Quantum Channels, Jones Index, and Entropic Signatures of Symmetry Breaking

Javier Molina-Vilaplana

UPCT, Spain

Toledo, 12th-Nov 2025

Collaboration w/

Germán Sierra and Hua-Chen Zhang (IFT)

based on: arXiv:2509.24625

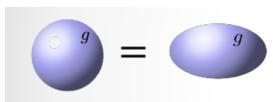
Agencia de Ciencia y Tecnología Región de Murcia

Outline

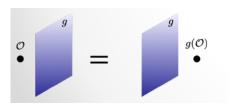
- Motivation
- Subfactors, Quantum Channels and Relative Entropy
- 3 Phases of Non-Invertible Symmetries and Anyon Condensation
- Examples
- Outlook and Conclusions

Motivation

In QFT, global symmetries \equiv Topological operators $U(\Sigma)$ [Gaiotto et al 2014].



Topological: deformations of Σ do not modify correlators



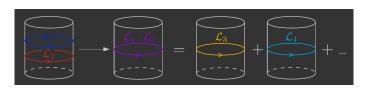
Linking: Operator crossing the defect \rightarrow symmetry operation.

Fusion: Group multiplication law $U_g(\Sigma) \times U_h(\Sigma) = U_{hg}(\Sigma)$

Broken Symmetries

When a global symmetry involves an ordinary group, patterns of symmetry breaking are classified by subgroups of the original symmetry group.

Generalization: Non-Invertible Symmetries



$$\mathcal{L}_a imes \mathcal{L}_b = \sum_c N_{ab}^c \mathcal{L}_c$$

 $\mathcal{L}'s$ don't have inverses. No conserved currents (in general) but conserved charges exist.

Broken Symmetries

Pattern of symmetry breaking \equiv Frobenius algebra \mathbb{A} analog of a subgroup, w/ the invariant subspaces under their action \rightarrow different gaugings/ phases.

Generalized Landau Paradigm

- Phases of systems with non-invertible symmetries as patterns of symmetry breaking
- Order parameters for these symmetries
- Progress made w/ SymTFT [Bhardwaj et al 25]

Motivation

Our work

- We propose an algebraic and information-theoretic framework to analyze symmetry-breaking in generalized global symmetries.
- Elegant formulation within subfactor theory of von Neumann algebras.
- Subfactors provide a framework for quantifying quantum information loss which acts as an entropic order parameter.

Annals of Mathematics Vol. 37, No. 1, January, 1936

ON RINGS OF OPERATORS

By F. J. Murray* and J. v. Neumann

(Received April 3, 1935)

Invent. math. 72, 1-25 (1983)

Index for Subfactors

V.F.R. Jones

Outline

- Motivation
- Subfactors, Quantum Channels and Relative Entropy
- 3 Phases of Non-Invertible Symmetries and Anyon Condensation
- Examples
- **5** Outlook and Conclusions

Subfactors in von Neumann algebras

Quantum systems are described by their algebras of observables \mathcal{M} , which act on a Hilbert space \mathcal{H} .

An operator algebra consists of a set of operators s.t

$$1 \in \mathcal{M}, \ a, b \in \mathcal{M} \implies \alpha a + \beta b \in \mathcal{M}, \ a, b \in \mathcal{M}, \ a^{\dagger} \in \mathcal{M},$$

with $\alpha, \beta \in \mathbb{C}$.

 ${\cal M}$ is a von Neumann algebra if ${\cal M}={\cal M}'',$ where the prime refers to the commutant,

$$\mathcal{M}' = \{b/[b, a] = 0, \forall a \in \mathcal{M}\}.$$

 \mathcal{M} is called a *factor* if $\mathcal{M} \cap \mathcal{M}' = \mathbb{C} \cdot \mathbf{1}$.

Factors are classified into Type I, II, and III. Here, we focus on Type I factors isomorphic to matrix algebras.

Subfactors in von Neumann algebras

A subfactor is a unital inclusion $\mathcal{N} \subset \mathcal{M}$ of von Neumann algebras where both \mathcal{N} and \mathcal{M} are *factors*.

Why we use Subfactors?

- \bullet Physically, we are considering a quantum mechanical system with some global symmetry that is described by an algebra ${\cal M}$ of operators.
- The full or partial symmetry breaking in the system implies that the superselection sectors describing the broken phase are given by a "small" subalgebra $\mathcal{N} \subset \mathcal{M}$.

States in von Neumann algebras

Quantum states are described by linear maps $\omega: \mathcal{M} \to \mathbb{C}$

$$\omega(\alpha \mathbf{a} + \beta \mathbf{b}) = \alpha \omega(\mathbf{a}) + \beta \omega(\mathbf{b}), \quad \omega(\mathbf{a}\mathbf{a}^{\dagger}) \geq 0, \quad \omega(\mathbf{1}) = 1.$$

In finite-dimensional algebras \mathcal{M} , each state ω is represented by a density matrix $\rho_{\omega} \in \mathcal{M}$ such that

$$\omega(\mathbf{a}) = \operatorname{tr}(\rho_{\omega} \mathbf{a}), \ \forall \mathbf{a} \in \mathcal{M}.$$

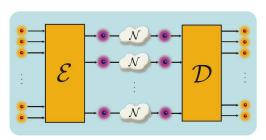
Conditional Expectations/Quantum Channels

Completely positive linear maps $\mathcal{E}:\mathcal{M}\to\mathcal{N}$ that act as a projection from \mathcal{M} onto \mathcal{N} .

For systems with finite-dimensional Hilbert space $\mathcal{H},\,\mathcal{E}$ can be expressed as:

$$\mathcal{E}(m) = \sum_{i=1}^{N} \mathbb{K}_{i} \, m \, \mathbb{K}_{i}^{\dagger}$$

 \mathbb{K}_i Kraus operators $\implies \mathcal{E}$ a specific example of a quantum channel.



Jones Index

For $\mathcal{N} \subset \mathcal{M}$, with $\mathcal{E} : \mathcal{M} \to \mathcal{N}$, the Jones (or Jones–Kosaki–Longo) index is defined as [Jones 83]

$$\lambda = [\mathcal{M} : \mathcal{N}] := [\sup\{\lambda > 0 : \mathcal{E}(m) \ge \lambda m \text{ for all } m \in \mathcal{M}_+\}]^{-1}.$$

that quantifies the relative "size" of \mathcal{M} compared to \mathcal{N} , analogous to the index of a subgroup.

Relative entropy $H(\mathcal{M}|\mathcal{N})$ for inclusion $\mathcal{N} \subset \mathcal{M}$ of finite (dimensional) algebras [Connes and Störmer 75], [Pimsner and Popa 86],

$$H(\mathcal{M}|\mathcal{N}) \leq \log \lambda$$

Quantum Relative Entropy

Central quantity in quantum information theory . For Type I algebras,

$$S_{\mathcal{M}}(\rho \mid \sigma) = \operatorname{tr}_{\mathcal{M}}[\rho (\log \rho - \log \sigma)],$$

where ρ , σ are two density operators associated with the two states in comparison.

Measures distinguishability between states. Natural option involving quantum channels is to use it as a measure of information loss as

$$S_{\mathcal{M}}(\rho \mid \mathcal{E}(\rho))$$

which in our setting will act as an Entropic Order Parameter [Casini et al 20]

Outline

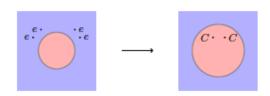
- Motivation
- 2 Subfactors, Quantum Channels and Relative Entropy
- Phases of Non-Invertible Symmetries and Anyon Condensation
- Examples
- Outlook and Conclusions

Phases of Non-Invertible Symmetries and Anyon Condensation

We focus in (2+1)-D where

- System of anyons with a generalized (noninvertible) symmetry
- New phase is formed when an anyon with charge a undergoes condensation, that is, a new vacuum is formed, in which the topological charge a is indistinguishable.
- The condensate breaks the original symmetry encoded in the topological excitation spectrum of the system. [Kong 2014]

Anyon Condensation



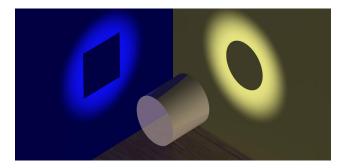
Anyon Condensation and Operator Algebras

- Before condensation, the superselection sectors (anyon types) described by algebra \mathcal{A} .
- ullet Condensation process reduces ${\mathcal A}$ to a smaller subalgebra ${\mathcal T}.$
- ullet Operators of ${\mathcal A}$ become decomposable in terms of elements of ${\mathcal T}.$

Anyon Condensation and Frobenius Algebras

Symmetry patterns described by a Frobenius algebra

$$\mathbb{A} = \sum_{a \in \mathcal{A}} w_{\mathbb{A}}^a a$$



Analog of a subgroup whose invariant subspaces \equiv different gaugings/phases

Frobenius Algebras and Subfactors

 $\mathbb{A} \implies \mathcal{E}_{\mathbb{A}}: \mathcal{A} \to \mathcal{T} \text{ and a subfactor } \mathcal{T} \subset \mathcal{A}.$

Subfactors ≅ Symmetries

Subfactor $\mathcal{T} \subset \mathcal{A} \longleftrightarrow \mathsf{Pattern}$ of symmetry breaking $\equiv \mathbb{A}$

Restriction and Lift maps

Algebra \mathcal{T} , with labels ϕ , r, s, t, ..., and a set of branching (or restriction) coefficients n_a^t implementing [Bais et al 2009, 2014].

• The Restriction map, characterizing the new phase:

$$a
ightarrow \sum_{t \in \mathcal{T}} n_a^t t \qquad \forall a \in \mathcal{A} \qquad \text{(restriction)}$$

where $n_a^t \in \mathbb{Z}_{>0}$.

 The same branching coefficients also define the adjoint of the restriction map, referred to as the Lift map

Consistency Conditions

We assume that the restriction $\mathcal{A} \to \mathcal{T}$ commutes with fusion

$$\begin{array}{c|c}
\mathcal{A} \otimes \mathcal{A} \xrightarrow{f} \mathcal{A} \\
r \otimes r \downarrow & \downarrow r \\
\mathcal{T} \otimes \mathcal{T} \xrightarrow{f} \mathcal{T}
\end{array}$$

Quantum Dimensions

$$d_a = \sum_{t \in \mathcal{T}} n_a^t d_t \quad \forall \ a \in \mathcal{A},$$
 $d_t = \frac{1}{q} \sum_{a \in \mathcal{A}} n_a^t d_a \quad \forall \ t \in \mathcal{T},$

where q denotes the quantum dimension of the condensed vacuum,

$$q:=\sum_{a\in\mathcal{A}}n_a^\phi d_a=\frac{D_\mathcal{A}^2}{D_\mathcal{T}^2}\,,\quad \text{w}/\quad D_\mathcal{A}^2=\sum_{a\in\mathcal{A}}\,d_a^2\,,\quad D_\mathcal{T}^2=\sum_{t\in\mathcal{T}}\,d_t^2\,,$$

the total quantum dimensions of ${\mathcal A}$ and ${\mathcal T}$

Subfactor $\mathcal{T} \subset \mathcal{A}$ and anyon condensation

In this language, the Jones index

$$\lambda = [\mathcal{A} : \mathcal{T}] \equiv q$$

Symmetry Quantum Channels (SymQuOp)

Frobenius Algebra $\mathbb{A} \to n_a^t$

$$\mathcal{E}_{\mathbb{A}}: \rho \in \mathcal{A} \xrightarrow{\mathsf{restr}} \rho_{\mathbb{A}} \in \mathcal{T}$$

$$\alpha: \rho_{\mathbb{A}} \in \mathcal{T} \xrightarrow{\text{lift}} \tilde{\rho} \in \mathcal{A}$$

Information Loss for non-symmetric states:

$$\alpha \circ \mathcal{E}_{\mathbb{A}}(\rho) = \tilde{\rho} \neq \rho \implies \mathcal{S}_{\mathcal{A}}(\rho \mid \alpha \circ \mathcal{E}_{\mathbb{A}}(\rho)) > 0$$

Symmetric states

$$\alpha \circ \mathcal{E}_{\mathbb{A}}(\rho) = \tilde{\rho} = \rho \implies \mathcal{S}_{\mathcal{A}}(\rho \mid \alpha \circ \mathcal{E}_{\mathbb{A}}(\rho)) = 0$$

Quantum Channel $\mathcal{E}_{\mathbb{A}}$ for the Restriction map

Kraus representation

$$\mathcal{E}_{\mathbb{A}}(\rho) = \sum_{a \in A} \mathbb{K}_a \, \rho \, \mathbb{K}_a^{\dagger},$$

Anyonic superselection rules \implies a topological state given by a convex sum with a set of projectors Π_a s.t

$$\rho = \bigoplus_{a \in A} \rho_a = \sum_{a \in A} p_a \Pi_a, \quad \text{s.t.} \quad \Pi_a^{\dagger} = \Pi_a, \quad \Pi_a \Pi_b = \delta_{ab} \Pi_a$$

with probabilities $p_a \equiv \operatorname{tr}(\rho \Pi_a)$ such that $\sum_a p_a = 1$.

Quantum Channel $\mathcal{E}_{\mathbb{A}}$ for the Restriction map

Kraus operators in terms of branching coefficients n_a^t

$$\mathbb{K}_{a} = \sum_{t \in \mathcal{T}} \sqrt{n_{a}^{t} \left(\frac{d_{t}}{d_{a}}\right)} \, \Lambda_{t,a} \,, \quad a \in \mathcal{A}, \quad t \in \mathcal{T} \,,$$

where $\Lambda_{t,a} \Pi_b = \delta_{ab} \Lambda_{t,a}$, $\Lambda_{t,a} \Lambda_{b,s} = \delta_{ab} \delta_{ts} \Pi_t$.

$$\mathcal{E}_{\mathbb{A}}(
ho) = \sum_{a \in \mathcal{A}} \mathbb{K}_a \,
ho \, \mathbb{K}_a^{\dagger} = \sum_{t \in \mathcal{T}} \, p_t \, \Pi_t$$

where

$$p_t = \sum_{a \in A} n_a^t \left(\frac{d_t}{d_a} \right) p_a$$
.

Quantum Channel α for the Lift map

$\alpha: \mathcal{T} \to \mathcal{A}$ Lift map

$$\widetilde{\rho} = \alpha(\rho_{\mathbb{A}}) = \sum_{\mathbf{a} \in \mathcal{A}} \mathbb{L}_{\mathbf{a}} \mathcal{E}_{\mathbb{A}}(\rho) \mathbb{L}_{\mathbf{a}}^{\dagger}$$

Implemented by the (non-Kraus) operators

$$\mathbb{L}_{a} = \sum_{t \in \mathcal{T}} \sqrt{\frac{n_{a}^{t}}{\lambda}} \left(\frac{d_{a}}{d_{t}}\right) \Lambda_{a,t} \quad a \in \mathcal{A} \quad t \in \mathcal{T}, \text{ with}$$

$$\lambda = [\mathcal{A} : \mathcal{T}] = \sum_{a \in \mathcal{A}} n_{a}^{\phi} d_{a} = q$$

Then

$$\widetilde{\rho} = \alpha(\rho_{\mathbb{A}}) = \sum_{\mathbf{a} \in A} \mathbb{L}_{\mathbf{a}} \mathcal{E}_{\mathbb{A}}(\rho) \mathbb{L}_{\mathbf{a}}^{\dagger} = \sum_{\mathbf{a} \in A} \widetilde{p}_{\mathbf{a}} \Pi_{\mathbf{a}},$$

Quantum Channel α for the Lift map

where the lifted probabilities \tilde{p}_a are given by

$$\widetilde{\rho}_{a} = \frac{1}{\lambda} \sum_{t \in \mathcal{T}} n_{a}^{t} \left(\frac{d_{a}}{d_{t}} \right) \, \rho_{t} = \frac{1}{\lambda} \sum_{b \in \mathcal{A}} M_{ab}' \left(\frac{d_{a}}{d_{b}} \right) \, \rho_{b} \, ,$$

and the matrix

$$M'_{ab} = \sum_{t \in \mathcal{T}} n_a^t n_b^t$$

encodes modular invariants governing the extension of superselection sectors and, in our setting, the probabilities \tilde{p}_a of the lifted states

Properties

Idempotency

$$\mathcal{E}_{\mathbb{A}}\left(\tilde{\rho}\right) = \mathcal{E}_{\mathbb{A}}\left(\alpha \circ \mathcal{E}_{\mathbb{A}}\left(\rho\right)\right) = \mathcal{E}_{\mathbb{A}}\left(\rho\right)$$

Bimodule property

$$\mathcal{E}_{\mathbb{A}}(\tilde{t}_1 \ a \tilde{t}_2) = t_1 \, \mathcal{E}_{\mathbb{A}}(a) \, t_2 \quad \forall \, t_1, t_2 \in \mathcal{T}, a \in \mathcal{A},$$

Trace Preserving

$$\operatorname{tr}_{\mathcal{T}} \mathcal{E}_{\mathbb{A}}(\rho) = \operatorname{tr}_{\mathcal{A}} \rho$$

Quantum Relative Entropy as Order Parameter

Quantifies the information loss due to symmetry breaking after the condensation process

Entropic Order Parameter

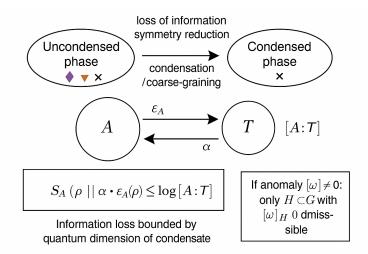
$$S_{\mathcal{A}}(\rho \mid \alpha \circ \mathcal{E}_{\mathbb{A}}(\rho)) = \log \lambda - H(p) - \sum_{a \in \mathcal{A}} p_a \log \left[\sum_{b \in \mathcal{A}} M'_{ab} \left(\frac{d_a}{d_b} \right) p_b \right] ,$$

where $H(p) = -\sum_{a \in A} p_a \log p_a$.

Index Bound on Information Loss

$$S_{\mathcal{A}}(\rho | \alpha \circ \mathcal{E}_{\mathbb{A}}(\rho)) \leq \log \lambda$$

Summary



Outline

- Motivation
- Subfactors, Quantum Channels and Relative Entropy
- Phases of Non-Invertible Symmetries and Anyon Condensation
- Examples
- Outlook and Conclusions

Abelian Group \mathbb{Z}_N

Condensable algebra

$$\mathbb{A} = \bigoplus_{r} X_r \quad \longleftrightarrow \quad n_r^{\phi} = 1, \quad \forall \, r \in \text{irreps } G$$

In this case, $\lambda = |G|$ and $\mathcal{T} = \{\phi\} \cong \text{Vec}(\mathbb{C})$

$$\rho = \sum_{r} p_{r} \Pi_{r} \xrightarrow{\mathcal{E}_{\mathbb{A}}} \Pi_{\phi} \xrightarrow{\alpha} \frac{1}{|G|} \sum_{r} \Pi_{r}$$

Relative Entropy

$$S_{\mathcal{A}}(\rho | \alpha \circ \mathcal{E}_{\mathbb{A}}(\rho)) = \log |G| - H(p)$$
.

Symmetry Breaking

Symmetric phase

$$ar{p}_r = rac{1}{|G|}, \, orall \, r \implies S_{\mathcal{A}}(
ho | \, lpha \circ \mathcal{E}_{\mathbb{A}}(
ho)) = 0$$

Perturbations

$$\delta p_r \ll \bar{p}_r$$

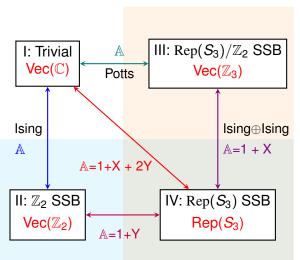
$$p_r = \bar{p}_r + \delta p_r$$
 s.t $\sum_r \delta p_r = 0$, $S_A(\rho | \alpha \circ \mathcal{E}_A(\rho)) \sim \sum_r (\delta p_r)^2$.

$$\delta p_r \sim \bar{p}_r$$
 (Example: \mathbb{Z}_2 with $\lambda = |\mathbb{Z}_2| = 2$)

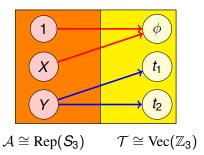
$$\begin{aligned} \{p\} &= \{1/2, 1/2\} \implies \mathcal{S}_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = 0 \\ \{p\} &= \{1, 0\} \implies \mathcal{S}_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 2 \\ \{p\} &= \{0, 1\} \implies \mathcal{S}_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 2 \end{aligned}$$

Category $Rep(S_3)$

For this category $A = \{1, X, Y\}$ with $\{d_1 = 1, d_X = 1, d_Y = 2\}$. The non trivial fusion rules are: $X \otimes X = 1, X \otimes Y = Y, Y \otimes Y = 1 \oplus X \oplus Y$.



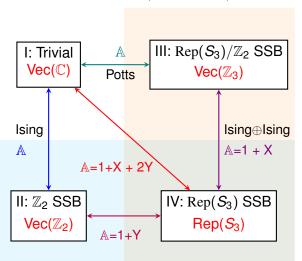
$$A = 1 + X / \lambda = n_1^{\phi} d_1 + n_X^{\phi} d_X = 2$$



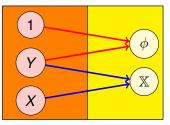
$$\{ \rho \} = \{ 1, 0, 0 \} \implies S_{\mathcal{A}}(\{ \rho \} | \{ \tilde{\rho} \}) = \log 2
\{ \rho \} = \{ 1/2, 1/2, 0 \} \implies S_{\mathcal{A}}(\{ \rho \} | \{ \tilde{\rho} \}) = 0
\{ \rho \} = \{ 1/2, 0, 1/2 \} \implies S_{\mathcal{A}}(\{ \rho \} | \{ \tilde{\rho} \}) = \frac{1}{2} \log 2
\{ \rho \} = \{ 0, 1/2, 1/2 \} \implies S_{\mathcal{A}}(\{ \rho \} | \{ \tilde{\rho} \}) = \frac{1}{2} \log 2$$

Category $Rep(S_3)$

For this category $A = \{1, X, Y\}$ with $\{d_1 = 1, d_X = 1, d_Y = 2\}$. The non trivial fusion rules are: $X \otimes X = 1, X \otimes Y = Y, Y \otimes Y = 1 \oplus X \oplus Y$.



$$A = 1 + Y / \lambda = n_1^{\phi} d_1 + n_Y^{\phi} d_Y = 3$$

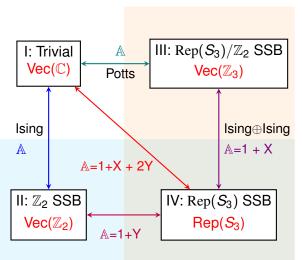


$$\mathcal{A} \cong \operatorname{Rep}(\mathcal{S}_3) \qquad \mathcal{T} \cong \operatorname{Vec}(\mathbb{Z}_2)$$

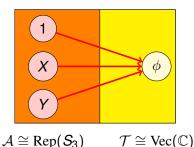
$$\begin{aligned} \{ p \} &= \{ 1,0,0 \} \implies \mathcal{S}_{\mathcal{A}}(\{ p \} | \{ \tilde{p} \}) = \log 3 \\ \{ p \} &= \{ 1/2,1/2,0 \} \implies \mathcal{S}_{\mathcal{A}}(\{ p \} | \{ \tilde{p} \}) = \log 3 \\ \{ p \} &= \{ 1/2,0,1/2 \} \implies \mathcal{S}_{\mathcal{A}}(\{ p \} | \{ \tilde{p} \}) = \frac{1}{2} \log 3/2 \\ \{ p \} &= \{ 0,1/2,1/2 \} \implies \mathcal{S}_{\mathcal{A}}(\{ p \} | \{ \tilde{p} \}) = \frac{1}{2} \log 3/2 \end{aligned}$$

Category $Rep(S_3)$

For this category $A = \{1, X, Y\}$ with $\{d_1 = 1, d_X = 1, d_Y = 2\}$. The non trivial fusion rules are: $X \otimes X = 1, X \otimes Y = Y, Y \otimes Y = 1 \oplus X \oplus Y$.



$$A = 1 + X + 2Y / \lambda = n_1^{\phi} d_1 + n_X^{\phi} d_X + n_Y^{\phi} d_Y = 6$$



$$\{p\} = \{1,0,0\} \implies S_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 6$$

$$\{p\} = \{1/2,1/2,0\} \implies S_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 3$$

$$\{p\} = \{1/2,0,1/2\} \implies S_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 3/2$$

$$\{p\} = \{0,1/2,1/2\} \implies S_{\mathcal{A}}(\{p\} | \{\tilde{p}\}) = \log 3/2$$

Outline

- Motivation
- 2 Subfactors, Quantum Channels and Relative Entropy
- Phases of Non-Invertible Symmetries and Anyon Condensation
- 4 Examples
- Outlook and Conclusions

Summary and Outlook

Summary

- We establish the SymQuOp implementing the symmetry breaking patterns of non-invertible symmetries. Basic operations in QFT.
- Entropic order parameters quantify these symmetry-breaking patterns.
- Bounded by the Jones index, the fundamental invariant of the subfactor $\mathcal{T} \subset \mathcal{A}$ that defines the pattern of symmetry breaking.

Outlook

- Extend the present finite—dimensional analysis to type II/III settings, where Tomita-Takesaki modular theory plays a central role.
- How this connects with progress made through the SymTFT?
- The interplay between condensation, anomalies, and entropic quantities deserves further exploration.

Thanks for your attention GRASS-SYMBHOL!

Support Slides

${\mathcal E}$ as group average

$$\begin{split} \mathcal{E}(\rho) &= \sum_{g \in G} \mathbb{K}_g \, \rho \, \mathbb{K}_g^\dagger \quad \text{w} / \quad \mathbb{K}_g = \Lambda_{g,\phi} \equiv \Lambda_g \\ &= \frac{1}{|G|} \sum_{g \in G} \bar{\Lambda}_g \, \rho \, \bar{\Lambda}_g^\dagger \quad \text{where} \quad \bar{\Lambda}_g = \sqrt{\lambda} \, \Lambda_g \,. \end{split}$$

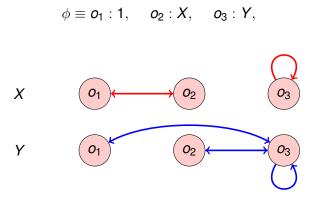
Lagrangian algebras and trivial phases

- *i*) $n_a^{\phi} \neq 0$, $\forall a \in \mathcal{A}$,
- *ii*) The quantum dimension $\mathcal{D}_{\mathcal{T}}^2 = 1 \implies$

$$\lambda = \sum_{a \in A} \, n_a^\phi \, d_a = \mathcal{D}_\mathcal{A}^2$$

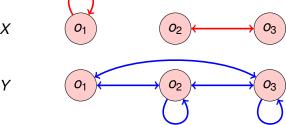
vacuum ϕ in which all the non-trivial anyonic charges trivialize.

Quiver Diagram Rep(S₃) SSB



Quiver Diagram Rep(S_3)/ \mathbb{Z}_2 SSB

$$\phi \equiv o_1: 1+X, \quad t_1 \equiv o_2: Y, \quad t_2 \equiv o_3: Y,$$



Quiver Diagram \mathbb{Z}_2 SSB

Quiver Diagram: Trivial

$$\phi \equiv o_1: 1 + X + 2Y,$$

