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Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and
described by two degener-
ate metrics.

Space

Time

Approach

• Derivation methods: Limits, expan-
sions, null-reduction...

• Limits allow us to inspect corners of
Lorentzian theories.
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Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and
described by two degener-
ate metrics.

Space

Time

Non-Relativistic type II supergravity

• Non-relativistic limits of AdS/CFT?

• Non-relativistic quantum gravity?

• Can non-relativistic theories be used to
learn more about ordinary string the-
ory?
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Non-Lorentzian Physics

Structure of spacetime

Spacetime is foliated and
described by two degener-
ate metrics.

Space

Time

Goal

• Non-relativistic Type II supergravity

◦ 10 D

◦ String foliation

◦ Democratic formulation

• Find solutions
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1.Introduction
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String foliation

τµ
A

Eµ
a

τµ
0

τµ
1

Vielbein formalism

gµν = E Â
µE

B̂
νηÂB̂

Index convention

µ, ν, ... 10-dim curved index

Â, B̂, ... 10-dim flat index
(
Â = {A, a}

)
A,B, ... Longitudinal flat index (A = 0, 1)

a, b, ... Transversal flat index (a = 2, ..., 9)
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Type II Supergravity in Democratic Formulation

Bosonic field content

• NSNS sector: describes the
geometry of the space time.

Eµ
Â,Bµν ,Φ

• RR sector: All potentials!

C(2n−1)

where n ≤ 5 in massive IIA
and n = 1/2...9/2 in IIB.

Symmetries

δB = dΣ(1),

δC(2n−1) = dΣ ∧ eB ,

δE Â
µ = ΛÂ

B̂ E B̂
µ

δΦ = 0

Field Strengths

H = dB ,

G(2n) = dC(2n−1) − dB ∧ C(2n−3) +meB
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Type II Supergravity in Democratic Formulation

Bosonic field content

• NSNS sector: describes the
geometry of the space time.

Eµ
Â,Bµν ,Φ

• RR sector: All potentials!

C(2n−1)

where n ≤ 5 in massive IIA
and n = 1/2...9/2 in IIB.

Symmetries

δB = dΣ(1),

δC(2n−1) = dΣ ∧ eB ,

δE Â
µ = ΛÂ

B̂ E B̂
µ

δΦ = 0

Field Strengths

H = dB ,

G(2n) = dC(2n−1) − dB ∧ C(2n−3) +meB

Stueckelberg
term! 5/24



Type II Supergravity in Democratic Formulation

Bosonic action

Democratic formulation of the RR sector unifies all p-form gauge fields
into a single structure. As a result, there are no Chern–Simons terms.
The bosonic action is:

SII = − 1

2k2

∫
d10x

√
−g

Å
e−2Φ

[
R + 4(∂Φ)2 − 1

2 · 3!HµνρH
µνρ

]
−

∑
n

( 1

4(2n)!
Gµ1···µ(2n)

Gµ1···µ(2n)

)
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Subsection cover

1.Non-Relativistic Limit
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Non-Relativistic Limit

Steps

1. Redefinition of the relativistic fields in terms of non relativistic ones
by introducing a dimensionless parameter c .

2. Substitute the ansatze in the relativistic expression.

3. Limit c → ∞

Careful!: Transformations must be finite for the limit to be well-defined.
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Einstein-Hilbert gravity

Action

SEH =

∫
d10x

√
−g R

Ansatz

Eµ
A = c τµ

A,

Eµ
a = eµ

a,

ΛAB = λAB ,

Λab = λab

ΛAa = c−1λAa

Finite transformation rules!

δτA = λA
Bτ

B

δea = λa
be

b + λa
Bτ

B

Substitution

R = −c2
1

4
tabAt

abA +O(c0)

tab
A = 2eµa e

ν
b ∂[µτν]

A

Divergent action as c → ∞
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NSNS Supergravity [Bergshoeff et al, 2021]

Action

SNSNS = − 1

2κ2

∫
d10x

√
−g e−2Φ

[
R + 4(∂Φ)2 − 1

2 · 3!HµνρH
µνρ

]

Ansatz

Φ = ϕ+ ln c

Bµν = c2τA
µτ

B
ν ϵAB + bµν

Hρµν = 3c2t[ρµ
Aτν]

BϵAB + 3∂[ρbµν]

Σ = σ

Finite transformation rules!

δb(2) = −2λA
d e

d ∧ τBϵAB + dσ

δϕ = 0
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NSNS Supergravity [Bergshoeff et al, 2021]

Action

SNSNS = − 1

2κ2

∫
d10x

√
−g e−2Φ

[
R + 4(∂Φ)2 − 1

2 · 3!HµνρH
µνρ

]

Ansatz

Φ = ϕ+ ln c

Bµν = c2τA
µτ

B
ν ϵAB + bµν

Hρµν = 3c2t[ρµ
Aτν]

BϵAB + 3∂[ρbµν]

Σ = σ

Finite transformation rules!

− 1

2 · 3!HρµνH
ρµν =

1

4
c2tabAt

abA +O(c0).

The divergences from R cancel against
those from H2. The final NS-NS action
scales as O(c−2)
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Type II Supergravity in Democratic Formulation

Bosonic action

SII = SNSNS − 1

2κ2

∫
d10x

√
−g

∑
n

(
− 1

4(2n)!
Gµ1···µ(2n)

Gµ1···µ(2n)

)

Ansatz

C(2n−1) = c2τµ
A ∧ τν

B ∧ k(2n−3)ϵAB + k(2n−1)

Finite transformation rules!

δk(2n−1) =− 2λA
d e

d ∧ τB ∧ k(2n−3)ϵAB

+ dσ ∧ eb

Consistent magnetic limit

c0 order cancels in mas-
sive IIA and IIB supergrav-
ity due to the recursive sum
structure of the democratic
formulation. For massless
IIA, m = 0 after the limit.
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Type II Supergravity in Democratic Formulation

Bosonic action

SII = SNSNS − 1

2κ2

∫
d10x

√
−g

∑
n

(
− 1

4(2n)!
Gµ1···µ(2n)

Gµ1···µ(2n)

)

Ansatz

C(2n−1) = c2τµ
A ∧ τν

B ∧ k(2n−3)ϵAB + k(2n−1)

Finite transformation rules!

δk(2n−1) =− 2λA
d e

d ∧ τB ∧ k(2n−3)ϵAB

+ dσ ∧ eb

Consistent magnetic limit

No Chern-Simmons → no
problem!
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Type II Supergravity in Democratic Formulation

Equations of Motion

The expressions can be combined before
the limit to reduce the c dependence:

[V±]Aa =2[G ]Aa ± [B]BaϵAB

[P±] =2[G ]A
A ∓ [B]ABϵ

AB

[R±]a1...a(2n−1)
=2[C(2n−1)]a1...a(2n−1)

± [C(2n+1)]ABa1...a(2n−1)
ϵAB

[P+] [Bergshoeff et al. 2021]

• The contributions at order
c2 and c0 cancel. At or-
der c−2, there appears one
Poisson-like term:

ϵABeµae
ν
a∂µ∂νbAB

• The cancellation at order c0

only occurs in the presence
of a dilatation symmetry
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Type II Supergravity in Democratic Formulation

Equations of Motion

The expressions can be combined before
the limit to reduce the c dependence:

[V±]Aa =2[G ]Aa ± [B]BaϵAB

[P±] =2[G ]A
A ∓ [B]ABϵ

AB

[R±]a1...a(2n−1)
=2[C(2n−1)]a1...a(2n−1)

± [C(2n+1)]ABa1...a(2n−1)
ϵAB

[R+] (only present in IIB)

• Orders c2 and c0 vanish. At
order c−2, there is another
Poisson-like term:

ϵABeµae
ν
a∂µ∂νkAB

• The presence of 2 Poisson-
like terms may be led by the
internal SL(2, R) symmetry
of the theory.
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Type II Supergravity in Democratic Formulation

Transformation under Lorentz Boosts: NS-NS sector

(−2)

[P+]

(−1)

[V+]Aa

(0)

[G ]ab

(0)

[G ]{AB}

(0)

[B]ab

(+1)

[V−]Aa
[E.Bergshoeff, 2021]

(+2)

[P−]
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Type II Supergravity in Democratic Formulation

Transformation under Lorentz Boosts: R-R sector

(−2)

[R(2n−1) +](0|2n−1)

(−1)

[C(2n−1) ](1|2n−2)

(0)

[R(2n−1) −](0|2n−1)

(0)

[R(2n−3) −](0|2n−3)

(−1)

[C(2n+1) ](1|2n)

... ...

...
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Subsection cover

3. Solutions
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Solutions

Target

• Asymptotically flat solutions:
recover Minkowskian geometry
at space infinity.

• Dp-solutions?

ds2 =c2ηAB τµ
Aτν

Bdxµdxν

+ δab eµ
aeν

bdxµdxν
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D1-D3’ intersection [Lambert, 2024]

Dp-branes are p-dimensional
surfaces. Intersections combine
harmonic functions with power
1/2 in transverse directions and
power −1/2 in worldvolume di-
rections.

t y z1 . . . z3 x1 . . . x5

D1 x x

D3 x x · · · x

ds2 = HD1

− 1
2HD3

− 1
2 dt2 − HD1

− 1
2HD3

1
2 dy 2

− HD1

1
2HD3

− 1
2 dz⃗p

2 − HD1

1
2HD3

1
2 dx⃗8−p

2

e−2Φ = HD1

1
2

Ctz1z2z3 =

Å
HD3

−1 − 1

ã
Cty = HD1

−1

HD1,D3 = 1 +
hD1,D3

|x⃗8−p|6−p

16/24



D1-D3’ intersection [Lambert, 2024]

The charge density from D1 is
spread through the other direc-
tions → HD1 can be considered
to be constant:

HD1 = c−4

t y z1 . . . z3 x1 . . . x5

D1 x x ∼ · · · ∼ ∼ · · · ∼

D3 x x · · · x

ds2 =c2
Å
HD3

− 1
2 dt2 − HD3

1
2 dy 2

ã
− c−2

Å
HD3

− 1
2 dz⃗p

2 + HD3

1
2 dx⃗8−p

2

ã
e−2Φ = c−2e−2ϕ

Ctz1z2z3 =

Å
HD3

−1 − 1

ã
Cty = c4
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D1-D3’ intersection [Lambert, 2024]

The charge density from D1 is
spread through the other direc-
tions → HD1 can be considered
to be constant:

HD1 = c−4

t y z1 . . . z3 x1 . . . x5

D1 x x ∼ · · · ∼ ∼ · · · ∼

D3 x x · · · x

ds2 =c2
Å
HD3

− 1
2 dt2 − HD3

1
2 dy 2

ã
− c−2

Å
HD3

− 1
2 dz⃗p

2 + HD3

1
2 dx⃗8−p

2

ã
e−2Φ = c−2e−2ϕ

Ctz1z2z3 =

Å
HD3

−1 − 1

ã
Cty = c4

Not a solution of our theory!
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F1-Dp intersection

For Dp-F1 intersections, the
harmonic function HF1 scales
with power +1 in transverse di-
rections and −1 in worldvolume
directions.

t y z1 . . . zp x1 . . . x8−p

F1 x x

Dp x x · · · x

ds2 =HDp
− 1

2HF
−1dt2 − HDp

1
2HF

−1dy 2

− HDp
− 1

2 dz⃗p
2 − HDp

1
2 dx⃗8−p

2

e−2Φ = e−2ϕHDp

(p−3)
2 HF1,

C (p+1)
tz1...zp = e−ϕ

Å
HDp

−1 − 1

ã
,

Bty = HF1
−1 − 1,

HDp, F1 = 1 +
hDp, F1

|x⃗8−p|6−p
.
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F1-Dp intersection

HF1 can be completely smeared:

HF1 = c−2

t y z1 . . . zp x1 . . . x8−p

F1 x x ∼ · · · ∼ ∼ · · · ∼

Dp x x · · · x

ds2 =c2
Å
HDp

− 1
2 dt2 − HDp

1
2 dy 2

ã
− HDp

− 1
2 dz⃗p

2 − HDp

1
2 dx⃗8−p

2,

e−2Φ = c−2e−2ϕ HDp

(p−3)
2

C (p+1)
tz1...zp = e−ϕ

Å
HDp

−1 − 1

ã
Bty = c2 − 1.

19/24



Solution to Non-Relativistic Type II Supergravity

Matching the previous result
with ds2 and imposing vielbein
orthonormality reveals a solu-
tion.

t y z1 . . . zp x1 . . . x8−p

F1 x x ∼ · · · ∼ ∼ · · · ∼

Dp x x · · · x

τt
0 = HDp

−1/4

τy
1 = HDp

1/4

ez1
2 = · · · = ezp

p+1 = HDp

−1/4

ex1
p+2 = · · · = ex8−p

10 = HDp

1/4

e−2Φ = c−2e−2ϕ HDp

(p−3)
2

C (p+1)
tz1...zp = e−ϕ

Å
HDp

−1 − 1

ã
Bty = c2 − 1
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Case D3

Substituting this solution into the
equations of motion with no prior
assumptions on HD3 leads to:

∑
xi

∂xi ∂xiHD3 = 0

t y z1 . . . z3 x1 . . . x5

F1 x x ∼ · · · ∼ ∼ · · · ∼

Dp x x · · · x

τt
0 = HD3

−1/4

τy
1 = HD3

1/4

ez1
2 = · · · = ezp

p+1 = HD3

−1/4

ex1
p+2 = · · · = ex8−p

10 = HD3

1/4

e−2Φ = c−2e−2ϕ

Ctz1z2z3
= e−ϕ

Å
HD3

−1 − 1

ã
Bty = c2 − 1
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Subsection cover

4. Conclusions &

future prospects
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Conclusions and future prospects

Conclusions

✓ Consistent magnetic limit in democratic (massive) IIA and IIB supergravity.

◦ No lagrange multipliers

◦ IIB supergravity: two Poisson equations

◦ Independent transformations under boosts

✓ Dp-solutions

Next steps

• Other solutions

◦ Near Horizon limit

◦ Other asymptotic limits

• Fermions
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Type II Supergravity in Democratic Formulation

Equations of motion can be combined before the limit to reduce the dependence
on c . Let us consider two equations, [X] = 0 and [Y] = 0, with the same leading
order terms in the c expansion.

[X ] = cn
(n)

[X ] + cn−2
(n−2)

[X ] + O(cn−4)

[Y ] = cn
(n)

[X ] + cn−2
(n−2)

[Y ] + O(cn−4)

 [X ] + [Y ] = 2cn
(n)

[X ] + cn−2
Å(n−2)

[X ] +
(n−2)

[Y ]

ã
+ O(cn−4)

[X ] − [Y ] = cn−2
Å(n−2)

[X ] −
(n−2)

[Y ]

ã
+ O(cn−4)
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