GRASS-SYMBHOL MEETING

THE NON-RELATIVISTIC LIMIT OF TYPE II SUPERGRAVITY THEORIES

ELENA SIMÓN FÉLIX

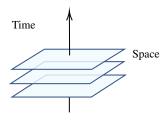
Based on the work with J. Fernandez-Melgarejo, G. Giorgi & L. Romano

November, 2025

Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and described by two degenerate metrics.



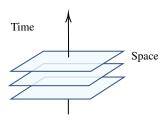
Approach

- Derivation methods: Limits, expansions, null-reduction...
- Limits allow us to inspect corners of Lorentzian theories.

Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and described by two degenerate metrics.



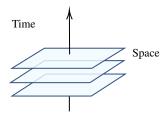
Non-Relativistic type II supergravity

- Non-relativistic limits of AdS/CFT?
- Non-relativistic quantum gravity?
- Can non-relativistic theories be used to learn more about ordinary string theory?

Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and described by two degenerate metrics.

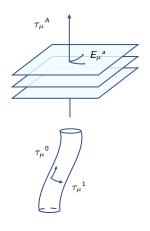


Goal

- Non-relativistic Type II supergravity
 - o 10 D
 - String foliation
 - o Democratic formulation
- Find solutions

1.Introduction

String foliation



Vielbein formalism

$$g_{\mu
u}=E^{\hat{A}}{}_{\mu}E^{\hat{B}}{}_{
u}\eta_{\hat{A}\hat{B}}$$

Index convention

 μ, ν, \dots 10-dim curved index

$$\hat{A}, \hat{B}, \dots$$
 10-dim flat index $(\hat{A} = \{A, a\})$

 A, B, \dots Longitudinal flat index (A = 0, 1)

 a, b, \dots Transversal flat index $(a = 2, \dots, 9)$

Bosonic field content

• NSNS sector: describes the geometry of the space time.

$$E_{\mu}^{\hat{A}}, B_{\mu\nu}, \Phi$$

• RR sector: All potentials!

$$C_{(2n-1)}$$

where $n \le 5$ in massive IIA and n = 1/2...9/2 in IIB.

Symmetries

$$\delta B = \mathsf{d}\Sigma_{(1)},$$
 $\delta C_{(2n-1)} = \mathsf{d}\Sigma \wedge \mathsf{e}^B,$ $\delta E^{~\hat{A}}_{~\mu} = \Lambda^{\hat{A}}_{~\hat{B}} \, E^{~\hat{B}}_{~\mu}$ $\delta \Phi = 0$

Field Strengths

$$H = dB$$
, $G_{(2n)} = dC_{(2n-1)} - dB \wedge C_{(2n-3)} + me^{B}$

Bosonic field content

• NSNS sector: describes the geometry of the space time.

$$E_{\mu}^{\hat{A}}, B_{\mu\nu}, \Phi$$

• RR sector: All potentials!

$$C_{(2n-1)}$$

where $n \le 5$ in massive IIA and n = 1/2...9/2 in IIB.

Symmetries

$$\begin{split} \delta B &= \, \mathrm{d} \Sigma_{(1)}, \\ \delta C_{(2n-1)} &= \, \mathrm{d} \Sigma \wedge \mathrm{e}^B, \\ \delta E^{\ \hat{A}}_{\ \mu} &= \, \Lambda^{\hat{A}}_{\ \hat{B}} \, E^{\ \hat{B}}_{\ \mu} \\ \delta \Phi &= \, 0 \end{split}$$

Field Strengths

$$H = dB,$$

$$G_{(2n)} = dC_{(2n-1)} - dB \wedge C_{(2n-3)} + me^{B}$$

Stueckelberg

Bosonic action

Democratic formulation of the RR sector unifies all p-form gauge fields into a single structure. As a result, there are no Chern–Simons terms. The bosonic action is:

$$\mathcal{S}_{\mathcal{I}\mathcal{I}} = -rac{1}{2k^2}\int d^{10}x \sqrt{-g} \left(e^{-2\Phi} \left[R + 4(\partial\Phi)^2 - rac{1}{2\cdot 3!} H_{\mu
u
ho} H^{\mu
u
ho}
ight] \ - \sum_n \left(rac{1}{4(2n)!} G_{\mu_1\cdots\mu_{(2n)}} G^{\mu_1\cdots\mu_{(2n)}}
ight)$$

1.Non-Relativistic Limit

Non-Relativistic Limit

Steps

- 1. Redefinition of the relativistic fields in terms of non relativistic ones by introducing a dimensionless parameter c.
- 2. Substitute the ansatze in the relativistic expression.
- 3. Limit $c \to \infty$

Careful!: Transformations must be finite for the limit to be well-defined.

Einstein-Hilbert gravity

Action

$$S_{EH} = \int d^{10}x \sqrt{-g} R$$

Ansatz

$$E_{\mu}{}^{A} = c \tau_{\mu}{}^{A},$$

 $E_{\mu}{}^{a} = e_{\mu}{}^{a},$
 $\Lambda_{AB} = \lambda_{AB},$
 $\Lambda_{ab} = \lambda_{ab}$
 $\Lambda_{AA} = c^{-1} \lambda_{AA}$

Finite transformation rules!

$$\delta \tau^{A} = \lambda^{A}{}_{B} \tau^{B}$$

$$\delta e^{a} = \lambda^{a}{}_{b} e^{b} + \lambda^{a}{}_{B} \tau^{B}$$

Substitution

$$egin{aligned} R &= - c^2 rac{1}{4} t_{abA} t^{abA} + \mathcal{O}(c^0) \ t_{ab}{}^A &= 2 e^{\mu}{}_a \, e^{
u}{}_b \, \partial_{[\mu} au_{
u]}{}^A \end{aligned}$$

Divergent action as $c \to \infty$

NSNS Supergravity [Bergshoeff et al, 2021]

Action

$$\mathcal{S}_{\textit{NSNS}} = -\frac{1}{2\kappa^2} \int d^{10} x \sqrt{-g} \; e^{-2\Phi} \Big[R + 4 (\partial \Phi)^2 - \frac{1}{2 \cdot 3!} H_{\mu\nu\rho} H^{\mu\nu\rho} \Big] \label{eq:SNSNS}$$

Ansatz

$$\begin{split} \Phi &= \phi + \ln c \\ B_{\mu\nu} &= c^2 \tau^A{}_{\mu} \tau^B{}_{\nu} \, \epsilon_{AB} + b_{\mu\nu} \\ H_{\rho\mu\nu} &= 3c^2 t_{[\rho\mu}{}^A \tau_{\nu]}{}^B \epsilon_{AB} + 3\partial_{[\rho} b_{\mu\nu]} \\ \Sigma &= \sigma \end{split}$$

Finite transformation rules!

$$\delta \mathit{b}_{(2)} = -2 \lambda^{A}_{\ d} \, \mathit{e}^{\mathit{d}} \wedge \tau^{\mathit{B}} \epsilon_{\mathit{AB}} + \ \mathit{d} \sigma$$

$$\delta \phi = 0$$

NSNS Supergravity [Bergshoeff et al, 2021]

Action

$$\mathcal{S}_{\textit{NSNS}} = -\frac{1}{2\kappa^2} \int \textit{d}^{10} x \sqrt{-g} \; e^{-2\Phi} \Big[\textit{R} + 4 (\partial \Phi)^2 - \frac{1}{2 \cdot 3!} \textit{H}_{\mu\nu\rho} \textit{H}^{\mu\nu\rho} \Big] \label{eq:SNSNS}$$

Ansatz

$$\begin{split} \Phi &= \phi + \ln c \\ B_{\mu\nu} &= c^2 \tau^A{}_{\mu} \tau^B{}_{\nu} \, \epsilon_{AB} + b_{\mu\nu} \\ H_{\rho\mu\nu} &= 3c^2 t_{[\rho\mu}{}^A \tau_{\nu]}{}^B \epsilon_{AB} + 3\partial_{[\rho} b_{\mu\nu]} \\ \Sigma &= \sigma \end{split}$$

Finite transformation rules!

$$-\frac{1}{2\cdot 3!} \textit{H}_{\rho\mu\nu} \textit{H}^{\rho\mu\nu} = \frac{1}{4} \frac{c^2}{c^2} t_{abA} t^{abA} + \mathcal{O}(\frac{c^0}{c^0}).$$

The divergences from R cancel against those from H^2 . The final NS-NS action scales as $\mathcal{O}(c^{-2})$

Bosonic action

$$\mathcal{S}_{II} = \mathcal{S}_{NSNS} - \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \sum_n \Big(-\frac{1}{4(2n)!} \, G_{\mu_1 \cdots \mu_{(2n)}} \, G^{\mu_1 \cdots \mu_{(2n)}} \Big)$$

Ansatz

$$C_{(2n-1)} = c^2 \tau_{\mu}{}^A \wedge \tau_{\nu}{}^B \wedge k_{(2n-3)} \epsilon_{AB} + k_{(2n-1)}$$

Finite transformation rules!

$$\delta k_{(2n-1)} = -2\lambda^{A}{}_{d} e^{d} \wedge \tau^{B} \wedge k_{(2n-3)} \epsilon_{AB}$$
$$+ d\sigma \wedge e^{b}$$

Consistent magnetic limit

 c^0 order cancels in massive IIA and IIB supergravity due to the recursive sum structure of the democratic formulation. For massless IIA, m=0 after the limit.

Bosonic action

$$\mathcal{S}_{\text{II}} = \mathcal{S}_{\text{NSNS}} - \frac{1}{2\kappa^2} \int d^{10}x \sqrt{-g} \sum_n \Big(-\frac{1}{4(2n)!} \, G_{\mu_1 \cdots \mu_{(2n)}} \, G^{\mu_1 \cdots \mu_{(2n)}} \Big)$$

Ansatz

$$C_{(2n-1)} = c^2 \tau_{\mu}{}^A \wedge \tau_{\nu}{}^B \wedge k_{(2n-3)} \epsilon_{AB} + k_{(2n-1)}$$

Finite transformation rules!

$$\delta \mathbf{k}_{(2n-1)} = -2\lambda^{A}{}_{d} e^{d} \wedge \tau^{B} \wedge \mathbf{k}_{(2n-3)} \epsilon_{AB} + d\sigma \wedge e^{b}$$

Consistent magnetic limit

No Chern-Simmons \rightarrow no problem!

Equations of Motion

The expressions can be combined before the limit to reduce the c dependence:

$$[V_{\pm}]_{Aa} = 2[G]_{Aa} \pm [B]^{B}_{a} \epsilon_{AB}$$

$$[P_{\pm}] = 2[G]_A{}^A \mp [B]_{AB} \epsilon^{AB}$$

$$\begin{split} [R_{\pm}]_{\mathfrak{s}_1...\mathfrak{s}_{(2n-1)}} = & 2[C_{(2n-1)}]_{\mathfrak{s}_1...\mathfrak{s}_{(2n-1)}} \\ & \pm [C_{(2n+1)}]_{AB\mathfrak{s}_1...\mathfrak{s}_{(2n-1)}} \epsilon^{AB} \end{split}$$

$[P_+]$ [Bergshoeff et al. 2021]

The contributions at order c² and c⁰ cancel. At order c⁻², there appears one Poisson-like term:

$$\epsilon^{AB}e^{\mu}{}_{a}e^{\nu}{}_{a}\partial_{\mu}\partial_{\nu}b_{AB}$$

 The cancellation at order c⁰ only occurs in the presence of a dilatation symmetry

Equations of Motion

The expressions can be combined before the limit to reduce the c dependence:

$$[V_{\pm}]_{Aa} = 2[G]_{Aa} \pm [B]^{B}_{a} \epsilon_{AB}$$

$$[P_{\pm}] = 2[G]_A{}^A \mp [B]_{AB} \epsilon^{AB}$$

$$\begin{split} [R_{\pm}]_{a_1...a_{(2n-1)}} = & 2[C_{(2n-1)}]_{a_1...a_{(2n-1)}} \\ & \pm [C_{(2n+1)}]_{ABa_1...a_{(2n-1)}} \epsilon^{AB} \end{split}$$

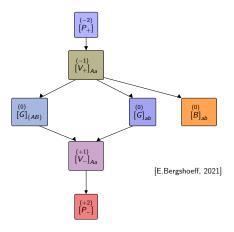
$[R_+]$ (only present in IIB)

 Orders c² and c⁰ vanish. At order c⁻², there is another Poisson-like term:

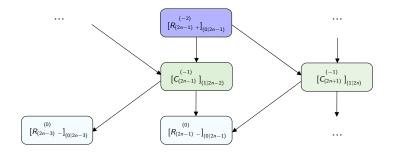
$$\epsilon^{AB} e^{\mu}{}_{a} e^{\nu}{}_{a} \partial_{\mu} \partial_{\nu} k_{AB}$$

 The presence of 2 Poissonlike terms may be led by the internal SL(2, R) symmetry of the theory.

Transformation under Lorentz Boosts: NS-NS sector



Transformation under Lorentz Boosts: R-R sector



3. Solutions

Solutions

Target

- Asymptotically flat solutions: recover Minkowskian geometry at space infinity.
- Dp-solutions?

$$\begin{split} \mathit{ds}^2 = & \frac{\mathit{c}^2}{\mathit{q}_{AB}} \, \tau_{\mu}{}^{A} \tau_{\nu}{}^{B} \mathit{dx}^{\mu} \, \mathit{dx}^{\nu} \\ & + \delta_{\mathit{ab}} \, e_{\mu}{}^{\mathit{a}} e_{\nu}{}^{\mathit{b}} \mathit{dx}^{\mu} \, \mathit{dx}^{\nu} \end{split}$$

D1-D3' intersection [Lambert, 2024]

Dp-branes are p-dimensional surfaces. Intersections combine harmonic functions with power 1/2 in transverse directions and power -1/2 in worldvolume directions.

	t	у	$z_1 \dots z_3$	$x_1 \dots x_5$
D1	×	×		
D3	×		$x \cdots x$	

$$\begin{split} ds^2 &= H_{D_1}^{-\frac{1}{2}} H_{D_3}^{-\frac{1}{2}} dt^2 - H_{D_1}^{-\frac{1}{2}} H_{D_3}^{-\frac{1}{2}} dy^2 \\ &- H_{D_1}^{-\frac{1}{2}} H_{D_3}^{-\frac{1}{2}} d\vec{z}_p^{-2} - H_{D_1}^{-\frac{1}{2}} H_{D_3}^{-\frac{1}{2}} d\vec{x}_{8-p}^{-2} \\ &e^{-2\Phi} = H_{D_1}^{-\frac{1}{2}} \\ &C_{tz^1z^2z^3} = \left(H_{D_3}^{-1} - 1\right) \\ &C_{ty} = H_{D_1}^{-1} \\ &H_{D_1,D_3} = 1 + \frac{h_{D_1,D_3}}{|\vec{x}_{8-p}|^{6-p}} \end{split}$$

D1-D3' intersection [Lambert, 2024]

The charge density from D1 is spread through the other directions $\rightarrow H_{D_1}$ can be considered to be constant:

$$H_{D_1} \equiv c^{-4}$$

	t	у	$z_1 \dots z_3$	$x_1 \dots x_5$
D1	×	×	~ ~ ~	~ · · · ~
D3	×		x····x	

$$ds^{2} = c^{2} \left(H_{D3}^{-\frac{1}{2}} dt^{2} - H_{D3}^{\frac{1}{2}} dy^{2} \right)$$

$$- c^{-2} \left(H_{D3}^{-\frac{1}{2}} d\vec{z}_{p}^{2} + H_{D3}^{\frac{1}{2}} d\vec{x}_{8-p}^{2} \right)$$

$$e^{-2\Phi} = c^{-2} e^{-2\phi}$$

$$C_{tz^{1}z^{2}z^{3}} = \left(H_{D3}^{-1} - 1 \right)$$

$$C_{ty} = c^{4}$$

D1-D3' intersection [Lambert, 2024]

The charge density from D1 is spread through the other directions $\rightarrow H_{D_1}$ can be considered to be constant:

$$H_{D_1}=c^{-4}$$

	t	у	$z_1 \dots z_3$	$x_1 \dots x_5$
D1	×	×	? ?	~ · · · ~
D3	×		$x \cdots x$	

$$ds^{2} = c^{2} \left(H_{D3}^{-\frac{1}{2}} dt^{2} - H_{D3}^{\frac{1}{2}} dy^{2} \right)$$

$$- c^{-2} \left(H_{D3}^{-\frac{1}{2}} d\vec{z_{p}}^{2} + H_{D3}^{\frac{1}{2}} d\vec{x_{8-p}}^{2} \right)$$

$$e^{-2\Phi} = c^{-2} e^{-2\phi}$$

$$C_{tz^{1}z^{2}z^{3}} = \left(H_{D_{3}}^{-1} - 1 \right)$$

$$C_{ty} = c^{4}$$

Not a solution of our theory!

F1-Dp intersection

For Dp-F1 intersections, the harmonic function H_{F_1} scales with power +1 in transverse directions and -1 in worldvolume directions

	t	у	$z_1 \dots z_p$	$x_1 \dots x_{8-p}$
F1	×	×		
Dp	x		x···x	

$$ds^{2} = H_{Dp}^{-\frac{1}{2}} H_{F}^{-1} dt^{2} - H_{Dp}^{\frac{1}{2}} H_{F}^{-1} dy^{2}$$

$$- H_{Dp}^{-\frac{1}{2}} d\vec{z}_{p}^{2} - H_{Dp}^{\frac{1}{2}} d\vec{x}_{8-p}^{2}$$

$$e^{-2\Phi} = e^{-2\phi} H_{Dp}^{\frac{(p-3)}{2}} H_{F1},$$

$$C^{(p+1)}_{tz^{1}...z^{p}} = e^{-\phi} \Big(H_{Dp}^{-1} - 1 \Big),$$

$$B_{ty} = H_{F1}^{-1} - 1,$$

$$H_{Dp, F1} = 1 + \frac{h_{Dp, F1}}{|\vec{x}_{8-p}|^{6-p}}.$$

F1-Dp intersection

 H_{F_1} can be completely smeared:

$$H_{F_1} = c^{-2}$$

	t	У	$z_1 \dots z_p$	$x_1 \dots x_{8-p}$
F1	×	×	? ?	~
Dp	×		x····x	

$$ds^{2} = c^{2} \left(H_{Dp}^{-\frac{1}{2}} dt^{2} - H_{Dp}^{\frac{1}{2}} dy^{2} \right)$$

$$- H_{Dp}^{-\frac{1}{2}} d\vec{z}_{p}^{2} - H_{Dp}^{\frac{1}{2}} d\vec{x}_{8-p}^{2},$$

$$e^{-2\Phi} = c^{-2} e^{-2\phi} H_{Dp}^{\frac{(p-3)}{2}}$$

$$C^{(p+1)}_{tz^{1}...z^{p}} = e^{-\phi} \left(H_{Dp}^{-1} - 1 \right)$$

$$B_{ty} = c^{2} - 1.$$

Solution to Non-Relativistic Type II Supergravity

Matching the previous result with ds^2 and imposing vielbein orthonormality reveals a solution.

	t	у	$z_1 \dots z_p$	$x_1 \dots x_{8-p}$
F1	×	×	~ ~ ~	~
Dp	×		$x \cdots x$	

$$\tau_t^0 = H_{D_p}^{-1/4}$$

$$\tau_y^1 = H_{D_p}^{1/4}$$

$$e_{z_1}^2 = \dots = e_{z_p}^{p+1} = H_{D_p}^{-1/4}$$

$$e_{x_1}^{p+2} = \dots = e_{x_{8-p}}^{10} = H_{D_p}^{1/4}$$

$$e^{-2\Phi} = c^{-2}e^{-2\phi}H_{D_p}^{\frac{(p-3)}{2}}$$

$$C^{(p+1)}{}_{tz^1...z^p} = e^{-\phi}\left(H_{D_p}^{-1} - 1\right)$$

$$B_{ty} = c^2 - 1$$

Substituting this solution into the equations of motion with no prior assumptions on H_{D_3} leads to:

$$\sum_{x_i} \partial_{x_i} \partial_{x_i} H_{D_3} = 0$$

	t	У	$z_1 \dots z_3$	$x_1 \dots x_5$
F1	×	×	~	~ · · · ~
Dp	×		$x \cdots x$	

$$\tau_t^0 = H_{D_3}^{-1/4}$$

$$\tau_y^1 = H_{D_3}^{1/4}$$

$$e_{z_1}^2 = \dots = e_{z_p}^{p+1} = H_{D_3}^{-1/4}$$

$$e_{x_1}^{p+2} = \dots = e_{x_{8-p}}^{10} = H_{D_3}^{1/4}$$

$$e^{-2\Phi} = e^{-2\Phi}$$

$$C_{tz^1 z_2 z_3} = e^{-\Phi} \left(H_{D_3}^{-1} - 1 \right)$$

$$B_{ty} = e^{-2\Phi} = e^{-2\Phi}$$

4. Conclusions & future prospects

Conclusions and future prospects

Conclusions

- ✓ Consistent magnetic limit in democratic (massive) IIA and IIB supergravity.
 - No lagrange multipliers
 - o IIB supergravity: two Poisson equations
 - Independent transformations under boosts
- ✓ Dp-solutions

Next steps

- Other solutions
 - Near Horizon limit
 - o Other asymptotic limits
- Fermions

GRASS-SYMBHOL MEETING

Thank you!

Equations of motion can be combined before the limit to reduce the dependence on c. Let us consider two equations, [X] = 0 and [Y] = 0, with the same leading order terms in the c expansion.

$$[X] = c^{n}[X] + c^{n-2}[X] + \mathcal{O}(c^{n-4})$$

$$[Y] = c^{n}[X] + c^{n-2}[Y] + \mathcal{O}(c^{n-4})$$

$$[X] + [Y] = 2c^{n}[X] + c^{n-2}([X] + [Y]) + \mathcal{O}(c^{n-4})$$

$$[X] - [Y] = c^{n-2}([X] - [Y]) + \mathcal{O}(c^{n-4})$$