αnZn

]

⇒ QT theories capture the most general perturbative effects arising
from any (purely) gravitational action

Here we will go beyond the perturbative regime...
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Quasi-topological black holes

Consider a general spherically symmetric ansatz

ds2 = −N(r, t)f (r, t)dt2 + dr2

f (r, t) + r2dΩ2
(D−2) .

The full non-linear EOM of a general QT gravity

IQT =

∫
dDx

√
|g|

16πG

[
R+

nmax∑
n=2

αnZn

]

imply the conditions ∂rN(r, t) = 0, ∂tf (r, t) = 0. Hence, N(r, t) =
N(t), f (r, t) = f (r) and we can set N(t) = 1.
⇒ QT theories satisfy a Birkhoff theorem: [Oliva, Ray; PB, Cano, Hennigar, Murcia]

every spherically symmetric vacuum solution is also static.
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Birkhoff implies Quasi-topological
[PB, Hennigar, Murcia]

type I QTGs
Eab|f(r) ⇐ 2nd order

Birkhoff

type II QTGs
Eab|SSS ⇐ 2nd order

Lovelock
Eab ⇐ 2nd order

type III QTGs Weyln
gabEab ⇐ 2nd order

Birkhoff ⇒ Quasi-topological
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What about D = 4?
[PB, Cano, Hennigar, Murcia]

Standard Quasi-topological gravities do not exist in D = 4.

The
technical reason is that certain crucial contractions of the Weyl
tensor with itself become trivial in D = 4.
Overcoming this limitation ⇐ consider non-polynomial densities.
For instance:

Z(3) = +
R3

144 +
1
8RW

cd
abW

ab
cd − 1

4RZ
b
aZab +

5
2W

cd
abW

ef
cdW

ab
ef

+ 3Wcd
abZ

a
cZbd + ZbaZcbZ

a
c +

9
2

Wcd
abW

ef
cdW

ab
ef Z

h
gZihZ

g
i W

lm
jk W

jk
lm

Wcd
abZ

a
cZbdW

gh
ef W

ef
gh − 2Wcd

abW
ef
cdW

ab
ef Z

h
gZgh

.

Similar densities of arbitrary order exist (identical recursion for-
mulas as in the D ≥ 5 polynomial cases).
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A unified dimensional reduction

Consider a dimensional reduction of our D-dimensional models
on the (D − 2)-sphere (both the polynomial D ≥ 5 and non-
polynomial D = 4 ones)

ds2 = γµνdxµdxν + φ(x)2dΩ2
(D−2)

One finds:

I(NP)QT ⇒ I2d[γµν , φ] + Ibdy
2d (two-dim. Horndeski gravity)

As long as we inquire about spherically symmetric problems, the
dynamics can be studied by means of this 2d action.
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⋆ 2.2 RBHs from infinite
towers of QT gravities



Quasi-topological black holes

Both for polynomial D ≥ 5 and non-polynomial D = 4 QT theo-
ries, the full non-linear EOM for a general spherically symmetric
ansatz reduce to an algebraic equation for f (r):

1 − f (r)
r2 +

nmax∑
n=2

αn
(D− 2n)
(D− 2)

[
1 − f (r)
r2

]n
=

2M
rD−1

where M is an integration constant proportional to the mass.
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Quasi-topological black holes

◦ Case 1: Einstein gravity,

αn = 0∀n ≥ 2:

f (r) = 1 − 2M
rD−3

(Schwarzschild black hole)

◦ Case 2: Quasi-topological gravity with a finite number of cor-
rections, αn = 0∀n > nmax:

f (r) r→0
= 1 −

(
2M
αmax

)1/nmax

r 2− (D−1)
nmax + . . .

(Singularity persists, but weaker)

Note that exponent tends to 2 as nmax → ∞...
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Schwarzschild singularity resolution

◦ Case 3: Quasi-topological gravity with an infinite number of
corrections, nmax → ∞,

dS core emerges and resolves the singularity

◦ This occurs quite generically. Sufficient condition:

αn ≥ 0 ∀ n , lim
n→∞

(αn)
1
n = C > 0

◦ Example:

αn =
(D− 2)
(D− 2n)α

n−1 ⇒ f (r) = 1 − 2Mr2

rD−1 + 2Mα

(Hayward black hole)
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Schwarzschild singularity resolution
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Markov’s limiting curvature hypothesis

Is there a universal upper bound on spacetime curvature? [Markov]

K ≡ RabcdRabcd ≤ #/ℓ4

◦ In our context, this would
mean that for each QT the-
ory (fixed αn), there exist
some fixed maximum value
of K which cannot be sur-
passed regardless of the
value of the RBHs mass M.

◦ General proof
[Frolov, Koek, Pinedo Soto, Zelnikov]
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⋆ 2.3 Dynamical formation of RBHs



Regular black holes from matter collapse

Collapse of a very thin spherical shell of dust

Tab = σδ(r − R(τ))uaub .

Inside the shell, flat spacetime.

Collapse of a spherical star of pressureless dust
(Oppenheimer-Snyder model)

Tab = ρuaub .

Inside the star, FLRW spacetime.

Birkhoff’s theorem ⇒ the exterior is given by the unique
static and spherically symmetric vacuum solution.
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Regular black holes from matter collapse
[PB, Cano, Hennigar, Murcia]

Find and solve the modified Israel junction conditions using the
two-dimensional Horndeski effective action.

IQT ⇒ I2d[γµν , φ] + Ibdy
2d (two-dim. Horndeski gravity)

◦ Continuity of the induced metric:
h−AB = h+AB

◦ Discontinuity of boundary equations of motion:
Π−
AB − Π+

AB = 8πGTAB, where ΠAB ∼ δIbdy
2d /δhAB
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Regular black holes from matter collapse
[PB, Cano, Hennigar, Murcia, Vicente-Cano]

A shell/star that starts collapsing at some finite radius R0 >
r+ keeps on decreasing its size, eventually giving rise to a
regular black hole.

As it continues to collapse, it crosses r = r− and the inner
horizon forms.
Ultimately, the shell/star reaches a turning point at which
Ṙ = 0 and R = Rmin. At that point, a bounce occurs.
It starts to grow, crosses the inner and outer horizons and
emerges in a new universe from a white hole.
The shell/star grows up to r = R0, at which point the process
of collapse starts over.
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Ṙ = 0 and R = Rmin.

At that point, a bounce occurs.
It starts to grow, crosses the inner and outer horizons and
emerges in a new universe from a white hole.
The shell/star grows up to r = R0, at which point the process
of collapse starts over.

23 33



Regular black holes from matter collapse
[PB, Cano, Hennigar, Murcia, Vicente-Cano]

A shell/star that starts collapsing at some finite radius R0 >
r+ keeps on decreasing its size, eventually giving rise to a
regular black hole.
As it continues to collapse, it crosses r = r− and the inner
horizon forms.
Ultimately, the shell/star reaches a turning point at which
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Regular black holes from matter collapse
[PB, Cano, Hennigar, Murcia, Vicente-Cano]
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⋆ 3. RBHs from pure gravity: perspectives
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Buchdahl-like limits ⋆(WIP)
[PB, Hennigar, Murcia, Vicente-Cano]

Buchdahl limit

⇔ maximum de-
gree of compactness attainable by
perfect-fluid, isotropic stars with
positive, outward-decreasing en-
ergy densities. In GR,

R > Rmin where Rmin

2GM =
9
8

Arbitrarily high curvatures reached
as R→ Rmin
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Buchdahl-like limits ⋆(WIP)
[PB, Hennigar, Murcia, Vicente-Cano]

In GR, Buchdahl’s inequality is saturated by infinite-central
pressure constant-density stars.

A generalized inequality can be found for QT models with
RBHs. This is also saturated by infinite-central pressure,
constant-density stars at least for broad classes of such mod-
els.
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Buchdahl-like limits ⋆(WIP)
[PB, Hennigar, Murcia, Vicente-Cano]

Space of constant-density stars
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Buchdahl-like limits ⋆(WIP)
[PB, Hennigar, Murcia, Vicente-Cano]

The universal Markov-like upper bound on the curvature in-
variants of vacuum solutions can in principle be violated:

stars within the blue region reach arbitrarily high curvatures
as the purple Buchdhal-like limit is approached.
One way to avoid this ⇒ impose the dominant energy con-
dition on matter (non-negative energy density for every ob-
server and non-spacelike local energy flow). More gener-
ally, this suggests that less-naive matter couplings may be
needed in order to preserve regularity beyond the vacuum
sector.
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Dynamical stability ⋆(WIP)
[PB, Cano, Carballo-Rubio, Hennigar, Murcia, Vicente-Cano]

◦ Stability of the inner horizons? (mass-inflation)
- Inner-extremal black holes

[Di Filippo, Kolar, Kubiznak]; related in D = 3: [PB, Lasso Andino, Moreno, van der Velde]

- Transient states → spatial/null singularities
[Poisson, Israel; Ori]

- Transient states → extremal regular black holes
[Barcelo, Boyanov, Carballo-Rubio, Garay]

- Transient states → trapped region disappears completely
[Hayward; Carballo-Rubio, Di Filippo, Liberati, Visser]

⇒ study classical+semiclassical perturbations
◦ Stability of the solutions beyond spherical symmetry?
⇒ study gravitational perturbations

◦ Stability on other backgrounds?
⇒ can be healed by including explicit non-local f (□) terms

30 33
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Evaporation ⋆(WIP)
[PB, Cano, Hennigar, Moreno, Murcia, van der Velde]

Evaporation process
◦ Take 0 ⇒ black body approximation:
⋆ early times: analogous to Schwarzschild
⋆ late times: Schwarzschild fully evaporates; for Hayward, emis-
sion rate gradually decreases towards extremality (remnant scale
set by α).

◦ Take 1 ⇒ greybody factors

◦ Take 2 ⇒ JT gravity corrections near extremality

Comparison with 2d toy models (fully backreacted geometries)
[Barenboim, Frolov, Kunstatter]

Role of “overextremal” horizonless solutions?
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More to come

◦ Critical collapse
◦ Microstate counting
◦ Holographic probes
◦ Rotation
◦ Black bounces
◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse

◦ Microstate counting
◦ Holographic probes
◦ Rotation
◦ Black bounces
◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse
◦ Microstate counting

◦ Holographic probes
◦ Rotation
◦ Black bounces
◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse
◦ Microstate counting
◦ Holographic probes

◦ Rotation
◦ Black bounces
◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse
◦ Microstate counting
◦ Holographic probes
◦ Rotation

◦ Black bounces
◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse
◦ Microstate counting
◦ Holographic probes
◦ Rotation
◦ Black bounces

◦ Classical string interpretation?

32 33



More to come

◦ Critical collapse
◦ Microstate counting
◦ Holographic probes
◦ Rotation
◦ Black bounces
◦ Classical string interpretation?

32 33



In sum

⋆ The Schwarzschild black hole singularity gets generically re-
solved in D ≥ 5 by the effect of infinite towers of higher-
curvature densities (and, less generically, also in D = 4).

⋆ The resulting RBHs are the only vacuum spherically-
symmetric solutions of these theories (Birkhoff theorem
holds).

⋆ First fully dynamical models in which the collapse of matter
leads to the formation of regular black holes.

⋆ This framework allows us to address many questions re-
garding the fate/viability of regular black holes.
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The End


