Foliated BF theories and SymTFTs

Giacomo Giorgi
In collaboration with: Riccardo Argurio (ULB)

GRASS-SYMBHOL Meeting 2025
Toledo

12/11/2025

@i Yé UNIVERSIDAD
) DE MURCIA



@ Symmetries play an important role in physics

o Generalized symmetries [1401.0740 Kapustin, Seiberg; 1412.5148 Gaiotto,
Kapustin, Seiberg, Willett]

o Fractonic topological phases — multipole symmetries (e.g., dipole,
quadrupole) [cond-mat/0404182 Chamon; 1101.1962 Haah] giving rise to
mobility constraints on the excitations

o Subsystem symmetries [1803.02369 You, Devakul, Burnell, Sondhi], theory
invariant under a symmetry acting on a submanifold

@ A suitable framework is needed for fracton topological phases — Foliated
BF theories [Slagle, Aasen, Williamson, arXiv:1812.01613; Slagle,
arXiv:2008.03852; 2310.06701v2 Ebisu, Honda, Nakanishi]



@ Fractons are quasiparticles that cannot move in isolation but can move when
combined into bound states

o New symmetries — subsystem symmetries and multipole symmetries
beyond ordinary global symmetries

@ Goals of this talk:
o Introduce foliated BF theories for subsystem and multipole symmetries
o Discuss the effect of torsion (or twist) terms on operator genuineness
o Present ongoing work generalizing discrete anomaly terms
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Higher-form symmetries

Global symmetries <= Topological operators

A p-form global symmetry G(P) acts on p-dimensional objects (Wilson lines,

)
We(+P))

@ The associated conserved current is
d*jpr1=0

@ The corresponding topological symmetry operator is supported on a
codimension-(p+1) manifold ¥(¢—P~1):

U(xld—r-by = exp(i)\/ *jp+1)

y(d—p—1)
o U(X(9=P1) is topological and invertible:
Ug():(d—p—l)) Up(Z9=P=1) = Ugh():(d_”_l)), g, he GP



Subsystem symmetries

@ Subsystem symmetries act not globally but along lower-dimensional
submanifolds, such as lines or planes

e They appear in fracton phases and other models with constrained mobility on
the lattice and in the continuum

o Consider a foliation [2112.12735 Rayhaun, Williamson]
F={L1=9}

of space by codimension-k, leaves L) of spatial dimension d — k

@ A theory has a foliated form subsystem symmetry G(k)(F) of codimension k
if
Up(LEP)Up(LE9) = Uy (1)
with U, (L(@=R)) supported on L(?=k) for each g € G and each leaf
Ld-keF

o The operators U, (L(?=k)) are supported only on the leaves of the foliation,
unlike higher-form symmetries, whose operators can be defined on any
submanifold



Review of BF theory

o Standard Zy BF theory

iN
Lpr = gBd_p AN dAp
where A U(1) p-form gauge field and By_p—1 a U(1) (d — p — 1)-form gauge

field
@ The gauge transformations are

Ay = Ap+dA_1,
Bo—p = Bag—p+dNg_p_1

@ The theory is topological
@ The theory has a collection of gauge invariant Wilson operators

Win(Tp) = eIt A W, (Zy_p) = e B,
o Linking phase:

(Win(T) Wy(Z)) = exp(ZFnm Link(T, X)) .



BF theory with torsion

@ We consider a 4d BF theory with an additional torsion term

iNg
S = / BAdA+4—BAB) gez

where A and B are U(1) one- and two-form gauge fields.

@ The gauge transformations are
B—=B+dkg, A= A+d s —qgrs
@ The equations of motion give
dB =0, dA+qB =0

o Effect: Modifies linking phases and can render some Wilson operators
non-genuine (i.e., must end on a higher-dimensional defect)



Topological operators

@ The gauge transformations and the equations of motion imply that the
Wilson surface of B on a closed surface %5,

W () = exp (/ /Z B)

is gauge invariant and topological
® The Wilson line of A, Wa(7) = exp (i [, A), it is not. To be well defined, it
needs to stay at the boundary of (Wg)?

Wa(D2) = Wa() [ Wa(D)) = exp <,- / o qs)

where D, is an open surface with D, =

@ Wa(D,) is a non-genuine line operator depends on the surface D, attached
to the line v

o We also have from the theory that [Wg(Z2)]V =1 and [Wa(D,)]" = 1, then

[Wa()]"&,  with g = ged(N, q)

is a genuine line operator. [Wg(X)]¢ are instead endable
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SymTFT Sandwich Construction
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@ The (d+1)-dimensional SymTFT encodes the anomaly structure and
generalized symmetries.

@ Operators on the physical boundary extend through the bulk to the
topological boundary.

@ Gluing the two boundaries defines the full QFT partition function.



SymTFTs for foliated theories

@ SymTFTs are a powerful framework to describe the symmetry properties of a
QFT

@ Some works have started to explore the construction of symmetric topological
field theories (SymTFTs) for foliated BF theories [2310.01474v3 Cao, Jia]

@ In [2504.11449v2 Apruzzi, Bedogna, Mancani], the construction of SymTFTs
for continuous subsystem symmetries was proposed and illustrated through
several examples inspired by fractonic field theories



Mille-feuille construction

Lgap Lohys

@ The Mille-feuille construction
generalizes the sandwich SymTFT idea

@ The difference that is the foliated nature
due to absence of Lorentz invariance.

@ |t involves a stack of multiple
(d+1)-dimensional SymTFT layers
along an additional foliation direction

@ Couplings between layers capturing
fractonic behavior

Taken from [2504.11449v2 Apruzzi, Bedogna,

Mancani]
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Example of Zy BF construction in 2+1 dimensions

@ We consider a theory with global U(1) O-form symmetry and charge Q

QV) = /V*j

@ This charge is global — [P}, Q] = 0, with /| = x, y and where P; generates
translations

o We introduce a 1-form U(1) gauge field a coupled with the current j

Sc = / anxj
14

with a = a+ dx, and f = da

@ We introduce the Lagrangian

N N
— " pAF= —
L 27Tb/\ 27Tb/\da

with b a 1-form U(1) gauge field



Construction of Foliated BF Theory (Dipole case)

@ Theory with global U(1) and dipole symmetries, with charges Q, Q«, Q,
[2201.10589 Gorantla, Lam, Seiberg, Shao]

[P, Q] =0, [P, Q)] = 0@
associated to conserved currents as
Q:/*j, Q :/*K,, with % Kj = xkj — x' xj
v v
@ We introduce the three 1-form gauge fields a,A; coupled to the currents as
Sdip = / anxj+ A Axk
%
gauge invariant under ( A, o0, the gauge parameters)
a—atdh+ordx, A — A +do

@ We define the gauge invariant field strengths

f=da— A ANdx!', F =dA



Foliated dipole BF theory in 241 Dimensions

@ We write now the foliated BF theory in 2+1 dimensions
Laip = ﬂ(bAHZc AF)
dip — o I i ]

o Introduce the foliation fields e’. Foliation is defined to be a codimension-one
submanifold which is orthogonal to the 1-form foliation field e’:

N
L:dip:E(a/\db-i-ZA//\dC/-i—ZA//\b/\dXI)
! 1

with e = dx,e” = dy and
b—b+d\, c—c ++"+Ne

@ There are three layers of the 2+1d BF theories, corresponding to the first two
terms

@ The last term describes the coupling between the layers



Construction of Foliated BF Theory (Quadrupole case)

@ Consider a theory with a global U(1) charge and additional dipole and
quadrupole symmetries — Q, Q«, Qy, @xy

[P, Q] =0, [P, Q)] = duQ, [P, Qy] = &

with | = x,] =y and | = y, ] = x. The conserved charges are associated

with currents
Qz/*j, o,=/*K,, Qxyz/*w
v v v

*xK) = xkj—x"%j, W=4w—xy*j—x %k

with

@ Introduce the 1-form gauge fields a, A;, a’ coupled to the corresponding
currents

Sap = / anxj+ A Axkj 4+ a Axw
v
@ The theory is gauge invariant under ( A, oy, the gauge parameters)
asatdhtordd!, A = A +do+Nx', & —a +dN



Foliated quadrupole BF theory in 241 Dimensions

@ We define the gauge invariant field strengths
f=da—A Ndx!, F=dA —a Adx, f =dd

@ We write now the foliated BF theory in 2+1 dimensions

N
Equad:2—(3/\db+a'/\db'+ZA,/\dc,
YIS
!
+ZA,AbAe’+Za’Ac,Ae7)
1 !

@ Here a,a’, A, b, b, ¢/ are 1-form gauge fields.
@ We now have four BF layers (first line), with coupling terms between the
layers (second line)

@ In [2406.04919v1 Ebisu, Honda. Nakanishi] the construction is generalized to
higher-form and subsystem symmetries



Subsystem BF theory model

@ In the subsystem version for the dipole, we replace
c,(d_p) — B,(d_p_l) Ae',  (with I not summed)

leading to the Lagrangian (in d dimensions and 1 < p<d —1)
N
_ (d—p) (p) (d—p-1) (p)
Lsub o [b /\(da +(- E A /\e)JrE B, /\dA /\e}

The first term in the Lagrangian describes a (d + 1)-dimensional Zy gauge
theory. The third is a (continuous) stack of d-dimensional Zy gauge theories
for each foliation. The third term couples the d layers to the (d + 1) gauge
theory.

@ Invariance under the subsystem symmetry
ASP) N ASP) + ,Y§P*1)/\el

where fy(p Y is an arbitrary (p — 1)-form field

@ Also possible in the quadrupole case



Foliated BF theory with twist term

@ Let's consider, then, in 4 dimensions, the foliated BF theory
N
Low = 5-|bA (da— qu:A, ne')+ XI: BindA A ¢']

where b is a 2-form, a a 1-form and By, A, foliated 1-forms
@ We have now inserted g € Z in front of the twist term, this term produces an
effect analogous to a torsion

@ The gauge transformations are now
ob=dx,
da=d\ — qZ Nel,
I

5B =dx' — qx,
5A; =d )\

where y is a 1-form parameter and X, ', x! are O-form parameters
@ For g =1, this reduces to the standard foliated BF theory describing dipole
symmetries



Equations of Motion and Topological Operators

@ From the action, the equations of motion (with / not summed over) are:
(dB; +qgb)nel =0,
db =0,
dA;Ne' =0,
qZA,/\e'+da:O
[

These relations encode the topological constraints between the foliated layers
and the coupling parameter g
@ We now construct the gauge-invariant topological operators of the model:

Wy(E) = exp (//z b),
Wa(v) = exp (l}{ A,),

Y

a surface operator, and

line operators supported on curves + orthogonal to e.



Non-Genuine Operators

@ There are also two examples of partially topological line operators

i) =exe(ifa).  We() —ew (i ]{ 8')

~
@ We can open the surface ¥ and restore gauge-invariance by adding the
foliated operators defining the strip o'

!
X2
exp(i}{ a—ij{ a):exp(iq/ 7{A'/\e'dx')
() v(3) X Jry

@ The result are the non-genuine operators

%
W(o'(x],x})) =exp (:/ 7{(da + gA' A e’)dx’) )
XI Yy

W(a’(xl',xé)) =exp (I/ ’ %(dB’ + qb)dxl>
Xll Y

@ For g =1 all W,, Wg are non-enuine
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Conclusions and Outlook

@ We have reviewed some approaches to constructing topological foliated BF
theories

@ These theories can serve as the foundation for SymTFT constructions,
encoding the multipole and subsystem symmetries of fracton theories

o Future directions:
o Generalizing the construction by including twist terms or other topological
contributions for dipole and quadrupole symmetries

e Studying the topological and physical boundaries of SymTFTs built from these
foliated theories

Thank You!
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