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Motivation

In QFT, global symmetries =Topological operators U(X) [Gaiotto et al 2014].

Topological: deformations of ¥ do not modify correlators

Linking: Operator crossing the defect — symmetry operation.
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Fusion: Group multiplication law Uy(X) x Up(X) = Ung(X)

Broken Symmetries

When a global symmetry involves an ordinary group, patterns of
symmetry breaking are classified by subgroups of the original
symmetry group.
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Generalization: Non-Invertible Symmetries

LaxLy=> N Le
[

L's don’t have inverses. No conserved currents (in general) but
conserved charges exist.

Broken Symmetries

Pattern of symmetry breaking = Frobenius algebra A

analog of a subgroup, w/ the invariant subspaces under their action —
different gaugings/ phases.
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Generalized Landau Paradigm

@ Phases of systems with non-invertible symmetries as patterns of
symmetry breaking

@ Order parameters for these symmetries

@ Progress made w/ SymTFT [Bhardwaj et al 25]
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Motivation

@ We propose an algebraic and information-theoretic framework to
analyze symmetry-breaking in generalized global symmetries.

@ Elegant formulation within subfactor theory of von Neumann
algebras.

@ Subfactors provide a framework for quantifying quantum
information loss which acts as an entropic order parameter.
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9 Subfactors, Quantum Channels and Relative Entropy
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Subfactors in von Neumann algebras

Quantum systems are described by their algebras of observables M,
which act on a Hilbert space #.

An operator algebra consists of a set of operators s.t
1cM, abeM — aa+pbeM, a,bc M, aecM,

with o, 8 € C.

M is a von Neumann algebra if M = M”, where the prime refers to
the commutant,

M ={b/[b, a] =0, Vaec M}.

M is called a factorift MN M’ =C - 1.

Factors are classified into Type |, Il, and Ill. Here, we focus on Type |
factors isomorphic to matrix algebras.

Javier Molina-Vilaplana (UPCT, Spain) GRASS-SYMBHOL Toledo, 12th-Nov 2025 10/49



Subfactors in von Neumann algebras

A subfactor is a unital inclusion A/ ¢ M of von Neumann algebras
where both A" and M are factors.

Why we use Subfactors?

@ Physically, we are considering a quantum mechanical system with
some global symmetry that is described by an algebra M of
operators.

@ The full or partial symmetry breaking in the system implies that
the superselection sectors describing the broken phase are given
by a "small” subalgebra /' ¢ M.
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States in von Neumann algebras

Quantum states are described by linear maps w : M — C

w(aa+ Bb) = aw(a) + fw(b), w(aa)>0, w()=1.
In finite-dimensional algebras M, each state w is represented by a
density matrix p,, € M such that

w(a) =tr(py,a), YVae M.
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Conditional Expectations/Quantum Channels

Completely positive linear maps £ : M — N that act as a projection
from M onto V.

For systems with finite-dimensional Hilbert space #, £ can be
expressed as:

N
£(m) =Y K;mK]
i=

K; Kraus operators —> & a specific example of a quantum channel.
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Jones Index

For N/ € M, with £ : M — N/, the Jones (or Jones—Kosaki—Longo)
index is defined as [Jones 83]

A=[M:N]:=[sup{A>0:E(m)>Am forallme M, }]~".

that quantifies the relative "size” of M compared to A/, analogous to
the index of a subgroup.

Relative entropy H(M|N) for inclusion ' C M of finite (dimensional)
algebras [Connes and Stérmer 75], [Pimsner and Popa 86],

HMIN) < log A
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Quantum Relative Entropy

Central quantity in quantum information theory . For Type | algebras,

Sm(plo) =trpmlp(logp —logo)],

where p, o are two density operators associated with the two states in
comparison.

Measures distinguishability between states. Natural option involving
quantum channels is to use it as a measure of information loss as

Smp[E€(p))

which in our setting will act as an Entropic Order Parameter [Casini et al
20]
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9 Phases of Non-Invertible Symmetries and Anyon
Condensation

Javier Molina-Vilaplana (UPCT, Spain) GRASS-SYMBHOL Toledo, 12th-Nov 2025 16/49



Phases of Non-Invertible Symmetries and Anyon
Condensation

We focus in (2+1)-D where
@ System of anyons with a generalized (noninvertible) symmetry

@ New phase is formed when an anyon with charge a undergoes
condensation, that is, a new vacuum is formed, in which the
topological charge a is indistinguishable.

@ The condensate breaks the original symmetry encoded in the
topological excitation spectrum of the system. [Kong 2014]
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Anyon Condensation
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Anyon Condensation and Operator Algebras

@ Before condensation, the superselection sectors (anyon types)
described by algebra A.

@ Condensation process reduces A to a smaller subalgebra 7.

@ Operators of A become decomposable in terms of elements of 7.

[F
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Anyon Condensation and Frobenius Algebras

Symmetry patterns described by a Frobenius algebra

A=) wla

acA

Analog of a subgroup whose invariant subspaces = different
gaugings/phases
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Frobenius Algebras and Subfactors

N X

A = &y : A— T and a subfactor 7 C A.

Subfactors = Symmetries

Subfactor T C A <— Pattern of symmetry breaking = A
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Restriction and Lift maps

Algebra T, with labels ¢, r, s, t, .., and a set of branching (or restriction)
coefficients n!, implementing [Bais et al 2009, 2014].

@ The Restriction map, characterizing the new phase:

a— ntt Vae A restriction
a
teT

where n};, € Zxo.

@ The same branching coefficients also define the adjoint of the
restriction map, referred to as the Lift map

t—> nha VteT  (iift)
acA
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Consistency Conditions

We assume that the restriction A — 7 commutes with fusion

A AL~ A

TOT——T

Quantum Dimensions

da=) nhd; VacA,
teT

]
Oh=—> nhds VteT,
acA
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where g denotes the quantum dimension of the condensed vacuum,

D2
q::Znﬁda:D—ﬁ, w/ DR=> di, DE=> df,
acA T acA teT

the total quantum dimensions of A and T

Subfactor 7 C A and anyon condensation
In this language, the Jones index

A=[A:T]=q
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Symmetry Quantum Channels (SymQuOp)

Frobenius Algebra A — n!

EA:pEA%pAGT

OéZpAETTﬁEA

@ Information Loss for non-symmetric states:

ao&plp)=p#p = Salpla o &ulp)) >0

@ Symmetric states

aoéy(p)=p=p = Salp|lao&lp))=0
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Quantum Channel &, for the Restriction map

Kraus representation

Ealp) = KapKE,
acA

Anyonic superselection rules = a topological state given by a
convex sum with a set of projectors I, s.t

p = @pa: Z pa I_Ia, S.t I_IL: I_Ia, nanbzéabna
acA acA

with probabilities p, = tr(p M) such that >, pa = 1.
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Quantum Channel &, for the Restriction map

Kraus operators in terms of branching coefficients nj,

Ka_z ( >/\ta, acA, teT,

teT

where At oMy = dap Ata,  AtaNps = 0ap Ots ;.

Enlp) = Z KapK} = Z Pt Mt

acA teT

where

d
pe=1 b <d;) Pa-

acA
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Quantum Channel « for the Lift map

a: T — ALift map

alpa) =Y Laéalp

acA

Implemented by the (hon-Kraus) operators

Z ( >/\at acA teT, with

teT

A=[A:T]=> nfda=gq

acA
Then

p=alps) = Lala(p)Lh = Pala,
acA acA
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Quantum Channel « for the Lift map

where the lifted probabilities p, are given by
- 1 ¢t (0a 1 da
Pa= 52 1 <d> pr=5 2 Mao <db> i
teT beA

and the matrix

r_ t ot
ab_znanb

teT

encodes modular invariants governing the extension of superselection
sectors and, in our setting, the the probabilities p, of the lifted states
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Properties

© Idempotency
En () = En(a 0 &n(p)) = En(p)
© Bimodule property

SA('A 3;2) = SA(a) b VHh,b € T, ac A,

© Trace Preserving

trr Eplp) = trap
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Quantum Relative Entropy as Order Parameter

Quantifies the information loss due to symmetry breaking after the
condensation process

Entropic Order Parameter

Salp|ao&n(p)) =log A —H(p) — ) _ palog [Z Mz (%Z) Pb] :

acA be A

where H(p) = — > ,c 4 Palog Pa.

Index Bound on Information Loss

Sa(plao&a(p)) < logA
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Summary

loss of information
symmetry reduction

Uncondensed
phase
®vx

—>

condensation
/coarse-graining

€a

>
«—

(04

Condensed

Sa(p |l a-eslp) <log[A:T]

phase
X

[A:T]

Information loss bounded by
quantum dimension of condensate

GRASS-SYMBHOL
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Outline

0 Examples
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Abelian Group Zy

Condensable algebra

A:@Xr «—— nl=1, VreirepsG
r
In this case, A = |G| and T = {¢} = Vec(C)
En o 1
p:erfannd)*)@Zrnf

Relative Entropy
Sa(pl oo Ex(p)) = log |G| — H(p) .
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Symmetry Breaking

Symmetric phase

1
Br=g VT = Salplao€u(p) =0

Perturbations

dpr < pr

pr=pr+opr s.t Z opr =0, Sa(plao&a(p)) ~ Z (5pr)?.
r

r

0 pr ~ pr ( Example: Z, with A = |Z5| = 2)

{p} ={1/2,1/2} = Sa({p}{P}) =0
{p} ={1,0} = Su({p}|{P}) =log2
{p} ={0,1} — Su({p}{P}) = log2
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Category Rep(S3)

For this category A = {1, X, Y} with {d; =1,dx = 1,dy = 2}. The
non trivial fusionrules are: X@ X =1, XY =Y, YY=1aXaY.

I: Trivial A Ill: Rep(S3)/Z, SSB
Vec(C) Potts Vec(Zs)
Ising Ising®lsing
A A=1+X
A=1+X + 2Y
II: Z, SSB IV: Rep(S3) SSB
Vec(Z Rep(S
) |7 p(Ss)
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A=1+X/ )\_n1d1+nxdx_

{p} =
{p} =

{p} =
{p} =

© ()
(v (&)

A = Rep(S3) T = Vec(Z3)

{1,0,0} = Sa({p}|{p}) = log2
{1/2,1/2,0} = Sa({p}|{P}) =

(1/2,0,1/2) = Sa({p}{B}) = 1Iog2

{0,1/2,1/2} — Sa({p}{P}) = |og2
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Category Rep(S3)

For this category A = {1, X, Y} with {d; =1,dx = 1,dy = 2}. The
non trivial fusionrules are: X@ X =1, XY =Y, YY=1aXaY.

I: Trivial A Ill: Rep(S3)/Z, SSB
Vec(C) Potts Vec(Zs)
Ising Ising®lsing
A A=1+X
A=1+X + 2Y
II: Z, SSB IV: Rep(S3) SSB
Vec(Z Rep(S
) |7 p(Ss)
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A=1+Y/ A=nPdi+nldy=3

(1)
®

——(x)
(X

A = Rep(S3) T =2 Vec(Zy)

{p} ={1,0,0} = Sa({p}|{P}) = log3
{p} ={1/2,1/2,0} — Sa({p}{P}) = log3

10} = {1/2,0.1/2) = SA(P}{B}) = 4 log3/2

{p} ={0,1/2,1/2} — Sa({p}{P}) = 1 510g3/2
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Category Rep(S3)

For this category A = {1, X, Y} with {d; =1,dx = 1,dy = 2}. The
non trivial fusionrules are: X@ X =1, XY =Y, YY=1aXaY.

I: Trivial A Ill: Rep(S3)/Z, SSB
Vec(C) Potts Vec(Zs)
Ising Ising®lsing
A A=1+X
A=1+X + 2Y
II: Z, SSB IV: Rep(S3) SSB
Vec(Z Rep(S
) |7 p(Ss)
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A=1+X+2Y/ A=nld +nfdx+ndy=6

0
6o >0
@

A = Rep(S3) T = Vec(C)

{p} ={1,0,0} = Sa({p}{p}) =logb

{p} ={1/2,1/2,0} = Sa({p}{P}) = log3
{p} ={1/2,0,1/2} = Sa({p}{P}) = log3/2
{p} ={0,1/2,1/2} — Sa({p}{P}) = log3/2
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Outline

e Outlook and Conclusions
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Summary and Outlook

@ We establish the SymQuOp implementing the symmetry breaking
patterns of non-invertible symmetries. Basic operations in QFT.

@ Entropic order parameters quantify these symmetry-breaking
patterns.

@ Bounded by the Jones index, the fundamental invariant of the
subfactor 7 C A that defines the pattern of symmetry breaking.

@ Extend the present finite—dimensional analysis to type II/11l
settings, where Tomita-Takesaki modular theory plays a central
role.

@ How this connects with progress made through the SymTFT?
@ The interplay between condensation, anomalies, and entropic
quantities deserves further exploration.
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Thanks for your attention GRASS-SYMBHOL!
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Support Slides

£ as group average

E(p)=> KgpKh w/ Kg=~Ags=ANg
geG

1 o _
:|G|Z;3/\gp/\g where /\g:ﬁ/\g.
ge

Lagrangian algebras and trivial phases
@ )nd+0,Vace A,
@ ii) The quantum dimension D3 =1 =

acA

vacuum ¢ in which all the non-trivial anyonic charges trivialize.
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Quiver Diagram Rep(S3) SSB
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Quiver Diagram Rep(S;)/Z, SSB

p=01:1+X, H=0:Y, b=o03:Y,

02 )

B
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Quiver Diagram Z, SSB

o1:1+Y, X=0:X+Y

-
Il

1]
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Quiver Diagram: Trivial
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