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Higher-Order Gravity Theories

Goal
Obtain the Non-Relativistic limit of the family of higher-order theories below at the
level of action and equations of motion.

Higher-Order Theories:the Action
We consider the following set of theories in D dimensions, parametrized by the
couplings α, β and γ

S =

∫
dDx

√
−g

(
R+ αR2 + βRµνR

µν + γ RµνρσR
µνρσ

)
,

We study them non-perturbatively (α, β and γ are not small).

Some Relevant Features

The equations of motion contain terms with more than 2 derivatives.
The pure quadratic theory defined by β = −4α , γ = α is called Gauss-Bonnet
gravity.

It has second-order equations of motion.
It is a topological term in 4D.
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Taking the Non-Relativistic Limit

1⃝ Lorentz Breaking
The flat index Â is decomposed in a
longitudinal and transverse part Â = {0, a}

Â =

{
0 Longitudinal
a = 1, ..., D − 1 Transverse

particle limit.

3⃝ Substitution
The ansatz is substituted in the expressions
we want to take the limit of. For example
the Lorentz transformation rules

δEµ
0 = Λ0

bEµ
b ,

δEµ
a = Λa

bEµ
b + Λa

0Eµ
0 ,

become
δτµ = −

1

c2
λbeµ

b ,

δeµ
a = λa

beµ
b − λaτµ .

2⃝ Redefinition Ansatz
The relativistic fields (and parameters) are
redefined (in an invertible way) in terms of
would be non-relativistic fields (and
parameters) with a dimensionless parameter
c. We consider the vielbein Eµ

Â

(gµν = Eµ
ÂEν

B̂ηÂB̂),

Eµ
0 = cτµ , Eµ

a = eµ
a .

and the Lorentz symmetry parameter
Λ0a =

1

c
λa , Λab = λab .

Boost Transverse
Rotations

4⃝ The Limit
The parameter c is sent to ∞. The limit is
consistent if it does not develop divergent
terms. In the example

δτµ = 0 ,

δeµ
a = λa

beM
b − λaτµ .
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Limit of the Action

Einstein-Hilbert Action

SEH =

∫
dDx

√
−gR

Index Definition & Values

µ, ν, ρ, ... D Curved ,

Â, B̂, Ĉ, ... D Flat (Â = {0, a}) ,

a, b, c... Transverse Flat a = 1, ..., D − 1 .

Ansatz

Eµ
0 = cτµ ,

Eµ
0 =

1

c
τµ

Eµ
a = eµ

a ,

Eµ
a = eµa .

Orthogonality
Relations

τµτµ = 1 ,

eµaeµ
b = δba ,

eµaτµ = eµ
aτµ = 0 ,

τµτ
ν + eµ

aeνa = δνµ .

Ricci Scalar
Expansion

R =
c2

4
tabt

ab +O(c0) ,

with tab = eµae
ν
btµν and

tµν = 2∂[µτν] (intrinsic
torsion).

Electric Limit
The leading order term is the result of the
limit:

SEH ∝
∫

dDx e tabt
ab

Magnetic Limit
We regard the leading order term as

divergent. We need a way to cancel it!

Luca Romano Higher-Order Newton-Cartan Gravity GRASS-SYMBHOL Meeting 2025



Limit of the Action

Einstein-Hilbert Action

SEH =

∫
dDx

√
−gR

Index Definition & Values

µ, ν, ρ, ... D Curved ,
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Magnetic Limit: Cancellation Mechanism

Einstein-Hilbert+Maxwell

S =

∫
d10x

√
−g

(
R− 1

4
FµνF

µν

)
with Fµν = 2∂[µAν].

Index Definition & Values

µ, ν, ρ, ... D Curved ,

Â, B̂, Ĉ, ... D Flat (Â = {0, a}) ,

a, b, c... Transverse Flat a = 1, ..., D − 1 .

Ricci Scalar Expansion

R =
c2

4
tabt

ab +O(c0) ,

FµνF
µν = c2tabt

ab +O(c0) ,

with tab = eµae
ν
btµν and tµν =

2∂[µτν] (intrinsic torsion).

Ansatz

Eµ
0 = cτµ ,

Eµ
0 =

1

c
τµ

Eµ
a = eµ

a ,

Eµ
a = eµa .

Aµ = cτµ +
1

c
aµ .

Orthogonality
Relations

τµτµ = 1 ,

eµaeµ
b = δba ,

eµaτµ = eµ
aτµ = 0 ,

τµτ
ν + eµ

aeνa = δνµ .

Magnetic Limit
The leading order term coming from the the
Einstein-Hilbert lagrangian cancels against an
analogous term coming from the Maxwell
lagrangian. The result of the limit is the action
term at sub-leading order in the expansion in c.

S =

∫
dDx e

(
eµaeνaR̃µν + 2τµeνaeρa∇̃νtµρ+

− 3

2
t0at0

a − tabfab

)
+O(c−2) ,
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From Einstein-Hilbert to Higher-Order Theories

The Strategy
Mimicking the 2-derivative case we can use a gauge field to cancel the
divergences of the following actions

S =

∫
dDx

√
−g

(
R+ αR2 + βRµνR

µν + γ RµνρσR
µνρσ

)
,

A Taste of the Divergences

RµνR
µν =

1

16
c4
(
tabt

abtcdt
cd + 4ta

btb
ctc

dtd
a
)
+ ,

+
1

4
c2
[
4tabta

c(R̃bc + ∇̃(t)b0c − 3t0bt0c) + tabtab(−2∇̃(t)c0
c+

+ 2t0ct0
c + tcdfcd) + 2(∇̃(t)a

ab − 4tabt0a)∇̃(t)cb
b
]
+O(c0) ,
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From Einstein-Hilbert to Higher-Order Theories

The Strategy
Mimicking the 2-derivative case we can use a gauge field to cancel the
divergences of the following actions

S =

∫
dDx

√
−g

(
R+ αR2 + βRµνR

µν + γ RµνρσR
µνρσ

)
,

The Issues
There are a few critical points:

Adding just the Maxwell terms is not enough, we need higher-order terms ,
Coupling between the gravity sector and Maxwell field could be necessary ,
The higher-order terms will produce extra divergences (at orders c4 and
c2). These should all be cancelled otherwise the contribution of the EH
term is removed from the action.
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Limit of the Action: Setting Up

The Tools
We add the following terms to the action, each with an arbitrary coupling and we fix
the couplings requiring full cancellation of the divergences ,

B =
{
(FµνF

µν)2 , Fµ
νF

ν
ρF

ρ
σF

σ
µ , FµνF ρσRµνρσ , FµρF ν

ρRµν ,

FµνF
µνR ,∇µFνρ∇µF νρ ,∇µF

µρ∇νF
ν
ρ

}
.

Voluntarily overparametrized (avoid integration by parts).

Remarks

In the Einstein-Hilbert-Maxwell case the coefficient of the Maxwell term can be
modified by redefinition.
In the higher-order case not all the coeffcients in B can be arbitrarily fine-tuned
via non-perturbative redefinitions.
Cancellation of divergences would be highly non-trivial!
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Limit of the Action: Selected Theories

The Result

It is possible to cancel all the divergences coming from the higher order terms.
For each of the quadratic terms there is only one! combinations in B cancelling
the divergent part (only certains theories admit the non-relativistic limit).
The coeffcients do not depend on the dimension.

Relativistic Theories Admitting a Non-Relativistic Limit
For each of the quandratic terms in the action the following combinations guarantee
a finite limit of the action

Lα =

(
R− 1

4
FµνF

µν

)2

,

Lβ =RµνR
µν +

1

16
F 4 +

1

4
Fµ

νF
ν
ρF

ρ
σF

σ
µ − 1

2
∇µF

µν∇ρFν
ρ − FµρF ν

ρRµν ,

Lγ =RµνρσR
µνρσ +

3

8
F 4 +

5

8
Fµ

νF
ν
ρF

ρ
σF

σ
µ +∇µFνρ∇µF νρ − 3

2
FµνF ρσRµνρσ .

The Relativistic Theory (Quadratic Part)

The Non-Relativistic Limit of the Quadratic Part
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Limit of the Action: Selected Theories

The Result

It is possible to cancel all the divergences coming from the higher order terms.
For each of the quadratic terms there is only one! combinations in B cancelling
the divergent part (only certains theories admit the non-relativistic limit).
The coeffcients do not depend on the dimension.

The Relativistic Theory (Quadratic Part)

Lα =

(
R− 1

4
FµνF

µν

)2

The Non-Relativistic Limit of the Quadratic Part
(0)

Lα =

[
− Ric(J) + 2∇̃R(H)a0

a − 3

2
R(H)0aR(H)0

a

]2
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Limit of the Action: Selected Theories

The Relativistic Theory (Quadratic Part)

Lβ =RµνR
µν +

1

16
F 4 +

1

4
Fµ

νF
ν
ρF

ρ
σF

σ
µ − 1

2
∇µF

µν∇ρFν
ρ − FµρF ν

ρRµν

The Non-Relativistic Limit of the Quadratic Part

(0)

Lβ =Ric(J)abRic(J)ab + 2Ric(J)ab∇̃R(H)
ab

0 − 2Ric(J)0a∇̃R(H)
ba

b+

+ 2Ric(J)0aR(H)abR(H)0b +
1

2
R(G)0c

cR(H)abR(H)ab +Ric(J)abR(H)0
aR(H)0

b+

− ∇̃R(H)a
ab∇̃R(H)00b +

1

2
∇̃R(H)a0

a∇̃R(H)b0
b + ∇̃R(H)

ab
0∇̃R(H)(ab)0+

− ∇̃R(H)00aR(H)abR(H)0b − ∇̃R(H)a0
aR(H)0bR(H)0

b+

+ ∇̃R(H)
ab

0R(H)0aR(H)0b +
3

4
R(H)0

aR(H)0aR(H)0
bR(H)0b
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Limit of the Action: Selected Theories

The Relativistic Theory (Quadratic Part)

Lγ = RµνρσR
µνρσ +

3

8
F 4 +

5

8
Fµ

νF
ν
ρF

ρ
σF

σ
µ +∇µFνρ∇µF νρ − 3

2
FµνF ρσRµνρσ

The Non-Relativistic Limit of the Quadratic Part

(0)

Lγ = R(J)abcdR(J)abcd − 10

3
R(J)0

(ab)c∇̃R(H)abc + 2R(G)b(ac)∇̃R(H)abc+

+ 2R(G)0abR(H)acR(H)bc +
8

3
R(J)0

(ac)bR(H)abR(H)0c+

− 2∇̃R(H)00
aR(H)abR(H)0

b + 2∇̃R(H)
ab

0R(H)0aR(H)0b+

− 2∇̃R(H)0
ab∇̃R(H)0ab + 2∇̃R(H)

ab
0∇̃R(H)ab0 +

3

4
R(H)0

aR(H)0aR(H)0
bR(H)0b
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Beyond Quadratic Gravity

Prescription
The non-relativistic limit of any theory whose Lagrangian is a function of R,
RµνR

µν and RµνρσR
µνρσ,

L = f(R, RµνR
µν , RµνρσR

µνρσ)

is well defined upon the following substitution:

L = f(LEHM ,Lβ ,Lγ) .

Why only those theories?

The limit knows about some physical features of the possible higher-order
theories?
Can the existence of the non-relativistic limit be used to gain informations
on the higher-order gravity theories?
Can we characterize more precisely the theories admitting the limit?
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Higher-Dimensional Origin

Pure Gravitational Theory in D+1 Dimensions
The Lagrangian admitting a finite non-relativistic limit Lα,Lβ and Lγ can be
obtained considering their pure gravitational part in one dimension higher and
performing a compactification followed by a truncation of the scalar field.

Higher-Dimensional Origin of the Theories with Finite Limit

(D + 1)-dim Relativistic
Higher-Order Gravity

D-dim Non-Relativistic
Higher-Order Theories

null-reduction

sp
at

ia
ld

im
en

sio
na

l
re

du
ct

io
n

non-relativistic limit

c → ∞
Others
D-dim Relativistic
Higher-Order
Gravity + Maxwell

D-dim Relativistic
Higher-Order

Gravity + Maxwell

Figure: The figure shows that both the higher-order relativistic theory and its
non-relativistic limit are linked to the same higher-dimensional origin. Given the
higher-order (D + 1)-dimensional theory, we can, on one hand, perform a Kaluza-Klein
reduction to land on the very particular D-dimensional relativistic higher-order theory that
has no c-divergences, and then take the non-relativistic limit. On the other hand, we can
land right away into the higher-order non-relativistic theory by performing a null-reduction.
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The Limits of the Equations of Motions

Taking the Limit of the Equations of Motion

The limit c → ∞ just select the leading order of the expansion of the equations
of motion.
Subtlety!

[X] = cn
(n)

[X] + cn−2
(n−2)

[X] +O(cn−4) = 0 , [Y ] = cn
(n)

[X] + cn−2
(n−2)

[Y ] +O(cn−4) = 0 .

The limit gives
(n)

[X] = 0 ,
(n)

[X] = 0 .

We have lost and equation!
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The Limits of the Equations of Motions

Taking the Limit of the Equations of Motion

The limit c → ∞ just select the leading order of the expansion of the equations
of motion.
Subtlety!

[X] = cn
(n)

[X] + cn−2
(n−2)

[X] +O(cn−4) = 0 , [Y ] = cn
(n)

[X] + cn−2
(n−2)

[Y ] +O(cn−4) = 0 .

To avoid loosing equations of motion in the limit we should combine them before
sending c to infinity:

[X] + [Y ] = 2cn
(n)

[X] + cn−2
((n−2)

[X] +
(n−2)

[Y ]
)
+O(cn−4) ,

[X]− [Y ] = cn−2
((n−2)

[X]−
(n−2)

[Y ]
)
+O(cn−4) .

The limit gives
(n)

[X] = 0 ,
(n−2)

[X]−
(n−2)

[Y ] = 0 .
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The Limits of the Equations of Motions

Equations of Motion: Einstein-Hilbert-Maxwell Case
The equations of motion coming from the action we have considered are:

[G]µν = Rµν − 1

2
Fµ

ρF
νρ = 0 ,

[A]µ = ∇νF
νµ = 0 ,

and with flat indices:

[G]ÂB̂ = [G]µνEµÂEνB̂ = 0 , [A]Â = [A]µEµ
Â = 0 .
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Einstein-Hilbert-Maxwell and the Poisson Equation

The Poisson Equation in Newtonian Gravity
The Poisson equation is characteristic of Newtonian gravity (and Newton-Cartan
gravity), ∆Ψ = 4πGρ, with ρ mass density distribution and Ψ Newton potential. We
could expect an analogous equation from our limit.

Where is the Poisson Equation?
We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

has a term that potentially could be interpreted as a Poisson equation at order c−2.
Indeed it contains

eµaeνa∂µ∂νa0

that can be identified with the characteristic Laplacian term acting on the Newton’s
potential.
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Einstein-Hilbert-Maxwell and the Poisson Equation

Where is the Poisson Equation?
We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

The Issue!
The order c−2 is sub-sub-

leading: it cannot be ob-

tained from the limit of

the corresponding equa-

tions unless...
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Einstein-Hilbert-Maxwell and the Poisson Equation

Where is the Poisson Equation?
We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

The Issue!
The order c−2 is sub-sub-

leading: it cannot be ob-

tained from the limit of

the corresponding equa-

tions unless...

The Solution
...the leading (c2) and

sub-leading (c0) orders

cancels by choosing A, B

and C properly .
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Einstein-Hilbert-Maxwell and the Poisson Equation

Where is the Poisson Equation?
We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

Poisson Expansion

(2)

[P+] =
1

4
(C − 2B)tabtab ,

(0)

[P+] =
1

2
(3A −DA + C)R̃a

a + (2A −DA + B)∇̃(t)a0
a+

+
1

4
(−5A − C + 3DA)t0at0a +

1

2
(−3A − 2B +DA)tabfab ,

(−2)

[P+] =
1

2
(A −DA + 2B − C)∇̃(f)a0

a +
1

2
(DA − A + C)R̃00 +

1

2
(3A + C −DA)∇̃(z)00a

a+

+
1

2
(3A −DA + C)

(
z0a

az0b
b + z0

abz0[ab] −
1

2
z0abf

ab − zabaf0b

)
+

+
1

4
(DA − 3A − 2B)fabfab +At0

af0a .
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Einstein-Hilbert-Maxwell and the Poisson Equation

Where is the Poisson Equation?
We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

The Issue!
The order c−2 is sub-sub-

leading: it cannot be ob-

tained from the limit of

the corresponding equa-

tions unless...

Another Issue!
...the leading (c2) and

sub-leading (c0) cannot

be canceled by choos-

ing the proper combina-

tion...
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We can consider a general scalar combination

[P+] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν + BEµ

0[A]µ

where A, B and C are three constant parameters. The expansion of [P+]

[P+] = c2
(2)

[P+] +
(0)

[P+] + c−2
(−2)

[P+] +O(c−4) ,

The Issue!
The order c−2 is sub-sub-

leading: it cannot be ob-

tained from the limit of

the corresponding equa-

tions unless...

Another Issue!
...the leading (c2) and

sub-leading (c0) cannot

be canceled by choos-

ing the proper combina-

tion...

The Solution
We can add, by hand,
another equation (a con-
straint)

Fµν = 0 .

[Bergshoeff:2015uaa]
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Einstein-Hilbert-Maxwell and the Poisson Equation

Proper Combinations

[G]{ab} , [G]0a ,

[P±] := AEµ
aE

νa[G]µν ± A(D − 3)Eµ
0E

ν
0 [G]µν .

Constraint

Fµν = 0

The Effect of the Constraint

Fµν = ctµν − 1

c
fµν = 0 −→ tµν =

1

c2
fµν .

The constraints allows to shift some c
power to a lowest order. Its limit implies
zero torsion tµν = 0.

The Poisson Equation

(−2)

[P ] = (D − 2)AR̃00 = (D − 2)AR(G)0a
a ,

Boost Irreb
(Recucible-Indecomposable)

(−2)

[P+]

(−1)

[G]0a

(0)

[P−]
(0)

[G]{ab}
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Towards Higher Derivative Non-Relativistic Equations of
Motion

Remarks

We should just add the higher-derivative contributions to the equations of
motion.
The combination for the Poisson equations is fully fixed by the 2-derivative
terms.

What could go wrong?
The constraint could be not enough to kill the terms at order leading and subleading
produced by the higher-order terms of the action.

Does it really happen?

Yes
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1 Goal: Non-Relativistic Limit of Higher-Order Gravity
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3 Non-Relativistic Limit of Higher-Order Theories
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Non-Relativistic Ricci Scalar Squared Gravity
Gauss-Bonnet-Newton-Cartan Gravity
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Non-Relativistic Ricci Scalar Squared Gravity

The Poisson of Ricci Scalar Squared

(2)

[P ] =
1

4
(C − 2B)tabtab

[
1 + 4∇̃(t)c0

c + 2R̃c
c − 3t0ct0

c − 2fcdtcd
]
,

(0)

[P ] =
1

2
(3A −DA + C)R̃a

a +
1

2
(5A −DA + C)α(R̃a

a)2+

+ 2(DA − 2A − C)hµν∇̃µ∇̃νR̃a
a + ... ,

The Issue
The constraint Fµν is not enough to re-
move all the terms at order c0.

Constraints

Fµν =0 ,

⟨C⟩ := R2 + 2∇µ∇µR =0 .
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Newton-Cartan Ricci Scalar Squared Gravity

Limit of the Constraints
The two constraints after the limit become:

tµν = R(H)µν =0 ,

(0)

⟨C⟩ := Ric(J)2 − 2hµν∇̃µ∇̃νRic(J) = 0 ,

Full Set of EOMs
The full set of non-relativistic equations is:

(−2)

[P+] :=R(G)0a
a(1− 2Ric(J)) + 2τµτν∇̃µ∂νRic(J) = 0 ,

(0)

[P−] :=Ric(J)(1− 3Ric(J)) = 0 ,
(−1)

[G]0a := − Ric(J)0a + 2Ric(J)0aRic(J) + 2τ (µeν)a∇̃µ∂νRic(J) = 0 ,
(0)

[G]{ab} := − Ric(J){ab}(1− 2Ric(J)) + 2eµ{ae
ν
b}∇̃µ∂νRic(J) = 0 ,
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Equations of Motion & Constraints Structure

Boost Representation (Recucible-Indecomposable)

δGR(H)µν =0 ,

δG
(0)

⟨C⟩ =0 ,

δG
(−2)

[P+] = − 2λa
(−1)

[G]0a ,

δG
(0)

[P−] = 0 ,

δG
(−1)

[G]0a = − λb
(0)

[G]{ab} +
λa

D − 1

(0)

[P−] ,

δG
(0)

[G]{ab} =0 .

(−2)

[P+]

(−1)

[G]0a

(0)

[P−]
(0)

[G]{ab}
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The Relativistic Starting Point

Action & EOMs

SGB =

∫
dDx

√
−g

[
LEHM + α(Lα − 4Lβ + Lγ)

]
= 0 ,

Lα =

(
R−

1

4
FµνF

µν

)2

,

Lβ =RµνR
µν +

1

16
F 4 +

1

4
Fµ

νF
ν
ρF

ρ
σF

σ
µ −

1

2
∇µF

µν∇ρFν
ρ − FµρF ν

ρRµν ,

Lγ =RµνρσR
µνρσ +

3

8
F 4 +

5

8
Fµ

νF
ν
ρF

ρ
σF

σ
µ +∇µFνρ∇µF νρ −

3

2
FµνF ρσRµνρσ .
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The Relativistic Starting Point

Action & EOMs

[A]ν :=∇µ

[
Fµν −

3

2
αF 2Fµν + 3αFµαFαβF

νβ

]
+

+ 8αRρ[µ∇µF
ν]

ρ + αRµνρσ∇µFρσ + 2α∇µF
µνR = 0 ,

[G]αβ :=Rαβ −
1

2
gαβR−

1

2
FαµFβ

µ +
1

8
gαβF

2+

+ α

[
−

3

2
Fα

µFµ
νFν

ρFρβ +
3

4
Fα

µFβµF
2 +

3

16
gαβFσ

µFµ
νFν

ρFρ
σ −

3

32
gαβF

4+

+
3

4
gαβF

µνF ρσRµνρσ + 2Fµ
νFµρRαρβν −

3

2
F νρ(Fβ

µRαµνρ + Fα
µRβµνρ)+

−
1

2
RαβF

2 − 2Fβ
µFµ

νRαν − 2Fα
µFµ

νRβν + 3Fα
µFβ

νRµν − 2gαβFµ
νFµρRνρ+

− FαµFβ
µR+

1

4
gαβF

2R+
1

2
∇αFµν∇βF

µν −∇µFα
µ∇νFβ

ν +∇αFβµ∇νF
µν+

+∇βFαµ∇νF
µν +∇µFαν∇µFβ

ν −
1

2
gαβ∇µFνρ∇µF νρ − gαβ∇µF

µν∇ρFνρ+

− 4Rα
µRβµ + 2gαβRµνR

µν + 2RαβR−
1

2
gαβR

2+

− 4RµνRαµβν + 2Rα
µνρRβµνρ −

1

2
gαβRµνρσR

µνρσ

]
= 0 ,
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The Poisson Equation

Poisson

[P ] = c2
(2)

[P ] +
(0)

[P ] + c−2
(−2)

[P ] +O(c−2) ,

with
(2)

[P ] = (C − 2B)α
[
1

4
tabt

ab

(
α−1 + 2R̃c

c +
1

3
t0

ct0c − 2tcdfcd

)
+

+ tab
(
− t0a∇̃(t)cb

c +
2

3
t0

c∇̃(t)(ac)b − ta
cR̃bc −

1

6
ta

ct0bt0c + ta
ctb

dfcd

)
+

+ ∇̃(t)a
ab∇̃(t)cb

c +
2

3
∇̃(t)abc∇̃(t)(ab)c

]
,

(0)

[P ] =
1

2
(3A + C −DA)R̃a

a +
1

2
(5A + C −DA)α

[
(R̃a

a)2 − 4R̃abR̃ab + R̃abcdR̃abcd

]
+ ... ,
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Scalar Field Trick

Using a Scalar Field

Lnew = L1 + eaΦ
[
L2 + b∂µΦ∂µΦ

]
with a and b two constants. Then the field equations become:

[Φ]new := aL2 + ∂µΦ(...)µ ,

[G]new
µν := [G]

(1)
µν + eaΦ[G]

(2)
µν + ∂µΦ(...)µ ,

[A]new
µ := [A]

(1)
µ + eaΦ[A]

(2)
µ + ∂µΦ(...)µ ,

where the superscripts (1) and (2) denote respectively the contributions to the field equation
coming from L1 and L2 and dots denote irrelevant contribution for our treatment.

Scalar Field Ansatz & Constraint
Now consider the trivial ansatz for the scalar field Φ = ϕ and imposing the constraint
∂µΦ = 0 , implies that EOMs become:

[ϕ]new = aL2 ,

[G]new
µν = [G]

(1)
µν + eaϕ[G]

(2)
µν ,

[A]new
µ = [A]

(1)
µ + eaΦ[A]

(2)
µ .
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Newton-Cartan Gauss-Bonnet Gravity

Poisson
Considering the combination

[P ] := AEµ
aE

νa[G]µν + CEµ
0E

ν
0 [G]µν − BEµ0[A]µ + D[ϕ] ,

the expansion is unmodified at order c2, while, at order c0, we get
(0)

[P ] =
1

2
(3A + C −DA + 2Da)R̃a

a+

+
1

2
(5A + C −DA)

[
(R̃a

a)2 − 4R̃abR̃ab + R̃abcdR̃abcd

]
,

where we have used the constraints Fµν = 0 to shift the terms proportional to the
intrinsic torsion to a lower order in c. We have set, for simplicity, without losing
generality, ϕ = 0 (a different constant value amounts to a relative constant between
the two- and four-derivative terms that can be reabsorbed in a redefinition). This
implies that the cancellation can be realized by taking C and D to be

C =(D − 5)A , Da = A .
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Newton-Cartan Gauss-Bonnet Equations of Motions

Limit of the Constraints

tµν = R(H)µν =0 , ϕ =0 ,

Equations of Motion

[ϕ] :=Ric(J) = 0 ,
(−2)

[P+] :=R(G)0a
a + 4R(G)ab

aR(G)bcc +
1

2
R(G)abcR(G)abc − 2R(G)0a

aRic(J)+

+ 4R(G)0
abRic(J)ab +

1

2
R(J)0abc(R(J)0abc − 2R(G)bca) = 0 ,

(0)

[P−] :=R(J)abcdR(J)abcd − 4Ric(J)abRic(J)ab = 0 ,
(−1)

[G]0a :=R(G)ab
b − 2R(J)bca

dR(G)bcd + 4Ric(J)abR(G)bcc − 2Ric(J)R(G)ac
c+

+ 4Ric(J)abR(G)bcc + 4Ric(J)bcR(G)abc = 0 ,
(0)

[G]{ab} := − Ric(J)ab + 2R(J)a
cdeR(J)bcde − 4Ric(J)a

cRic(J)bc+

− 4Ric(J)cdR(J)acbd = 0 ,
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Equations of Motion & Constraints Structure

Boost Representation (Recucible-Indecomposable)

δGϕ =0 ,

δGR(H)µν =0 ,

δG[ϕ] = 0 ,

δG
(−2)

[P+] = − 2λa
(−1)

[G]0a ,

δG
(0)

[P−] = 0 ,

δG
(−1)

[G]0a = − λb
(0)

[G]{ab} − 2λa

(0)

[P−]+

+ λa[ϕ](1− 2[ϕ]) ,

δG
(0)

[G]{ab} =0 ,

(−2)

[P+]

(−1)

[G]0a

(0)

[P−]
(0)

[G]{ab}
(0)

[Φ]
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Conclusion & Outlooks

• Taking the non-relativistic limit of higher-deriviative quadratic
theory at the level of the action requires coupiling the gravity
sector to a gauge field,

• At the level of the EOMs requires introducing further constraints
on the system,

• Finding the proper constraints.
• Change the foliation.
• Study solutions.
• Include further cases (cubic gravity and ...).
• Can the non-relativistic limit be used to acquire info on

higher-order gravity theories?

Thank You!
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