Higher-Order Newton-Cartan Gravity

Luca Romano

UNIVERSIDAD DE MURCIA

based on arXiv: 2507.05489 [hep-th] with Biel Cardona

GRASS-SYMBHOL Meeting 2025

Toledo November 11th-13th

This work has been supported in part by the Ramon y Cajal fellowship RYC2023-042671-I , funded by MCIU/AEI/10.13039/501100011033 and FSE+ and in part by Fundación Séneca de la Región de Murcia FSRM/10.13039/100007801 (22581/PI/24).

- Goal: Non-Relativistic Limit of Higher-Order Gravity
 Theories
- 2 Limit of Einstein-Hilbert(+Maxwell)
- 3 Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- 4 Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- 6 CONCLUSION & OUTLOOKS

- Goal: Non-Relativistic Limit of Higher-Order Gravity
 Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- 3 Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- Mon-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

HIGHER-ORDER GRAVITY THEORIES

GOAL

Obtain the Non-Relativistic limit of the family of higher-order theories below at the level of action and equations of motion.

HIGHER-ORDER THEORIES: THE ACTION

We consider the following set of theories in D dimensions, parametrized by the couplings α,β and γ

$$S = \int d^D x \sqrt{-g} \left(R + \alpha R^2 + \beta R_{\mu\nu} R^{\mu\nu} + \gamma R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right),$$

We study them non-perturbatively $(\alpha, \beta \text{ and } \gamma \text{ are not small}).$

Some Relevant Features

- The equations of motion contain terms with more than 2 derivatives.
- \bullet The pure quadratic theory defined by $\beta=-4\alpha\,, \gamma=\alpha$ is called Gauss-Bonnet gravity.
 - It has second-order equations of motion.
 - It is a topological term in 4D.

- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- 2 Limit of Einstein-Hilbert(+Maxwell)
- Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- Mon-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

Taking the Non-Relativistic Limit

(1) Lorentz Breaking

The flat index \hat{A} is decomposed in a longitudinal and transverse part $\hat{A} = \{0, a\}$

$$\hat{A} = \left\{ \begin{array}{ll} 0 & \quad & \mathbf{Longitudinal} \\ a = 1, ..., D-1 & \quad & \mathbf{Transverse} \end{array} \right.$$

particle limit.

(3) Substitution

The ansatz is substituted in the expressions we want to take the limit of. For example the Lorentz transformation rules

$$\begin{split} \delta E_{\mu}{}^{0} &= \Lambda^{0}{}_{b} E_{\mu}{}^{b} \,, \\ \delta E_{\mu}{}^{a} &= \Lambda^{a}{}_{b} E_{\mu}{}^{b} + \Lambda^{a}{}_{0} E_{\mu}{}^{0} \,, \end{split}$$

become

$$\delta \tau_{\mu} = -\frac{1}{c^2} \lambda_b e_{\mu}{}^b ,$$

$$\delta e_{\mu}{}^a = \lambda^a{}_b e_{\mu}{}^b - \lambda^a \tau_{\mu} .$$

② Redefinition Ansatz

The relativistic fields (and parameters) are redefined (in an invertible way) in terms of would be non-relativistic fields (and parameters) with a dimensionless parameter

c. We consider the vielbein $E_{\mu}^{\hat{A}}$ $(g_{\mu\nu} = E_{\mu}{}^{\hat{A}} E_{\nu}{}^{\hat{B}} \eta_{\,\hat{A}\,\hat{B}}),$

$$E_{\mu}{}^{0} = {}^{c}\tau_{\mu}, \qquad E_{\mu}{}^{a} = e_{\mu}{}^{a}.$$

and the Lorentz symmetry parameter

$$\Lambda_{0a} = \frac{1}{c} \lambda_a, \quad \Lambda_{ab} = \lambda_{ab}.$$
Boost Transverse

Rotations

4 The Limit

The parameter c is sent to ∞ . The limit is consistent if it does not develop divergent terms. In the example

$$\delta \tau_{\mu} = 0 ,$$

$$\delta e_{\mu}{}^{a} = \lambda^{a}{}_{b} e_{M}{}^{b} - \lambda^{a} \tau_{\mu} .$$

EINSTEIN-HILBERT ACTION

$$S_{EH} = \int d^D x \sqrt{-g} \, \mathbf{R}$$

Index Definition & Values

 μ, ν, ρ, \dots D Curved ,

 $\hat{A},\hat{B},\hat{C},\dots \qquad \quad D \text{ Flat } (\hat{A}=\{0,a\})\,,$

a, b, c... Transverse Flat a = 1, ..., D - 1.

RICCI SCALAR EXPANSION

$$\mathbf{R} = \frac{\mathbf{c}^2}{4} t_{ab} t^{ab} + \mathcal{O}(\mathbf{c}^0) \,,$$

with $t_{ab} = e^{\mu}{}_{a}e^{\nu}{}_{b}t_{\mu\nu}$ and $t_{\mu\nu} = 2\partial_{[\mu}\tau_{\nu]}$ (intrinsic torsion).

ANSATZ

$$E_{\mu}{}^{0} = c\tau_{\mu},$$

 $E^{\mu}{}_{0} = \frac{1}{c}\tau^{\mu}$
 $E_{\mu}{}^{a} = e_{\mu}{}^{a},$
 $E^{\mu}{}_{a} = e^{\mu}{}_{a}.$

ORTHOGONALITY RELATIONS

$$\begin{split} \tau^{\mu}\tau_{\mu} &= 1\,,\\ e^{\mu}{}_{a}e_{\mu}{}^{b} &= \delta^{b}_{a}\,,\\ e^{\mu}{}_{a}\tau_{\mu} &= e_{\mu}{}^{a}\tau^{\mu} &= 0\,,\\ \tau_{\mu}\tau^{\nu} + e_{\mu}{}^{a}e^{\nu}{}_{a} &= \delta^{\nu}_{\mu}\,. \end{split}$$

EINSTEIN-HILBERT ACTION

$$S_{EH} = \int d^D x \sqrt{-g} \, \mathbf{R}$$

Index Definition & Values

 μ, ν, ρ, \dots D Curved ,

 $\hat{A},\hat{B},\hat{C},\dots \qquad D \text{ Flat } (\hat{A}=\{0,a\})\,,$

a, b, c... Transverse Flat a = 1, ..., D - 1.

Ansatz

$$E_{\mu}{}^{0} = c\tau_{\mu} ,$$

$$E^{\mu}{}_{0} = \frac{1}{c}\tau^{\mu}$$

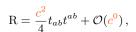
$$E_{\mu}{}^{a} = e_{\mu}{}^{a} ,$$

$$E^{\mu}{}_{a} \equiv e^{\mu}{}_{a} .$$

ORTHOGONALITY RELATIONS

$$\begin{split} \tau^{\mu}\tau_{\mu} &= 1\,,\\ e^{\mu}{}_{a}e_{\mu}{}^{b} &= \delta^{b}_{a}\,,\\ e^{\mu}{}_{a}\tau_{\mu} &= e_{\mu}{}^{a}\tau^{\mu} &= 0\,,\\ \tau_{\mu}\tau^{\nu} + e_{\mu}{}^{a}e^{\nu}{}_{a} &= \delta^{\nu}_{\mu}\,. \end{split}$$

RICCI SCALAR EXPANSION



with $t_{ab} = e^{\mu}{}_{a}e^{\nu}{}_{b}t_{\mu\nu}$ and $t_{\mu\nu} = 2\partial_{[\mu}\tau_{\nu]}$ (intrinsic torsion).

ELECTRIC LIMIT

The leading order term is the result of the limit:

$$\mathcal{S}_{EH} \propto \int d^D x \, e \, t_{ab} t^{ab}$$

EINSTEIN-HILBERT ACTION

$$S_{EH} = \int d^D x \sqrt{-g} \, \mathbf{R}$$

Index Definition & Values

 $\mu, \nu, \rho, ...$ D Curved,

 $\hat{A}, \hat{B}, \hat{C}, \dots$ D Flat $(\hat{A} = \{0, a\})$,

a,b,c... Transverse Flat a=1,...,D-1.

Ansatz

$$E_{\mu}^{\ 0} = {}^{}\boldsymbol{c} \tau_{\mu} \,,$$

$$E^{\mu}_{\ 0} = \frac{1}{c} \tau^{\mu}$$

$$E_{\mu}{}^{a} = e_{\mu}{}^{a},$$

$$E^{\mu}{}_{a} = e^{\mu}{}_{a}.$$

ORTHOGONALITY RELATIONS

$$\begin{split} \tau^{\mu}\tau_{\mu} &= 1 \,, \\ e^{\mu}{}_{a}e_{\mu}{}^{b} &= \delta^{b}_{a} \,, \\ e^{\mu}{}_{a}\tau_{\mu} &= e_{\mu}{}^{a}\tau^{\mu} &= 0 \,, \\ \tau_{\mu}\tau^{\nu} + e_{\mu}{}^{a}e^{\nu}{}_{a} &= \delta^{\nu}_{\mu} \,. \end{split}$$

RICCI SCALAR EXPANSION

$$\mathbf{R} = \frac{c^2}{4} t_{ab} t^{ab} + \mathcal{O}(c^0),$$

with $t_{ab} = e^{\mu}{}_{a}e^{\nu}{}_{b}t_{\mu\nu}$ and $t_{\mu\nu} = 2\partial_{[\mu}\tau_{\nu]}$ (intrinsic torsion).

ELECTRIC LIMIT

The leading order term is the result of the limit:

$$\mathcal{S}_{EH} \propto \int d^D x \, e \, t_{ab} t^{ab}$$

Magnetic Limit

We regard the leading order term as divergent. We need a way to cancel it!

Magnetic Limit: Cancellation Mechanism

EINSTEIN-HILBERT+MAXWELL

$$S = \int d^{10}x \sqrt{-g} \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)$$

Index	Definition & Values
μ, ν, ρ, \dots $\hat{A}, \hat{B}, \hat{C}, \dots$	D Curved , $D \mbox{ Flat } (\hat{A} = \{0,a\}) , \label{eq:decomposition}$
a, b, c	Transverse Flat $a = 1,, D - 1$.

with $F_{\mu\nu} = 2\partial_{[\mu}A_{\nu]}$.

RICCI SCALAR EXPANSION

$$\mathbf{R} = \frac{c^2}{4} t_{ab} t^{ab} + \mathcal{O}(c^0) ,$$

$$F_{\mu\nu} F^{\mu\nu} = c^2 t_{ab} t^{ab} + \mathcal{O}(c^0) ,$$

with $t_{ab} = e^{\mu}{}_{a}e^{\nu}{}_{b}t_{\mu\nu}$ and $t_{\mu\nu} =$ $2\partial_{[\mu}\tau_{\nu]}$ (intrinsic torsion).

ANSATZ

$$\begin{split} E_{\mu}{}^{0} &= c\tau_{\mu}\,, \\ E^{\mu}{}_{0} &= \frac{1}{c}\tau^{\mu} \\ E_{\mu}{}^{a} &= e_{\mu}{}^{a}\,, \\ E^{\mu}{}_{a} &= e^{\mu}{}_{a}\,. \\ A_{\mu} &= c\tau_{\mu} + \frac{1}{c}a_{\mu}\,. \end{split}$$

Orthogonality Relations

$$\begin{split} \tau^{\mu}\tau_{\mu} &= 1\,,\\ e^{\mu}{}_{a}e_{\mu}{}^{b} &= \delta^{b}_{a}\,,\\ e^{\mu}{}_{a}\tau_{\mu} &= e_{\mu}{}^{a}\tau^{\mu} &= 0\,,\\ \tau_{\mu}\tau^{\nu} + e_{\mu}{}^{a}e^{\nu}{}_{a} &= \delta^{\nu}_{\mu}\,. \end{split}$$

Magnetic Limit

The leading order term coming from the the Einstein-Hilbert lagrangian cancels against an analogous term coming from the Maxwell lagrangian. The result of the limit is the action term at sub-leading order in the expansion in c.

$$S = \int d^D x \, e \left(e^{\mu a} e^{\nu}_a \tilde{\mathbf{R}}_{\mu\nu} + 2\tau^{\mu} e^{\nu a} e^{\rho}_a \tilde{\nabla}_{\nu} t_{\mu\rho} + \frac{3}{2} t_{0a} t_0^a - t^{ab} f_{ab} \right) + \mathcal{O}(c^{-2}),$$

- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- 3 Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

From Einstein-Hilbert to Higher-Order Theories

The Strategy

Mimicking the 2-derivative case we can use a gauge field to cancel the divergences of the following actions

$$S = \int d^D x \sqrt{-g} \left(\mathbf{R} + \alpha \mathbf{R}^2 + \beta \mathbf{R}_{\mu\nu} \mathbf{R}^{\mu\nu} + \gamma \mathbf{R}_{\mu\nu\rho\sigma} \mathbf{R}^{\mu\nu\rho\sigma} \right),$$

A Taste of the Divergences

$$R_{\mu\nu}R^{\mu\nu} = \frac{1}{16}c^{4}\left(t_{ab}t^{ab}t_{cd}t^{cd} + 4t_{a}^{b}t_{b}^{c}t_{c}^{d}t_{d}^{a}\right) + ,$$

$$+ \frac{1}{4}c^{2}\left[4t^{ab}t_{a}^{c}(\tilde{R}_{bc} + \tilde{\nabla}(t)_{b0c} - 3t_{0b}t_{0c}) + t^{ab}t_{ab}(-2\tilde{\nabla}(t)_{c0}^{c} + t^{cd}f_{cd}) + 2(\tilde{\nabla}(t)_{a}^{ab} - 4t^{ab}t_{0a})\tilde{\nabla}(t)_{cb}^{b}\right] + \mathcal{O}(c^{0}) ,$$

From Einstein-Hilbert to Higher-Order Theories

THE STRATEGY

Mimicking the 2-derivative case we can use a gauge field to cancel the divergences of the following actions

$$S = \int d^D x \sqrt{-g} \left(\mathbf{R} + \alpha \mathbf{R}^2 + \beta \mathbf{R}_{\mu\nu} \mathbf{R}^{\mu\nu} + \gamma \mathbf{R}_{\mu\nu\rho\sigma} \mathbf{R}^{\mu\nu\rho\sigma} \right),$$

The Issues

There are a few critical points:

- Adding just the Maxwell terms is not enough, we need higher-order terms,
- \bullet Coupling between the gravity sector and Maxwell field could be necessary ,
- The higher-order terms will produce extra divergences (at orders c^4 and c^2). These should all be cancelled otherwise the contribution of the EH term is removed from the action.

LIMIT OF THE ACTION: SETTING UP

THE TOOLS

We add the following terms to the action, each with an arbitrary coupling and we fix the couplings requiring full cancellation of the divergences,

$$\mathcal{B} = \left\{ (F_{\mu\nu}F^{\mu\nu})^2, F^{\mu}{}_{\nu}F^{\nu}{}_{\rho}F^{\rho}{}_{\sigma}F^{\sigma}{}_{\mu}, F^{\mu\nu}F^{\rho\sigma}R_{\mu\nu\rho\sigma}, F^{\mu\rho}F^{\nu}{}_{\rho}R_{\mu\nu}, F^{\mu\nu}R, \nabla_{\mu}F_{\nu\rho}\nabla^{\mu}F^{\nu\rho}, \nabla_{\mu}F^{\mu\rho}\nabla_{\nu}F^{\nu}{}_{\rho} \right\}.$$

Voluntarily overparametrized (avoid integration by parts).

Remarks

- In the Einstein-Hilbert-Maxwell case the coefficient of the Maxwell term can be modified by redefinition.
- \bullet In the higher-order case not all the coefficients in $\mathcal B$ can be arbitrarily fine-tuned via non-perturbative redefinitions.
- Cancellation of divergences would be highly non-trivial!

THE RESULT

- It is possible to cancel all the divergences coming from the higher order terms.
- \bullet For each of the quadratic terms there is only one! combinations in $\mathcal B$ cancelling the divergent part (only certains theories admit the non-relativistic limit).
- The coeffcients do not depend on the dimension.

Relativistic Theories Admitting a Non-Relativistic Limit

For each of the quandratic terms in the action the following combinations guarantee a finite limit of the action

$$\mathcal{L}_{\alpha} = \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)^2,$$

$$\mathcal{L}_{\beta} = R_{\mu\nu}R^{\mu\nu} + \frac{1}{16}F^4 + \frac{1}{4}F^{\mu}{}_{\nu}F^{\nu}{}_{\rho}F^{\rho}{}_{\sigma}F^{\sigma}{}_{\mu} - \frac{1}{2}\nabla_{\mu}F^{\mu\nu}\nabla_{\rho}F_{\nu}{}^{\rho} - F^{\mu\rho}F^{\nu}{}_{\rho}R_{\mu\nu} ,$$

$$\mathcal{L}_{\gamma} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + \frac{3}{8}F^4 + \frac{5}{8}F^{\mu}_{\nu}F^{\nu}_{\rho}F^{\rho}_{\sigma}F^{\sigma}_{\mu} + \nabla_{\mu}F_{\nu\rho}\nabla^{\mu}F^{\nu\rho} - \frac{3}{2}F^{\mu\nu}F^{\rho\sigma}R_{\mu\nu\rho\sigma}.$$

THE RESULT

- It is possible to cancel all the divergences coming from the higher order terms.
- \bullet For each of the quadratic terms there is only one! combinations in $\mathcal B$ cancelling the divergent part (only certains theories admit the non-relativistic limit).
- The coeffcients do not depend on the dimension.

THE RELATIVISTIC THEORY (QUADRATIC PART)

$$\mathcal{L}_{\alpha} = \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)^2$$

THE NON-RELATIVISTIC LIMIT OF THE QUADRATIC PART

$$\overset{\scriptscriptstyle{(0)}}{\mathcal{L}_{\alpha}} = \left[-\operatorname{Ric}(J) + 2\tilde{\nabla}R(H)_{a0}{}^{a} - \frac{3}{2}R(H)_{0a}R(H)_{0}{}^{a} \right]^{2}$$

The Relativistic Theory (Quadratic Part)

$$\mathcal{L}_{\beta} = R_{\mu\nu}R^{\mu\nu} + \frac{1}{16}F^4 + \frac{1}{4}F^{\mu}_{\ \nu}F^{\nu}_{\ \rho}F^{\rho}_{\ \sigma}F^{\sigma}_{\ \mu} - \frac{1}{2}\nabla_{\mu}F^{\mu\nu}\nabla_{\rho}F_{\nu}^{\ \rho} - F^{\mu\rho}F^{\nu}_{\ \rho}R_{\mu\nu}$$

THE NON-RELATIVISTIC LIMIT OF THE QUADRATIC PART

$$\begin{split} \mathcal{L}_{\beta}^{(0)} &= \text{Ric}(\mathbf{J})_{ab} \text{Ric}(\mathbf{J})^{ab} + 2 \text{Ric}(\mathbf{J})_{ab} \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ab}{}_{0} - 2 \text{Ric}(\mathbf{J})_{0a} \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ba}{}_{b} + \\ &+ 2 \text{Ric}(\mathbf{J})_{0a} \mathbf{R}(\mathbf{H})^{ab} \mathbf{R}(\mathbf{H})_{0b} + \frac{1}{2} \mathbf{R}(\mathbf{G})_{0c}{}^{c} \mathbf{R}(\mathbf{H})^{ab} \mathbf{R}(\mathbf{H})_{ab} + \text{Ric}(\mathbf{J})_{ab} \mathbf{R}(\mathbf{H})_{0}{}^{a} \mathbf{R}(\mathbf{H})_{0}{}^{b} + \\ &- \tilde{\nabla} \mathbf{R}(\mathbf{H})_{a}{}^{ab} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{00b} + \frac{1}{2} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{a0}{}^{a} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{b0}{}^{b} + \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ab}{}_{0} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{(ab)0} + \\ &- \tilde{\nabla} \mathbf{R}(\mathbf{H})_{00a} \mathbf{R}(\mathbf{H})^{ab} \mathbf{R}(\mathbf{H})_{0b} - \tilde{\nabla} \mathbf{R}(\mathbf{H})_{a0}{}^{a} \mathbf{R}(\mathbf{H})_{0b} \mathbf{R}(\mathbf{H})_{0}{}^{b} + \\ &+ \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ab}{}_{0} \mathbf{R}(\mathbf{H})_{0a} \mathbf{R}(\mathbf{H})_{0b} + \frac{3}{4} \mathbf{R}(\mathbf{H})_{0}{}^{a} \mathbf{R}(\mathbf{H})_{0a} \mathbf{R}(\mathbf{H})_{0}{}^{b} \mathbf{R}(\mathbf{H})_{0b} \end{split}$$

The Relativistic Theory (Quadratic Part)

$$\mathcal{L}_{\gamma} = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \frac{3}{8} F^4 + \frac{5}{8} F^{\mu}_{\ \nu} F^{\nu}_{\ \rho} F^{\rho}_{\ \sigma} F^{\sigma}_{\ \mu} + \nabla_{\mu} F_{\nu\rho} \nabla^{\mu} F^{\nu\rho} - \frac{3}{2} F^{\mu\nu} F^{\rho\sigma} R_{\mu\nu\rho\sigma}$$

THE NON-RELATIVISTIC LIMIT OF THE QUADRATIC PART

$$\begin{split} & \overset{(0)}{\mathcal{L}_{\gamma}} = \, \mathbf{R}(\mathbf{J})^{abcd} \mathbf{R}(\mathbf{J})_{abcd} - \frac{10}{3} \mathbf{R}(\mathbf{J})_{0}^{\ \ (ab)c} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{abc} + 2 \mathbf{R}(\mathbf{G})^{b(ac)} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{abc} + \\ & + 2 \mathbf{R}(\mathbf{G})_{0ab} \mathbf{R}(\mathbf{H})^{ac} \mathbf{R}(\mathbf{H})^{b}_{\ c} + \frac{8}{3} \mathbf{R}(\mathbf{J})_{0}^{\ \ (ac)b} \mathbf{R}(\mathbf{H})_{ab} \mathbf{R}(\mathbf{H})_{0c} + \\ & - 2 \tilde{\nabla} \mathbf{R}(\mathbf{H})_{0a}^{\ \ a} \mathbf{R}(\mathbf{H})_{ab} \mathbf{R}(\mathbf{H})_{0}^{\ \ b} + 2 \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ab}_{\ \ 0} \mathbf{R}(\mathbf{H})_{0a} \mathbf{R}(\mathbf{H})_{0b} + \\ & - 2 \tilde{\nabla} \mathbf{R}(\mathbf{H})_{0}^{\ \ ab} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{0ab} + 2 \tilde{\nabla} \mathbf{R}(\mathbf{H})^{ab}_{\ \ 0} \tilde{\nabla} \mathbf{R}(\mathbf{H})_{ab0} + \frac{3}{4} \mathbf{R}(\mathbf{H})_{0}^{\ \ a} \mathbf{R}(\mathbf{H})_{0a} \mathbf{R}(\mathbf{H})_{0b} \end{split}$$

BEYOND QUADRATIC GRAVITY

PRESCRIPTION

The non-relativistic limit of any theory whose Lagrangian is a function of R, $R_{\mu\nu}R^{\mu\nu}$ and $R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$,

$$\mathcal{L} = f(\mathbf{R}, \, \mathbf{R}_{\mu\nu} \mathbf{R}^{\mu\nu}, \, \mathbf{R}_{\mu\nu\rho\sigma} \mathbf{R}^{\mu\nu\rho\sigma})$$

is well defined upon the following substitution:

$$\mathcal{L} = f(\mathcal{L}_{EHM}, \mathcal{L}_{\beta}, \mathcal{L}_{\gamma}).$$

Why only those theories?

- The limit knows about some physical features of the possible higher-order theories?
- Can the existence of the non-relativistic limit be used to gain informations on the higher-order gravity theories?
- Can we characterize more precisely the theories admitting the limit?

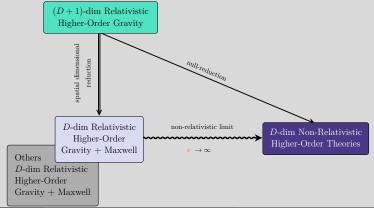
- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- 3 Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- 4 Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

HIGHER-DIMENSIONAL ORIGIN

Pure Gravitational Theory in D+1 Dimensions

The Lagrangian admitting a finite non-relativistic limit \mathcal{L}_{α} , \mathcal{L}_{β} and \mathcal{L}_{γ} can be obtained considering their pure gravitational part in one dimension higher and performing a compactification followed by a truncation of the scalar field.

HIGHER-DIMENSIONAL ORIGIN OF THE THEORIES WITH FINITE LIMIT



- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- 4 Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

THE LIMITS OF THE EQUATIONS OF MOTIONS

TAKING THE LIMIT OF THE EQUATIONS OF MOTION

- ullet The limit $c \to \infty$ just select the leading order of the expansion of the equations of motion.
- Subtlety!

$$[X] = c^{n} [X] + c^{n-2} [X] + C(c^{n-4}) = 0, \quad [Y] = c^{n} [X] + c^{n-2} [Y] + C(c^{n-4}) = 0.$$

The limit gives

$$[X]^{(n)} = 0,$$
 $[X]^{(n)} = 0.$

We have lost and equation!

THE LIMITS OF THE EQUATIONS OF MOTIONS

TAKING THE LIMIT OF THE EQUATIONS OF MOTION

- The limit $c \to \infty$ just select the leading order of the expansion of the equations of motion.
- Subtlety!

$$[X] = \frac{c^n}{N} [X] + \frac{c^{n-2}}{N} [X] + \mathcal{O}(c^{n-4}) = 0, \quad [Y] = \frac{c^n}{N} [X] + \frac{c^{n-2}}{N} [Y] + \mathcal{O}(c^{n-4}) = 0.$$

To avoid loosing equations of motion in the limit we should combine them before sending c to infinity:

$$[X] + [Y] = 2c^{n}[X] + c^{n-2}([X] + [Y]) + \mathcal{O}(c^{n-4}),$$

$$[X] - [Y] = c^{n-2}([X] - [Y]) + \mathcal{O}(c^{n-4}).$$

The limit gives

THE LIMITS OF THE EQUATIONS OF MOTIONS

EQUATIONS OF MOTION: EINSTEIN-HILBERT-MAXWELL CASE

The equations of motion coming from the action we have considered are:

$$[G]^{\mu\nu} = R^{\mu\nu} - \frac{1}{2} F^{\mu}{}_{\rho} F^{\nu\rho} = 0 \,, \label{eq:G}$$

$$[A]^{\mu} = \nabla_{\nu} F^{\nu\mu} = 0 \,,$$

and with flat indices:

$$[G]_{\hat{A}\hat{B}} = [G]^{\mu\nu} E_{\mu\hat{A}} E_{\nu\hat{B}} = 0 \,,$$

$$[A]^{\hat{A}} = [A]^{\mu} E_{\mu}{}^{\hat{A}} = 0.$$

THE POISSON EQUATION IN NEWTONIAN GRAVITY

The Poisson equation is characteristic of Newtonian gravity (and Newton-Cartan gravity), $\Delta\Psi=4\pi G\rho$, with ρ mass density distribution and Ψ Newton potential. We could expect an analogous equation from our limit.

Where is the Poisson Equation?

We can consider a general scalar combination

$$[P_+] := \mathtt{A} \, E^{\mu}{}_a E^{\nu a} [G]_{\mu\nu} + \mathtt{C} E^{\mu}{}_0 E^{\nu}{}_0 \, [G]_{\mu\nu} + \mathtt{B} \, E_{\mu}{}^0 [A]^{\mu}$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = c^{2}[P_{+}] + [P_{+}] + c^{-2}[P_{+}] + \mathcal{O}(c^{-4}),$$

has a term that potentially could be interpreted as a Poisson equation at order c^{-2} . Indeed it contains

$$e^{\mu a}e^{\nu}{}_{a}\partial_{\mu}\partial_{\nu}a_{0}$$

that can be identified with the characteristic Laplacian term acting on the Newton's potential.

WHERE IS THE POISSON EQUATION?

We can consider a general scalar combination

$$[P_+] := \mathbf{A} \, E^{\mu}{}_a E^{\nu a} [G]_{\mu\nu} + \mathbf{C} E^{\mu}{}_0 E^{\nu}{}_0 \, [G]_{\mu\nu} + \mathbf{B} \, E_{\mu}{}^0 [A]^{\mu}$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = c^{2}[P_{+}] + [P_{+}] + c^{-2}[P_{+}] + \mathcal{O}(c^{-4}),$$

THE ISSUE!

The order c^{-2} is sub-subleading: it cannot be obtained from the limit of the corresponding equations unless...

WHERE IS THE POISSON EQUATION?

We can consider a general scalar combination

$$[P_+] := \mathbf{A} \, E^\mu{}_a E^{\nu a} [G]_{\mu\nu} + \mathbf{C} E^\mu{}_0 E^\nu{}_0 \, [G]_{\mu\nu} + \mathbf{B} \, E_\mu{}^0 [A]^\mu$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = \frac{c^{2}}{[P_{+}]} + [P_{+}] + \frac{c^{-2}}{[P_{+}]} + \mathcal{O}(c^{-4}),$$

THE ISSUE!

The order c^{-2} is sub-subleading: it cannot be obtained from the limit of the corresponding equations unless...

THE SOLUTION

...the leading (c^2) and sub-leading (c^0) orders cancels by choosing A, B and C properly .

WHERE IS THE POISSON EQUATION?

We can consider a general scalar combination

$$[P_+] := \mathtt{A} \, E^{\mu}{}_a E^{\nu a} [G]_{\mu\nu} + \mathtt{C} E^{\mu}{}_0 E^{\nu}{}_0 \, [G]_{\mu\nu} + \mathtt{B} \, E_{\mu}{}^0 [A]^{\mu}$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = c^{2}[P_{+}]^{(2)} + [P_{+}]^{(0)} + c^{-2}[P_{+}]^{(-2)} + \mathcal{O}(c^{-4}),$$

Poisson Expansion

$$[\overset{(2)}{P_+}] = \frac{1}{4} ({\tt C} - 2 {\tt B}) t_{ab} t^{ab} \, , \label{eq:power_power}$$

$$\begin{split} [\overset{(0)}{P_{+}}] &= \frac{1}{2} (3 \mathbf{A} - D \mathbf{A} + \mathbf{C}) \tilde{\mathbf{R}}_{a}{}^{a} + (2 \mathbf{A} - D \mathbf{A} + \mathbf{B}) \tilde{\nabla}(t)_{a0}{}^{a} + \\ &\quad + \frac{1}{4} (-5 \mathbf{A} - \mathbf{C} + 3 D \mathbf{A}) t_{0a} t_{0}{}^{a} + \frac{1}{2} (-3 \mathbf{A} - 2 \mathbf{B} + D \mathbf{A}) t^{ab} f_{ab} \,, \end{split}$$

WHERE IS THE POISSON EQUATION?

We can consider a general scalar combination

$$[P_+] := \mathtt{A} \, E^{\mu}{}_a E^{\nu a} [G]_{\mu\nu} + \mathtt{C} E^{\mu}{}_0 E^{\nu}{}_0 \, [G]_{\mu\nu} + \mathtt{B} \, E_{\mu}{}^0 [A]^{\mu}$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = \frac{c^{2}}{[P_{+}]} + [P_{+}] + \frac{c^{-2}}{[P_{+}]} + \mathcal{O}(c^{-4}),$$

THE ISSUE!

The order c^{-2} is sub-subleading: it cannot be obtained from the limit of the corresponding equations unless...

Another Issue!

...the leading (c^2) and sub-leading (c^0) cannot be canceled by choosing the proper combination...

WHERE IS THE POISSON EQUATION?

We can consider a general scalar combination

$$[P_+] := \mathtt{A} \, E^{\mu}{}_a E^{\nu a} [G]_{\mu\nu} + \mathtt{C} E^{\mu}{}_0 E^{\nu}{}_0 \, [G]_{\mu\nu} + \mathtt{B} \, E_{\mu}{}^0 [A]^{\mu}$$

where A, B and C are three constant parameters. The expansion of $[P_+]$

$$[P_{+}] = \frac{c^{2}}{[P_{+}]} + [P_{+}] + \frac{c^{-2}}{[P_{+}]} + \mathcal{O}(\frac{c^{-4}}{c}),$$

THE ISSUE!

The order c^{-2} is sub-subleading: it cannot be obtained from the limit of the corresponding equations unless...

Another Issue!

...the leading (c^2) and sub-leading (e^0) cannot be canceled by choosing the proper combination...

THE SOLUTION

We can add, by hand, another equation (a constraint)

$$F_{\mu\nu}=0$$
.

[Bergshoeff:2015uaa]

PROPER COMBINATIONS

$$\begin{split} [G]_{\{ab\}}\,, & [G]_{0a}\,, \\ [P_{\pm}] := & \operatorname{A} E^{\mu}{}_{a}E^{\nu a}[G]_{\mu\nu} \pm \operatorname{A}(D-3)E^{\mu}{}_{0}E^{\nu}{}_{0}\,[G]_{\mu\nu}\,. \end{split}$$

$$F_{\mu\nu} = 0$$

THE EFFECT OF THE CONSTRAINT

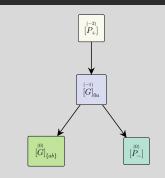
$$F_{\mu\nu} = c t_{\mu\nu} - \frac{1}{c} f_{\mu\nu} = 0 \longrightarrow t_{\mu\nu} = \frac{1}{c^2} f_{\mu\nu} .$$

The constraints allows to shift some c power to a lowest order. Its limit implies **zero torsion** $t_{\mu\nu} = 0$.

THE POISSON EQUATION

$$\stackrel{\scriptscriptstyle{(-2)}}{[P]} = (D-2)\mathtt{A}\tilde{\mathbf{R}}_{00} = (D-2)\mathtt{A}\mathbf{R}(\mathbf{G})_{0a}^{\quad a} \,,$$

BOOST IRREB (RECUCIBLE-INDECOMPOSABLE)



TOWARDS HIGHER DERIVATIVE NON-RELATIVISTIC EQUATIONS OF MOTION

Remarks

- We should just add the higher-derivative contributions to the equations of motion.
- The combination for the Poisson equations is fully fixed by the 2-derivative terms.

What could go wrong?

The constraint could be not enough to kill the terms at order leading and subleading produced by the higher-order terms of the action.

TOWARDS HIGHER DERIVATIVE NON-RELATIVISTIC EQUATIONS OF MOTION

Remarks

- We should just add the higher-derivative contributions to the equations of motion.
- The combination for the Poisson equations is fully fixed by the 2-derivative terms.

What could go wrong?

The constraint could be not enough to kill the terms at order leading and subleading produced by the higher-order terms of the action.

Does it really happen?

TOWARDS HIGHER DERIVATIVE NON-RELATIVISTIC EQUATIONS OF MOTION

Remarks

- We should just add the higher-derivative contributions to the equations of motion.
- The combination for the Poisson equations is fully fixed by the 2-derivative terms.

What could go wrong?

The constraint could be not enough to kill the terms at order leading and subleading produced by the higher-order terms of the action.

Does it really happen?

Yes

- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- 4 Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

Non-Relativistic Ricci Scalar Squared Gravity

THE POISSON OF RICCI SCALAR SQUARED

$$\stackrel{(2)}{[P]} = \frac{1}{4} (\mathbf{C} - 2\mathbf{B}) t_{ab} t^{ab} \bigg[1 + 4 \tilde{\nabla} (t)_{c0}{}^c + 2 \tilde{\mathbf{R}_c}^c - 3 t_{0c} t_0{}^c - 2 f^{cd} t_{cd} \bigg] \,,$$

$$\begin{split} \stackrel{(0)}{[P]} &= \frac{1}{2} (3 \mathbf{A} - D \mathbf{A} + \mathbf{C}) \tilde{\mathbf{R}}_a{}^a + \frac{1}{2} (5 \mathbf{A} - D \mathbf{A} + \mathbf{C}) \alpha (\tilde{\mathbf{R}}_a{}^a)^2 + \\ &\quad + 2 (D \mathbf{A} - 2 \mathbf{A} - \mathbf{C}) h^{\mu \nu} \tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu} \tilde{\mathbf{R}}_a{}^a + \dots, \end{split}$$

THE ISSUE

The constraint $F_{\mu\nu}$ is not enough to remove all the terms at order c^0 .

Constraints

$$F_{\mu\nu} = 0,$$

$$\langle C \rangle := \mathbf{R}^2 + 2\nabla_{\mu}\nabla^{\mu}\mathbf{R} = 0.$$

NEWTON-CARTAN RICCI SCALAR SQUARED GRAVITY

LIMIT OF THE CONSTRAINTS

The two constraints after the limit become:

$$t_{\mu\nu} = R(H)_{\mu\nu} = 0,$$

$$\langle C \rangle := Ric(J)^2 - 2h^{\mu\nu} \tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu} Ric(J) = 0,$$

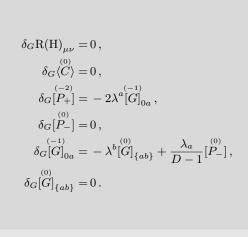
Full Set of EOMs

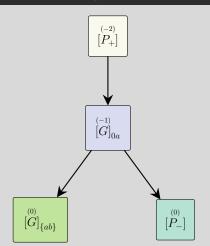
The full set of non-relativistic equations is:

$$\begin{split} &[P_{+}] := \mathrm{R}(\mathbf{G})_{0a}{}^{a}(1-2\mathrm{Ric}(\mathbf{J})) + 2\tau^{\mu}\tau^{\nu}\tilde{\nabla}_{\mu}\partial_{\nu}\mathrm{Ric}(\mathbf{J}) = 0\,,\\ &[P_{-}] := \mathrm{Ric}(\mathbf{J})(1-3\mathrm{Ric}(\mathbf{J})) = 0\,,\\ &[G]_{0a} := -\mathrm{Ric}(\mathbf{J})_{0a} + 2\mathrm{Ric}(\mathbf{J})_{0a}\mathrm{Ric}(\mathbf{J}) + 2\tau^{(\mu}e^{\nu)}{}_{a}\tilde{\nabla}_{\mu}\partial_{\nu}\mathrm{Ric}(\mathbf{J}) = 0\,,\\ &[G]_{\{ab\}} := -\mathrm{Ric}(\mathbf{J})_{\{ab\}}(1-2\mathrm{Ric}(\mathbf{J})) + 2e^{\mu}{}_{\{a}e^{\nu}{}_{b\}}\tilde{\nabla}_{\mu}\partial_{\nu}\mathrm{Ric}(\mathbf{J}) = 0\,, \end{split}$$

Equations of Motion & Constraints Structure

BOOST REPRESENTATION (RECUCIBLE-INDECOMPOSABLE)





- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- 4 Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- Conclusion & Outlooks

THE RELATIVISTIC STARTING POINT

ACTION & EOMS

$$\mathcal{S}_{GB} = \int d^D x \sqrt{-g} \Big[\mathcal{L}_{EHM} + \alpha (\mathcal{L}_{\alpha} - 4\mathcal{L}_{\beta} + \mathcal{L}_{\gamma}) \Big] = 0 \,,$$

$$\mathcal{L}_{\alpha} = \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right)^2,$$

$$\mathcal{L}_{\beta} = \mathbf{R}_{\mu\nu}\mathbf{R}^{\mu\nu} + \frac{1}{16}F^4 + \frac{1}{4}F^{\mu}{}_{\nu}F^{\nu}{}_{\rho}F^{\rho}{}_{\sigma}F^{\sigma}{}_{\mu} - \frac{1}{2}\nabla_{\mu}F^{\mu\nu}\nabla_{\rho}F_{\nu}{}^{\rho} - F^{\mu\rho}F^{\nu}{}_{\rho}\mathbf{R}_{\mu\nu}\,,$$

$$\mathcal{L}_{\gamma} = \mathbf{R}_{\mu\nu\rho\sigma} \mathbf{R}^{\mu\nu\rho\sigma} + \frac{3}{8} F^4 + \frac{5}{8} F^{\mu}{}_{\nu} F^{\nu}{}_{\rho} F^{\rho}{}_{\sigma} F^{\sigma}{}_{\mu} + \nabla_{\mu} F_{\nu\rho} \nabla^{\mu} F^{\nu\rho} - \frac{3}{2} F^{\mu\nu} F^{\rho\sigma} \mathbf{R}_{\mu\nu\rho\sigma} .$$

THE RELATIVISTIC STARTING POINT

ACTION & EOMS

$$\begin{split} [A]^{\nu} &:= \nabla_{\mu} \left[F^{\mu\nu} - \frac{3}{2} \alpha F^2 F^{\mu\nu} + 3 \alpha F^{\mu\alpha} F_{\alpha\beta} F^{\nu\beta} \right] + \\ &\quad + 8 \alpha R^{\rho[\mu} \nabla_{\mu} F^{\nu]}_{\rho} + \alpha R^{\mu\nu\rho\sigma} \nabla_{\mu} F_{\rho\sigma} + 2 \alpha \nabla_{\mu} F^{\mu\nu} \mathbf{R} = 0 \,, \\ [G]_{\alpha\beta} &:= \mathbf{R}_{\alpha\beta} - \frac{1}{2} g_{\alpha\beta} \mathbf{R} - \frac{1}{2} F_{\alpha\mu} F_{\beta}^{\ \mu} + \frac{1}{8} g_{\alpha\beta} F^2 + \\ &\quad + \alpha \left[-\frac{3}{2} F_{\alpha}^{\ \mu} F_{\mu}^{\ \nu} F_{\nu}^{\ \rho} F_{\rho\beta} + \frac{3}{4} F_{\alpha}^{\ \mu} F_{\beta\mu} F^2 + \frac{3}{16} g_{\alpha\beta} F_{\sigma}^{\ \mu} F_{\mu}^{\ \nu} F_{\nu}^{\ \rho} F_{\rho}^{\ \sigma} - \frac{3}{32} g_{\alpha\beta} F^4 + \\ &\quad + \frac{3}{4} g_{\alpha\beta} F^{\mu\nu} F^{\rho\sigma} \mathbf{R}_{\mu\nu\rho\sigma} + 2 F_{\mu}^{\ \nu} F^{\mu\rho} \mathbf{R}_{\alpha\rho\beta\nu} - \frac{3}{2} F^{\nu\rho} (F_{\beta}^{\ \mu} \mathbf{R}_{\alpha\mu\nu\rho} + F_{\alpha}^{\ \mu} \mathbf{R}_{\beta\mu\nu\rho}) + \\ &\quad - \frac{1}{2} \mathbf{R}_{\alpha\beta} F^2 - 2 F_{\beta}^{\ \mu} F_{\mu}^{\ \nu} \mathbf{R}_{\alpha\nu} - 2 F_{\alpha}^{\ \mu} F_{\mu}^{\ \nu} \mathbf{R}_{\beta\nu} + 3 F_{\alpha}^{\ \mu} F_{\beta}^{\ \nu} \mathbf{R}_{\mu\nu} - 2 g_{\alpha\beta} F_{\mu}^{\ \nu} F^{\mu\rho} \mathbf{R}_{\nu\rho} + \\ &\quad - F_{\alpha\mu} F_{\beta}^{\ \mu} \mathbf{R} + \frac{1}{4} g_{\alpha\beta} F^2 \mathbf{R} + \frac{1}{2} \nabla_{\alpha} F_{\mu\nu} \nabla_{\beta} F^{\mu\nu} - \nabla_{\mu} F_{\alpha}^{\ \mu} \nabla_{\nu} F_{\beta}^{\ \nu} + \nabla_{\alpha} F_{\beta\mu} \nabla_{\nu} F^{\mu\nu} + \\ &\quad + \nabla_{\beta} F_{\alpha\mu} \nabla_{\nu} F^{\mu\nu} + \nabla_{\mu} F_{\alpha\nu} \nabla^{\mu} F_{\beta}^{\ \nu} - \frac{1}{2} g_{\alpha\beta} \nabla_{\mu} F_{\nu\rho} \nabla^{\mu} F^{\nu\rho} - g_{\alpha\beta} \nabla_{\mu} F^{\mu\nu} \nabla^{\rho} F_{\nu\rho} + \\ &\quad - 4 \mathbf{R}_{\alpha}^{\ \mu} \mathbf{R}_{\beta\mu} + 2 g_{\alpha\beta} \mathbf{R}_{\mu\nu} \mathbf{R}^{\mu\nu} + 2 \mathbf{R}_{\alpha\beta} \mathbf{R} - \frac{1}{2} g_{\alpha\beta} \mathbf{R}_{\mu\nu\rho\sigma} \mathbf{R}^{\mu\nu\rho\sigma} \right] = 0 \,, \end{split}$$

THE POISSON EQUATION

Poisson

$$[P] = c^{2}[P] + [P] + c^{(0)}[P] + c^{-2}[P] + \mathcal{O}(c^{-2}),$$

with

$$\begin{split} [P] &= (\mathbf{C} - 2\mathbf{B})\alpha \left[\frac{1}{4} t_{ab} t^{ab} \left(\alpha^{-1} + 2\tilde{\mathbf{R}}_c{}^c + \frac{1}{3} t_0{}^c t_{0c} - 2 t^{cd} f_{cd} \right) + \right. \\ &+ t^{ab} \left(- t_{0a} \tilde{\nabla}(t)_{cb}{}^c + \frac{2}{3} t_0{}^c \tilde{\nabla}(t)_{(ac)b} - t_a{}^c \tilde{\mathbf{R}}_{bc} - \frac{1}{6} t_a{}^c t_{0b} t_{0c} + t_a{}^c t_b{}^d f_{cd} \right) + \\ &+ \tilde{\nabla}(t)_a{}^{ab} \tilde{\nabla}(t)_{cb}{}^c + \frac{2}{3} \tilde{\nabla}(t)^{abc} \tilde{\nabla}(t)_{(ab)c} \right], \end{split}$$

$$\overset{(0)}{[P]} = \frac{1}{2} (3\mathbf{A} + \mathbf{C} - D\mathbf{A}) \tilde{\mathbf{R}}_a{}^a + \frac{1}{2} (5\mathbf{A} + \mathbf{C} - D\mathbf{A}) \alpha \Big[\big(\tilde{\mathbf{R}}_a{}^a \big)^2 - 4 \tilde{\mathbf{R}}^{ab} \tilde{\mathbf{R}}_{ab} + \tilde{\mathbf{R}}^{abcd} \tilde{\mathbf{R}}_{abcd} \Big] + \dots,$$

SCALAR FIELD TRICK

Using a Scalar Field

$$\mathcal{L}_{\mathrm{new}} = \mathcal{L}_1 + \mathrm{e}^{a\Phi} \Big[\mathcal{L}_2 + b \partial_\mu \Phi \partial^\mu \Phi \Big]$$

with a and b two constants. Then the field equations become:

$$\begin{split} [\Phi]^{\mathrm{new}} &:= \mathrm{a} \mathcal{L}_2 + \partial_{\mu} \Phi(\ldots)^{\mu} \,, \\ [G]^{\mathrm{new}}_{\mu\nu} &:= [G]^{(1)}_{\mu\nu} + \mathrm{e}^{\mathrm{a} \Phi} [G]^{(2)}_{\mu\nu} + \partial_{\mu} \Phi(\ldots)^{\mu} \,, \\ [A]^{\mathrm{new}}_{\mu} &:= [A]^{(1)}_{\mu} + \mathrm{e}^{\mathrm{a} \Phi} [A]^{(2)}_{\mu} + \partial_{\mu} \Phi(\ldots)^{\mu} \,, \end{split}$$

where the superscripts $^{(1)}$ and $^{(2)}$ denote respectively the contributions to the field equation coming from \mathcal{L}_1 and \mathcal{L}_2 and dots denote irrelevant contribution for our treatment.

SCALAR FIELD ANSATZ & CONSTRAINT

Now consider the trivial ansatz for the scalar field $\Phi=\phi$ and imposing the constraint $\partial_{\mu}\Phi=0$, implies that EOMs become:

$$\begin{split} [\phi]^{\mathrm{new}} &= \mathrm{a} \mathcal{L}_2 \;, \\ [G]^{\mathrm{new}}_{\mu\nu} &= [G]^{(1)}_{\mu\nu} + \mathrm{e}^{\mathrm{a}\phi} [G]^{(2)}_{\mu\nu} \;, \\ [A]^{\mathrm{new}}_{\mu} &= [A]^{(1)}_{\mu} + \mathrm{e}^{\mathrm{a}\Phi} [A]^{(2)}_{\mu} \;. \end{split}$$

NEWTON-CARTAN GAUSS-BONNET GRAVITY

Poisson

Considering the combination

$$[P] := \mathbf{A} \, E^{\mu}{}_{a} E^{\nu a} [G]_{\mu \nu} + \mathbf{C} E^{\mu}{}_{0} E^{\nu}{}_{0} \, [G]_{\mu \nu} - \mathbf{B} \, E_{\mu 0} [A]^{\mu} + \mathbf{D} [\phi] \, ,$$

the expansion is unmodified at order c^2 , while, at order c^0 , we get

$$\begin{split} \stackrel{(0)}{[P]} &= \frac{1}{2} (3 \mathbf{A} + \mathbf{C} - D \mathbf{A} + 2 \mathbf{D} \mathbf{a}) \tilde{\mathbf{R}}_a{}^a + \\ &\quad + \frac{1}{2} (5 \mathbf{A} + \mathbf{C} - D \mathbf{A}) \Big[(\tilde{\mathbf{R}}_a{}^a)^2 - 4 \tilde{\mathbf{R}}^{ab} \tilde{\mathbf{R}}_{ab} + \tilde{\mathbf{R}}^{abcd} \tilde{\mathbf{R}}_{abcd} \Big] \,, \end{split}$$

where we have used the constraints $F_{\mu\nu}=0$ to shift the terms proportional to the intrinsic torsion to a lower order in c. We have set, for simplicity, without losing generality, $\phi=0$ (a different constant value amounts to a relative constant between the two- and four-derivative terms that can be reabsorbed in a redefinition). This implies that the cancellation can be realized by taking C and D to be

$$C = (D-5)A$$
,

$$\mathtt{Da} = \mathtt{A}$$
.

NEWTON-CARTAN GAUSS-BONNET EQUATIONS OF MOTIONS

LIMIT OF THE CONSTRAINTS

$$t_{\mu\nu} = R(H)_{\mu\nu} = 0,$$
 $\phi = 0,$

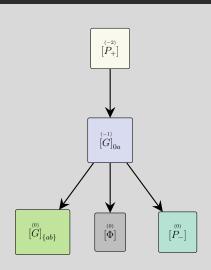
EQUATIONS OF MOTION

$$\begin{split} [\phi] &:= \operatorname{Ric}(\mathbf{J}) = 0\,, \\ [P_+] &:= \operatorname{R}(\mathbf{G})_{0a}{}^a + 4\operatorname{R}(\mathbf{G})_{ab}{}^a \operatorname{R}(\mathbf{G})^{bc}{}_c + \frac{1}{2}\operatorname{R}(\mathbf{G})^{abc}\operatorname{R}(\mathbf{G})_{abc} - 2\operatorname{R}(\mathbf{G})_{0a}{}^a \operatorname{Ric}(\mathbf{J}) + \\ &\quad + 4\operatorname{R}(\mathbf{G})_0{}^{ab}\operatorname{Ric}(\mathbf{J})_{ab} + \frac{1}{2}\operatorname{R}(\mathbf{J})^{0abc}(\operatorname{R}(\mathbf{J})_{0abc} - 2\operatorname{R}(\mathbf{G})_{bca}) = 0\,, \\ [P_-] &:= \operatorname{R}(\mathbf{J})^{abcd}\operatorname{R}(\mathbf{J})_{abcd} - 4\operatorname{Ric}(\mathbf{J})^{ab}\operatorname{Ric}(\mathbf{J})_{ab} = 0\,, \\ [G]_{0a} &:= \operatorname{R}(\mathbf{G})_{ab}{}^b - 2\operatorname{R}(\mathbf{J})^{bc}{}_a{}^d \operatorname{R}(\mathbf{G})_{bcd} + 4\operatorname{Ric}(\mathbf{J})_{ab}\operatorname{R}(\mathbf{G})^{bc}{}_c - 2\operatorname{Ric}(\mathbf{J})\operatorname{R}(\mathbf{G})_{ac}{}^c + \\ &\quad + 4\operatorname{Ric}(\mathbf{J})_{ab}\operatorname{R}(\mathbf{G})^{bc}{}_c + 4\operatorname{Ric}(\mathbf{J})^{bc}\operatorname{R}(\mathbf{G})_{abc} = 0\,, \\ [G]_{\{ab\}} &:= -\operatorname{Ric}(\mathbf{J})_{ab} + 2\operatorname{R}(\mathbf{J})_a{}^{cde}\operatorname{R}(\mathbf{J})_{bcde} - 4\operatorname{Ric}(\mathbf{J})_a{}^c\operatorname{Ric}(\mathbf{J})_{bc} + \\ &\quad - 4\operatorname{Ric}(\mathbf{J})^{cd}\operatorname{R}(\mathbf{J})_{acbd} = 0\,, \end{split}$$

EQUATIONS OF MOTION & CONSTRAINTS STRUCTURE

BOOST REPRESENTATION (RECUCIBLE-INDECOMPOSABLE)

$$\begin{split} \delta_{G}\phi &= 0\,,\\ \delta_{G}\mathbf{R}(\mathbf{H})_{\mu\nu} &= 0\,,\\ \delta_{G}[\phi] &= 0\,,\\ \delta_{G}[P_{+}] &= -2\lambda^{a} \overset{(-1)}{[G]}_{0a}\,,\\ \delta_{G}[P_{-}] &= 0\,,\\ \delta_{G}[G]_{0a}^{(-1)} &= -\lambda^{b} \overset{(0)}{[G]}_{\{ab\}} - 2\lambda_{a} \overset{(0)}{[P_{-}]} +\\ &\quad + \lambda_{a}[\phi](1-2[\phi])\,,\\ \delta_{G}[G]_{\{ab\}} &= 0\,, \end{split}$$



- GOAL: Non-Relativistic Limit of Higher-Order Gravity Theories
- LIMIT OF EINSTEIN-HILBERT(+MAXWELL)
- Non-Relativistic Limit of Higher-Order Theories
 - The Action
 - Higher-Dimensional Origin
- Non-Relativistic Limit of the Equations of Motion
 - Non-Relativistic Ricci Scalar Squared Gravity
 - Gauss-Bonnet-Newton-Cartan Gravity
- 6 Conclusion & Outlooks

Conclusion & Outlooks

• Taking the non-relativistic limit of higher-deriviative quadratic theory at the level of the action requires coupiling the gravity sector to a gauge field,

• At the level of the EOMs requires introducing further constraints on the system,

Conclusion & Outlooks

- Taking the non-relativistic limit of higher-deriviative quadratic theory at the level of the action requires coupiling the gravity sector to a gauge field,
- At the level of the EOMs requires introducing further constraints on the system,

- Finding the proper constraints.
- Change the foliation.
- Study solutions.
- Include further cases (cubic gravity and ...).
- Can the non-relativistic limit be used to acquire info on higher-order gravity theories?

Conclusion & Outlooks

- Taking the non-relativistic limit of higher-deriviative quadratic theory at the level of the action requires coupiling the gravity sector to a gauge field,
- At the level of the EOMs requires introducing further constraints on the system,

- Finding the proper constraints:
- Change the foliation.
- Study solutions.
- Include further cases (cubic gravity and ...).
- Can the non-relativistic limit be used to acquire info on higher-order gravity theories?

Thank You!