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Motivation
In QFT, global symmetries ≡Topological operators U(Σ) [Gaiotto et al 2014].

Topological: deformations of Σ do not modify correlators

Linking: Operator crossing the defect→ symmetry operation.
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Fusion: Group multiplication law Ug(Σ)× Uh(Σ) = Uhg(Σ)

Broken Symmetries
When a global symmetry involves an ordinary group, patterns of
symmetry breaking are classified by subgroups of the original
symmetry group.
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Generalization: Non-Invertible Symmetries

La × Lb =
∑

c

Nc
ab Lc

L′s don’t have inverses. No conserved currents (in general) but
conserved charges exist.

Broken Symmetries
Pattern of symmetry breaking ≡ Frobenius algebra A
analog of a subgroup, w/ the invariant subspaces under their action→
different gaugings/ phases.
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Generalized Landau Paradigm

Phases of systems with non-invertible symmetries as patterns of
symmetry breaking

Order parameters for these symmetries

Progress made w/ SymTFT [Bhardwaj et al 25]
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Motivation

Our work
We propose an algebraic and information-theoretic framework to
analyze symmetry-breaking in generalized global symmetries.

Elegant formulation within subfactor theory of von Neumann
algebras.

Subfactors provide a framework for quantifying quantum
information loss which acts as an entropic order parameter.
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Subfactors in von Neumann algebras

Quantum systems are described by their algebras of observablesM,
which act on a Hilbert space H.

An operator algebra consists of a set of operators s.t

1 ∈M , a, b ∈M =⇒ αa + βb ∈M , a , b ∈M , a† ∈M ,

with α, β ∈ C.

M is a von Neumann algebra ifM =M′′, where the prime refers to
the commutant,

M′ = {b/ [ b, a ] = 0, ∀a ∈M}.

M is called a factor ifM∩M′ = C · 1.

Factors are classified into Type I, II, and III. Here, we focus on Type I
factors isomorphic to matrix algebras.
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Subfactors in von Neumann algebras

A subfactor is a unital inclusion N ⊂M of von Neumann algebras
where both N andM are factors.

Why we use Subfactors?
Physically, we are considering a quantum mechanical system with
some global symmetry that is described by an algebraM of
operators.

The full or partial symmetry breaking in the system implies that
the superselection sectors describing the broken phase are given
by a ”small” subalgebra N ⊂M.
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States in von Neumann algebras

Quantum states are described by linear maps ω :M→ C

ω(αa + βb) = αω(a) + β ω(b) , ω(aa†) ≥ 0 , ω(1) = 1 .

In finite-dimensional algebrasM, each state ω is represented by a
density matrix ρω ∈M such that

ω(a) = tr (ρω a) , ∀a ∈M .
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Conditional Expectations/Quantum Channels

Completely positive linear maps E :M→N that act as a projection
fromM onto N .

For systems with finite-dimensional Hilbert space H, E can be
expressed as:

E(m) =
N∑

i=1

Ki mK†
i

Ki Kraus operators =⇒ E a specific example of a quantum channel.
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Jones Index

For N ⊂M, with E :M→N , the Jones (or Jones–Kosaki–Longo)
index is defined as [Jones 83]

λ = [M : N ] := [sup{λ > 0 : E(m) ≥ λm for all m ∈M+}]−1.

that quantifies the relative ”size” ofM compared to N , analogous to
the index of a subgroup.

Relative entropy H(M|N ) for inclusion N ⊂M of finite (dimensional)
algebras [Connes and Störmer 75], [Pimsner and Popa 86],

H(M|N ) ≤ log λ
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Quantum Relative Entropy

Central quantity in quantum information theory . For Type I algebras,

SM(ρ |σ) = trM[ ρ (log ρ− log σ)] ,

where ρ, σ are two density operators associated with the two states in
comparison.

Measures distinguishability between states. Natural option involving
quantum channels is to use it as a measure of information loss as

SM(ρ | E(ρ))

which in our setting will act as an Entropic Order Parameter [Casini et al
20]
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Phases of Non-Invertible Symmetries and Anyon
Condensation

We focus in (2+1)-D where

System of anyons with a generalized (noninvertible) symmetry

New phase is formed when an anyon with charge a undergoes
condensation, that is, a new vacuum is formed, in which the
topological charge a is indistinguishable.

The condensate breaks the original symmetry encoded in the
topological excitation spectrum of the system. [Kong 2014]
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Anyon Condensation
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Anyon Condensation and Operator Algebras

Before condensation, the superselection sectors (anyon types)
described by algebra A.
Condensation process reduces A to a smaller subalgebra T .
Operators of A become decomposable in terms of elements of T .

A

T
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Anyon Condensation and Frobenius Algebras

Symmetry patterns described by a Frobenius algebra

A =
∑
a∈A

wa
A a

Analog of a subgroup whose invariant subspaces ≡ different
gaugings/phases

Javier Molina-Vilaplana (UPCT, Spain) GRASS-SYMBHOL Toledo, 12th-Nov 2025 20 / 49



Frobenius Algebras and Subfactors

A =⇒ EA : A → T and a subfactor T ⊂ A.

Subfactors ∼= Symmetries

Subfactor T ⊂ A ←→ Pattern of symmetry breaking ≡ A
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Restriction and Lift maps

Algebra T , with labels ϕ, r , s, t , .., and a set of branching (or restriction)
coefficients nt

a implementing [Bais et al 2009, 2014].

The Restriction map, characterizing the new phase:

a→
∑
t∈T

nt
a t ∀a ∈ A (restriction)

where nt
a ∈ Z≥0.

The same branching coefficients also define the adjoint of the
restriction map, referred to as the Lift map

t →
∑
a∈A

nt
a a ∀t ∈ T (lift)
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Consistency Conditions

We assume that the restriction A → T commutes with fusion

A⊗A f //

r⊗r
��

A
r
��

T ⊗ T
f
// T

Quantum Dimensions

da =
∑
t∈T

nt
adt ∀ a ∈ A,

dt =
1
q

∑
a∈A

nt
ada ∀ t ∈ T ,
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where q denotes the quantum dimension of the condensed vacuum,

q :=
∑
a∈A

nϕ
ada =

D2
A

D2
T
, w/ D2

A =
∑
a∈A

d2
a , D2

T =
∑
t∈T

d2
t ,

the total quantum dimensions of A and T

Subfactor T ⊂ A and anyon condensation
In this language, the Jones index

λ = [A : T ] ≡ q
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Symmetry Quantum Channels (SymQuOp)

Frobenius Algebra A→ nt
a

EA : ρ ∈ A restr // ρA ∈ T

α : ρA ∈ T lift
// ρ̃ ∈ A

Information Loss for non-symmetric states:

α ◦ EA(ρ) = ρ̃ ̸= ρ =⇒ SA(ρ |α ◦ EA(ρ)) > 0

Symmetric states

α ◦ EA(ρ) = ρ̃ = ρ =⇒ SA(ρ |α ◦ EA(ρ)) = 0
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Quantum Channel EA for the Restriction map

Kraus representation

EA(ρ) =
∑
a∈A

Ka ρK†
a ,

Anyonic superselection rules =⇒ a topological state given by a
convex sum with a set of projectors Πa s.t

ρ =
⊕
a∈A

ρa =
∑
a∈A

pa Πa , s.t Π†
a = Πa, ΠaΠb = δabΠa

with probabilities pa ≡ tr(ρΠa) such that
∑

a pa = 1.
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Quantum Channel EA for the Restriction map

Kraus operators in terms of branching coefficients nt
a

Ka =
∑
t∈T

√
nt

a

(
dt

da

)
Λt ,a , a ∈ A, t ∈ T ,

where Λt ,a Πb = δab Λt ,a, Λt ,a Λb,s = δab δts Πt .

EA(ρ) =
∑
a∈A

Ka ρK†
a =

∑
t∈T

pt Πt

where

pt =
∑
a∈A

nt
a

(
dt

da

)
pa .
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Quantum Channel α for the Lift map

α : T → A Lift map

ρ̃ = α(ρA) =
∑
a∈A

La EA(ρ)L†
a

Implemented by the (non-Kraus) operators

La =
∑
t∈T

√
nt

a

λ

(
da

dt

)
Λa,t a ∈ A t ∈ T ,with

λ = [A : T ] =
∑
a∈A

nϕ
ada = q

Then

ρ̃ = α(ρA) =
∑
a∈A

La EA(ρ)L†
a =

∑
a∈A

p̃a Πa ,
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Quantum Channel α for the Lift map

where the lifted probabilities p̃a are given by

p̃a =
1
λ

∑
t∈T

nt
a

(
da

dt

)
pt =

1
λ

∑
b∈A

M ′
ab

(
da

db

)
pb ,

and the matrix

M ′
ab =

∑
t∈T

nt
ant

b

encodes modular invariants governing the extension of superselection
sectors and, in our setting, the the probabilities p̃a of the lifted states
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Properties

1 Idempotency

EA (ρ̃) = EA (α ◦ EA (ρ)) = EA (ρ)

2 Bimodule property

EA(̃t1 a t̃2) = t1 EA(a) t2 ∀ t1, t2 ∈ T , a ∈ A,

3 Trace Preserving
trT EA(ρ) = trA ρ
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Quantum Relative Entropy as Order Parameter

Quantifies the information loss due to symmetry breaking after the
condensation process

Entropic Order Parameter

SA(ρ |α ◦ EA(ρ)) = log λ− H(p)−
∑
a∈A

pa log

[∑
b∈A

M ′
ab

(
da

db

)
pb

]
,

where H(p) = −
∑

a∈A pa log pa .

Index Bound on Information Loss

SA(ρ|α ◦ EA(ρ)) ≤ log λ
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Summary
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Abelian Group ZN

Condensable algebra

A =
⊕

r

Xr ←→ nϕ
r = 1, ∀ r ∈ irreps G

In this case, λ = |G| and T = {ϕ} ∼= Vec(C)

ρ =
∑

r pr Πr
EA // Πϕ

α // 1
|G|

∑
r Πr

Relative Entropy

SA(ρ|α ◦ EA(ρ)) = log |G| − H(p) .
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Symmetry Breaking

Symmetric phase

p̄r =
1
|G|

, ∀ r =⇒ SA(ρ|α ◦ EA(ρ)) = 0

Perturbations
δ pr ≪ p̄r

pr = p̄r + δpr s.t
∑

r

δpr = 0 , SA(ρ|α ◦ EA(ρ)) ∼
∑

r

(δpr )
2 .

δ pr ∼ p̄r ( Example: Z2 with λ = |Z2| = 2)

{p} = {1/2, 1/2} =⇒ SA({p}|{p̃}) = 0
{p} = {1,0} =⇒ SA({p}|{p̃}) = log 2
{p} = {0,1} =⇒ SA({p}|{p̃}) = log 2
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Category Rep(S3)

For this category A = {1,X ,Y} with {d1 = 1,dX = 1,dY = 2}. The
non trivial fusion rules are: X ⊗X = 1,X ⊗Y = Y ,Y ⊗Y = 1⊕X ⊕Y .

I: Trivial
Vec(C)

III: Rep(S3)/Z2 SSB
Vec(Z3)

II: Z2 SSB
Vec(Z2)

IV: Rep(S3) SSB
Rep(S3)

Potts

A

Ising

A
Ising⊕Ising
A=1 + X

A=1+Y

A=1+X + 2Y
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A = 1 + X / λ = nϕ
1 d1 + nϕ

X dX = 2

A ∼= Rep(S3) T ∼= Vec(Z3)

1

X

Y

ϕ

t1

t2

{p} = {1,0, 0} =⇒ SA({p}|{p̃}) = log 2
{p} = {1/2,1/2, 0} =⇒ SA({p}|{p̃}) = 0

{p} = {1/2,0, 1/2} =⇒ SA({p}|{p̃}) =
1
2
log 2

{p} = {0,1/2, 1/2} =⇒ SA({p}|{p̃}) =
1
2
log 2
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Category Rep(S3)

For this category A = {1,X ,Y} with {d1 = 1,dX = 1,dY = 2}. The
non trivial fusion rules are: X ⊗X = 1,X ⊗Y = Y ,Y ⊗Y = 1⊕X ⊕Y .

I: Trivial
Vec(C)

III: Rep(S3)/Z2 SSB
Vec(Z3)

II: Z2 SSB
Vec(Z2)

IV: Rep(S3) SSB
Rep(S3)

Potts

A

Ising

A
Ising⊕Ising
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A = 1 + Y / λ = nϕ
1 d1 + nϕ

Y dY = 3

A ∼= Rep(S3) T ∼= Vec(Z2)

1

Y

X

ϕ

X

{p} = {1,0, 0} =⇒ SA({p}|{p̃}) = log 3
{p} = {1/2,1/2, 0} =⇒ SA({p}|{p̃}) = log 3

{p} = {1/2,0, 1/2} =⇒ SA({p}|{p̃}) =
1
2
log 3/2

{p} = {0,1/2, 1/2} =⇒ SA({p}|{p̃}) =
1
2
log 3/2
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Category Rep(S3)

For this category A = {1,X ,Y} with {d1 = 1,dX = 1,dY = 2}. The
non trivial fusion rules are: X ⊗X = 1,X ⊗Y = Y ,Y ⊗Y = 1⊕X ⊕Y .

I: Trivial
Vec(C)

III: Rep(S3)/Z2 SSB
Vec(Z3)

II: Z2 SSB
Vec(Z2)

IV: Rep(S3) SSB
Rep(S3)

Potts

A

Ising

A
Ising⊕Ising
A=1 + X

A=1+Y

A=1+X + 2Y
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A = 1 + X + 2Y / λ = nϕ
1 d1 + nϕ

X dX + nϕ
Y dY = 6

A ∼= Rep(S3) T ∼= Vec(C)

1

X

Y

ϕ

{p} = {1, 0, 0} =⇒ SA({p}|{p̃}) = log 6
{p} = {1/2, 1/2, 0} =⇒ SA({p}|{p̃}) = log 3
{p} = {1/2, 0, 1/2} =⇒ SA({p}|{p̃}) = log 3/2
{p} = {0, 1/2, 1/2} =⇒ SA({p}|{p̃}) = log 3/2
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Summary and Outlook

Summary
We establish the SymQuOp implementing the symmetry breaking
patterns of non-invertible symmetries. Basic operations in QFT.
Entropic order parameters quantify these symmetry-breaking
patterns.
Bounded by the Jones index, the fundamental invariant of the
subfactor T ⊂ A that defines the pattern of symmetry breaking.

Outlook
Extend the present finite–dimensional analysis to type II/III
settings, where Tomita-Takesaki modular theory plays a central
role.
How this connects with progress made through the SymTFT?
The interplay between condensation, anomalies, and entropic
quantities deserves further exploration.
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Thanks for your attention GRASS-SYMBHOL!
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Support Slides

E as group average

E(ρ) =
∑
g∈G

Kg ρK†
g w/ Kg = Λg,ϕ ≡ Λg

=
1
|G|

∑
g∈G

Λ̄g ρ Λ̄
†
g where Λ̄g =

√
λΛg .

Lagrangian algebras and trivial phases

i) nϕ
a ̸= 0, ∀ a ∈ A,

ii) The quantum dimension D2
T = 1 =⇒

λ =
∑
a∈A

nϕ
a da = D2

A

vacuum ϕ in which all the non-trivial anyonic charges trivialize.
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Quiver Diagram Rep(S3) SSB

ϕ ≡ o1 : 1, o2 : X , o3 : Y ,

X

Y

o1 o2 o3

o1 o2 o3
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Quiver Diagram Rep(S3)/Z2 SSB

ϕ ≡ o1 : 1 + X , t1 ≡ o2 : Y , t2 ≡ o3 : Y ,

X

Y

o1 o2 o3

o1 o2 o3
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Quiver Diagram Z2 SSB

ϕ ≡ o1 : 1 + Y , X ≡ o2 : X + Y

X

Y

o1 o2

o1 o2
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Quiver Diagram: Trivial

ϕ ≡ o1 : 1 + X + 2Y ,

1,X ,Y o1
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