Foliated BF theories and SymTFTs

Giacomo Giorgi

In collaboration with: Riccardo Argurio (ULB)

GRASS-SYMBHOL Meeting 2025 Toledo

12/11/2025

Setup

- Symmetries play an important role in physics
 - Generalized symmetries [1401.0740 Kapustin, Seiberg; 1412.5148 Gaiotto, Kapustin, Seiberg, Willett]
 - Fractonic topological phases multipole symmetries (e.g., dipole, quadrupole) [cond-mat/0404182 Chamon; 1101.1962 Haah] giving rise to mobility constraints on the excitations
 - Subsystem symmetries [1803.02369 You, Devakul, Burnell, Sondhi], theory invariant under a symmetry acting on a submanifold

Motivation

- Fractons are quasiparticles that cannot move in isolation but can move when combined into bound states
- ullet New symmetries \longrightarrow subsystem symmetries and multipole symmetries beyond ordinary global symmetries
- Goals of this talk:
 - Introduce foliated BF theories for subsystem and multipole symmetries
 - Discuss the effect of torsion (or twist) terms on operator genuineness
 - Present ongoing work generalizing discrete anomaly terms

Outline

- Introduction
 - Generalized Symmetries
 - BF theory
- SymTFTs construction
- Foliated BF theories
 - Dipole symmetry
 - Quadrupole symmetry
 - Foliated BF theory for subsystem symmetries
 - Twist term generalization
- 4 Conclusions and Outlook

Table of Contents

- Introduction
 - Generalized Symmetries
 - BF theory
- SymTFTs construction
- Foliated BF theories
 - Dipole symmetry
 - Quadrupole symmetry
 - Foliated BF theory for subsystem symmetries
 - Twist term generalization
- 4 Conclusions and Outlook

Higher-form symmetries

Global symmetries ← Topological operators

A p-form global symmetry G^(p) acts on p-dimensional objects (Wilson lines, ...)

$$W_q(\gamma^{(p)})$$

The associated conserved current is

$$d \star j_{p+1} = 0$$

• The corresponding topological symmetry operator is supported on a codimension-(p+1) manifold $\Sigma^{(d-p-1)}$:

• $U(\Sigma^{(d-p-1)})$ is topological and invertible:

$$U_g(\Sigma^{(d-p-1)}) U_h(\Sigma^{(d-p-1)}) = U_{gh}(\Sigma^{(d-p-1)}), \qquad g, h \in G^{(p)}$$

Subsystem symmetries

- Subsystem symmetries act not globally but along lower-dimensional submanifolds, such as lines or planes
 - They appear in fracton phases and other models with constrained mobility on the lattice and in the continuum
- Consider a foliation [2112.12735 Rayhaun, Williamson]

$$\mathcal{F} = \{ L^{(d-k)} \}$$

of space by codimension-k, leaves $L^{(d-k)}$ of spatial dimension d-k

ullet A theory has a foliated form subsystem symmetry $G(k)(\mathcal{F})$ of codimension k if

$$U_g(L^{(d-k)})U_h(L^{(d-k)}) = U_{gh}(L^{(d-k)})$$

with $U_g(L^{(d-k)})$ supported on $L^{(d-k)}$ for each $g \in G$ and each leaf $L^{(d-k)} \in \mathcal{F}$

• The operators $U_g(L^{(d-k)})$ are supported only on the leaves of the foliation, unlike higher-form symmetries, whose operators can be defined on any submanifold

Review of BF theory

• Standard \mathbb{Z}_N BF theory

$$\mathcal{L}_{\mathrm{BF}} = rac{iN}{2\pi} B_{d-
ho} \wedge dA_{
ho}$$

where A U(1) p-form gauge field and B_{d-p-1} a U(1) (d-p-1)-form gauge field

• The gauge transformations are

$$A_p \rightarrow A_p + d\Lambda_{p-1},$$

 $B_{d-p} \rightarrow B_{d-p} + d\Lambda_{d-p-1}$

- The theory is topological
- The theory has a collection of gauge invariant Wilson operators

$$W_m(\Gamma_p) = e^{im\int_{\Gamma} A}, \quad W_n(\Sigma_{d-p}) = e^{in\int_{\Sigma} B}.$$

• Linking phase:

$$\langle W_m(\Gamma) | W_n(\Sigma) \rangle = \exp\left(\frac{2\pi i}{N} nm \; \mathsf{Link}(\Gamma, \Sigma)\right).$$

BF theory with torsion

We consider a 4d BF theory with an additional torsion term

$$S = \int_{M_*} \left(\frac{iN}{2\pi} B \wedge dA + \frac{iNq}{4\pi} B \wedge B \right), \quad q \in \mathbb{Z}$$

where A and B are U(1) one- and two-form gauge fields.

• The gauge transformations are

$$B \to B + d\lambda_B$$
, $A \to A + d\lambda_A - q\lambda_B$

• The equations of motion give

$$dB=0$$
, $dA+qB=0$

• Effect: Modifies linking phases and can render some Wilson operators non-genuine (i.e., must end on a higher-dimensional defect)

Topological operators

• The gauge transformations and the equations of motion imply that the Wilson surface of B on a closed surface Σ_2 ,

$$W_B(\Sigma_2) = \exp\left(i\int_{\Sigma}B\right)$$

is gauge invariant and topological

• The Wilson line of A, $W_A(\gamma) = \exp\left(i\int_{\gamma}A\right)$, it is not. To be well defined, it needs to stay at the boundary of $(W_B)^q$

$$W_A(D_2) \equiv W_A(\gamma)[W_B(D_2)]^q = \exp\left(i\int_{D_2} dA + qB\right)$$

where D_2 is an open surface with $\delta D_2 = \gamma$

- $W_A(D_2)$ is a non-genuine line operator depends on the surface D_2 attached to the line γ
- ullet We also have from the theory that $[W_B(\Sigma_2)]^N=1$ and $[\mathcal{W}_A(D_2)]^N=1$, then

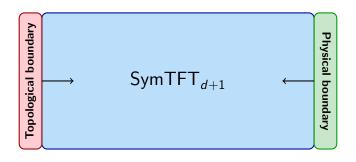
$$[W_A(\gamma)]^{N/g}$$
, with $g = \gcd(N, q)$

is a genuine line operator. $[W_B(\Sigma)]^g$ are instead endable

Table of Contents

- Introduction
 - Generalized Symmetries
 - BF theory
- SymTFTs construction
- Foliated BF theories
 - Dipole symmetry
 - Quadrupole symmetry
 - Foliated BF theory for subsystem symmetries
 - Twist term generalization
- 4 Conclusions and Outlook

SymTFT Sandwich Construction



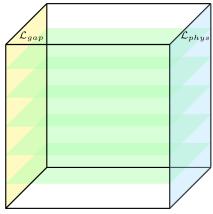
- The (d+1)-dimensional SymTFT encodes the anomaly structure and generalized symmetries.
- Operators on the physical boundary extend through the bulk to the topological boundary.
- Gluing the two boundaries defines the full QFT partition function.

SymTFTs for foliated theories

- SymTFTs are a powerful framework to describe the symmetry properties of a QFT
- Some works have started to explore the construction of symmetric topological field theories (SymTFTs) for foliated BF theories [2310.01474v3 Cao, Jia]
- In [2504.11449v2 Apruzzi, Bedogna, Mancani], the construction of SymTFTs for continuous subsystem symmetries was proposed and illustrated through several examples inspired by fractonic field theories

Mille-feuille construction

- The Mille-feuille construction generalizes the sandwich SymTFT idea
- The difference that is the foliated nature due to absence of Lorentz invariance.
- It involves a stack of multiple (d+1)-dimensional SymTFT layers along an additional foliation direction
- Couplings between layers capturing fractonic behavior



Taken from [2504.11449v2 Apruzzi, Bedogna, Mancani]

Table of Contents

- Introduction
 - Generalized Symmetries
 - BF theory
- SymTFTs construction
- Foliated BF theories
 - Dipole symmetry
 - Quadrupole symmetry
 - Foliated BF theory for subsystem symmetries
 - Twist term generalization
- 4 Conclusions and Outlook

Example of \mathbb{Z}_N BF construction in 2+1 dimensions

ullet We consider a theory with global U(1) 0-form symmetry and charge Q

$$Q(V) = \int_{V} \star j$$

- This charge is global $\longrightarrow [P_I, Q] = 0$, with I = x, y and where P_I generates translations
- We introduce a 1-form U(1) gauge field a coupled with the current j

$$S_C = \int_V a \wedge \star j$$

with $a \rightarrow a + d\chi$, and f = da

• We introduce the Lagrangian

$$\mathcal{L} = \frac{N}{2\pi}b \wedge f = \frac{N}{2\pi}b \wedge da$$

with b a 1-form U(1) gauge field

Construction of Foliated BF Theory (Dipole case)

• Theory with global U(1) and dipole symmetries, with charges Q, Q_x , Q_y [2201.10589 Gorantla, Lam, Seiberg, Shao]

$$[P_I,Q]=0, \qquad [P_I,Q_J]=\delta_{IJ}Q$$

associated to conserved currents as

$$Q = \int_{V} \star j$$
, $Q_{I} = \int_{V} \star K_{I}$, with $\star K_{I} = \star k_{I} - x^{I} \star j$

• We introduce the three 1-form gauge fields a_iA_i coupled to the currents as

$$S_{\mathrm{dip}} = \int_{V} a \wedge \star j + A_{I} \wedge \star k_{I}$$

gauge invariant under (Λ, σ_I the gauge parameters)

$$a \rightarrow a + d\Lambda + \sigma_I dx^I$$
, $A_I \rightarrow A_I + d\sigma_I$

• We define the gauge invariant field strengths

$$f = da - A_I \wedge dx^I$$
, $F_I = dA_I$

Foliated dipole BF theory in 2+1 Dimensions

• We write now the foliated BF theory in 2+1 dimensions

$$\mathcal{L}_{\mathrm{dip}} = \frac{N}{2\pi} \Big(b \wedge f + \sum_{I} c_{I} \wedge F_{I} \Big)$$

• Introduce the foliation fields e^{I} . Foliation is defined to be a codimension-one submanifold which is orthogonal to the 1-form foliation field e^{I} :

$$\mathcal{L}_{\mathrm{dip}} = \frac{N}{2\pi} \Big(a \wedge db + \sum_{I} A_{I} \wedge dc_{I} + \sum_{I} A_{I} \wedge b \wedge dx^{I} \Big)$$

with $e^x = dx$, $e^y = dy$ and

$$b \to b + d\lambda$$
, $c \to c' + \gamma' + \lambda e'$

- There are three layers of the 2+1d BF theories, corresponding to the first two terms
- The last term describes the coupling between the layers

Construction of Foliated BF Theory (Quadrupole case)

• Consider a theory with a global U(1) charge and additional dipole and quadrupole symmetries $\longrightarrow Q, Q_x, Q_y, Qxy$

$$[P_I, Q] = 0,$$
 $[P_I, Q_J] = \delta_{IJ}Q,$ $[P_I, Q_{xy}] = Q_{\bar{I}}$

with $I=x, \bar{I}=y$ and $I=y, \bar{I}=x$. The conserved charges are associated with currents

$$Q = \int_{V} \star j$$
, $Q_{I} = \int_{V} \star K_{I}$, $Q_{xy} = \int_{V} \star W$

with

$$\star K_I = \star k_I - x^I \star j$$
, $W = \star w - xy \star j - x^I \star k_I$

 Introduce the 1-form gauge fields a, A_I, a' coupled to the corresponding currents

$$S_{\rm qp} = \int_{V} a \wedge \star j + A_I \wedge \star k_I + a' \wedge \star w$$

• The theory is gauge invariant under ($\Lambda, \sigma_I, \Lambda'$ the gauge parameters)

$$a \rightarrow a + d\Lambda + \sigma_I dx^I$$
, $A_I \rightarrow A_I + d\sigma_I + \Lambda' x^{\overline{I}}$, $a' \rightarrow a' + d\Lambda'$

Foliated quadrupole BF theory in 2+1 Dimensions

We define the gauge invariant field strengths

$$f = da - A_I \wedge dx^I$$
, $F_I = dA_I - a' \wedge dx^{\overline{I}}$, $f' = da'$

• We write now the foliated BF theory in 2+1 dimensions

$$\mathcal{L}_{\text{quad}} = \frac{N}{2\pi} \Big(a \wedge db + a' \wedge db' + \sum_{I} A_{I} \wedge dc_{I} + \sum_{I} A_{I} \wedge b \wedge e^{I} + \sum_{I} a' \wedge c_{I} \wedge e^{\overline{I}} \Big)$$

- Here a, a', A_I, b, b', c_I are 1-form gauge fields.
- We now have four BF layers (first line), with coupling terms between the layers (second line)
- In [2406.04919v1 Ebisu, Honda. Nakanishi] the construction is generalized to higher-form and subsystem symmetries

Subsystem BF theory model

In the subsystem version for the dipole, we replace

$$c_I^{(d-p)}
ightarrow B_I^{(d-p-1)} \wedge e^I$$
, (with I not summed)

leading to the Lagrangian (in d dimensions and $1 \le p \le d-1$)

$$\mathcal{L}_{\mathrm{sub}} \; = \; \frac{\textit{N}}{2\pi} \Big[\textit{b}^{(d-p)} \wedge \Big(\textit{da}^{(p)} + (-1)^p \sum_{l} \textit{A}^{(p)}_{l} \wedge \textit{e}^{\textit{l}} \Big) + \sum_{l} \textit{B}^{(d-p-1)}_{l} \wedge \textit{dA}^{(p)}_{l} \wedge \textit{e}^{\textit{l}} \Big]$$

The first term in the Lagrangian describes a (d+1)-dimensional \mathbb{Z}_N gauge theory. The third is a (continuous) stack of d-dimensional \mathbb{Z}_N gauge theories for each foliation. The third term couples the d layers to the (d+1) gauge theory.

Invariance under the subsystem symmetry

$$A_I^{(p)} \rightarrow A_I^{(p)} + \gamma_I^{(p-1)} \wedge e^I$$

where $\gamma_I^{(p-1)}$ is an arbitrary (p-1)-form field

• Also possible in the quadrupole case

Foliated BF theory with twist term

• Let's consider, then, in 4 dimensions, the foliated BF theory

$$\mathcal{L}_{\text{sub}} = \frac{N}{2\pi} \Big[b \wedge \Big(da - \frac{q}{2} \sum_{I} A_{I} \wedge e^{I} \Big) + \sum_{I} B_{I} \wedge dA_{I} \wedge e^{I} \Big]$$

where b is a 2-form, a a 1-form and B_I , A_I foliated 1-forms

- We have now inserted $q \in \mathbb{Z}$ in front of the twist term, this term produces an effect analogous to a torsion
- The gauge transformations are now

$$\delta b = d\chi,$$

$$\delta a = d\lambda - q \sum_{I} \lambda^{I} e^{I},$$

$$\delta B_{I} = d\chi^{I} - q\chi,$$

$$\delta A_{I} = d\lambda^{I}$$

where χ is a 1-form parameter and $\lambda, \lambda^I, \chi^I$ are 0-form parameters

ullet For q=1, this reduces to the standard foliated BF theory describing dipole symmetries

Equations of Motion and Topological Operators

• From the action, the equations of motion (with I not summed over) are:

$$(dB_I + q b) \wedge e^I = 0,$$

$$db = 0,$$

$$dA_I \wedge e^I = 0,$$

$$q \sum_{I} A_I \wedge e^I + da = 0$$

These relations encode the topological constraints between the foliated layers and the coupling parameter q

• We now construct the gauge-invariant topological operators of the model:

$$W_b(\Sigma) = \exp\left(i\int_{\Sigma}b\right),$$

a surface operator, and

$$W_A(\gamma) = \exp\Big(i\oint_{\gamma}A_I\Big),$$

line operators supported on curves γ orthogonal to e^{I} .

Non-Genuine Operators

There are also two examples of partially topological line operators

$$W_{a}(\gamma) = \exp\left(i\oint_{\gamma}a\right), \qquad W_{B}(\gamma) = \exp\left(i\oint_{\gamma}B^{I}\right)$$

• We can open the surface Σ and restore gauge-invariance by adding the foliated operators defining the strip σ^I

$$\exp\left(i\oint_{\gamma(x_1^l)}a-i\oint_{\gamma(x_2^l)}a\right)=\exp\left(iq\int_{x_1^l}^{x_2^l}\oint_{\gamma}A^l\wedge e^ldx^l\right)$$

• The result are the non-genuine operators

$$\mathcal{W}(\sigma^{I}(x_{1}^{I}, x_{2}^{I})) = \exp\left(i \int_{x_{1}^{I}}^{x_{2}^{I}} \oint_{\gamma} (da + qA^{I} \wedge e^{I}) dx^{I}\right),$$

$$\mathcal{W}(\sigma^{I}(x_{1}^{I}, x_{2}^{I})) = \exp\left(i \int_{x_{1}^{I}}^{x_{2}^{I}} \oint_{\gamma} (dB^{I} + qb) dx^{I}\right)$$

• For q = 1 all W_a , W_B are non-enuine

Table of Contents

- Introduction
 - Generalized Symmetries
 - BF theory
- SymTFTs construction
- Foliated BF theories
 - Dipole symmetry
 - Quadrupole symmetry
 - Foliated BF theory for subsystem symmetries
 - Twist term generalization
- Conclusions and Outlook

Conclusions and Outlook

- We have reviewed some approaches to constructing topological foliated BF theories
- These theories can serve as the foundation for SymTFT constructions, encoding the multipole and subsystem symmetries of fracton theories
- Future directions:
 - Generalizing the construction by including twist terms or other topological contributions for dipole and quadrupole symmetries
 - Studying the topological and physical boundaries of SymTFTs built from these foliated theories

Thank You!