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Dp-branes in String Theory

are p–branes where open (10D super)string can have its endpoints
attached [Sagnotti 1988, Dai+Leigh+Polchinski 1989, Hořava 1989].

Their ground states can be described by supersymmetric solitonic
solutions of type II supergravity [Duff+Lu 1982, ...].

Their dynamics is described by action given by the sum of SUSY DBI
and WZ functionals [Cederwall, von Gussich, Nilsson, Westerberg, 1996,
Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996, Aganagic, Popescu,
Schwarz 96, 96; Bergshoeff, Townsend 96].

They carry charges of RR gauge fields of type IIA and type IIB
Supergravity (for even and odd p, respectively)).

D0-brane

The worldvolume of Dp-brane is d = p + 1-dimensional so that
D0-brane is just massive superparticle in (D=10, N = 2) type IIA
superspace the (standard) action of which [Bergshoeff, Townsend 96] is
10D generalization of the four dimensional N = 2 superparticle action
by de Azcárraga and Lukierski [1982].
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Quantization

The quantization of Dp-branes and particularly D0-branes were
addressed in the literature (e.g. [Kallosh, 1997]), mainly for contrasting it
with the superstring quantization (ask me what is the difference).

However, to our best knowledge neither the quantum state spectrum of
D0-brane was analysed nor its field theory was elaborated.

One of the aims of (the papers on which is based) this talk is to fill this
gap by quantization of D0–brane in its spinor moving frame formulation
[IB:2000].

The choice of spinor moving frame formulation is motivated by that this
allows to elaborate the so-called spinor helicity formalism for type IIA
amplitudes and superamplitudes involving D0-branes.

But even more important motivation is that in such a way we create the
basis for quantization of multiple D0-brane (mD0) model from [IB+Unai
Sarraga:2022] which is know in its spinor moving frame formulation only.

We will also show this mD0 action and discuss briefly its symmetries and
properties in this talk.

But first let us recall what are multiple Dp-brane or mDp systems.
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Multiple Dp-branes (mDp)

mDp is the system of N nearly coincident Dp-branes and N2 strings
ending on different branes or on the same branes
[E. Witten 1995]: mDp

carries non-Abelian gauge fields on a center of mass worldvolume;
at very low energy it is described by the action of U(N) maximally
supersymmetric Yang–Mills (SYM) theory.

In it the U(1) sector describes the center of mass motion of the multiple
Dp-brane (mDp) system while the SU(N) sector describes the relative
motion of the mDp constituents.

Actually, U(1) SYM action decouples and can be identified as a low
energy limit of gauge fixed version of the complete nonlinear action for a
single Dp-brane [Cederwall, von Gussich, Nilsson, Westerberg, 1996,
Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996, Aganagic, Popescu,
Schwarz 96, 96; Bergshoeff, Townsend 96; IB, Sorokin, Tonin, 97].

Then the natural problem was to find a complete action for multiple
Dp-brane (mDp) system: with all expected fields and doubly
supersymmetric, i.e. invariant under spacetime SUSY and κ–symmetry.
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30 years of search: many interesting results

The problem of multiple Dp-brane action has a 30 years of history and is
not solved yet in its complete form.

However, certain progress was reached and many interesting results
were obtained during these years

Let us particularly mention [Tseytlin:1997;Emparan:1998;Myers:1999;Yolanda
Lozano+:2002,2005;Howe, Lindstrom, Wulff:2005,2007]
In particular,

the bosonic limit is widely believed to be given by the Myers’s ‘dielectric
brane’ action [Myers:1999] obtained from the requirement of consistency
with T-duality transformations of D-branes and background fields.
(Notice that this action is not Lorentz invariant).
A very interesting complete and supersymmetric construction on ’-1
quantization level’ was proposed in [Howe, Lindstrom, Wulff:2005,2007].
There such a dynamical system was constructed, that its quantization
should reproduce the desired multiple Dp-brane (mDp) action.
(However, the complete realization of this step in a fool glory seems to imply
the quantization of the complete interacting system of supergravity and
super-Dp-brane).
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mD0 and other m0-th

A complete action (of the usual type) including fermions and invariant
under spacetime SUSY and κ-symmetry (worldline susy) is known
presently for

the system of ten-dimensional (10D) multiple 0-branes
[Sorokin:2001,Panda+Sorokin:2003]
for 11D multiple M0-branes (mM0) or multiple M-waves [IB:2012].
In D=3 some N = 1 supersymmetric multibrane actions are known: these
are the non-Abelian Born-Infeld action of [Drummond,Howe and
Lindstrom:2002] and non-Abelian multiwave action of [IB:2013] (the 3d
N = 1 counterpart of the mM0).
mD0 action in flat superspace constructed in [I.B. + Sarraga: PRD 2022] and
studied in [I.B. + Sarraga: PRD 2023].

To be more precise, this is a family of the actions with all the known properties
expected for mD0-branes in flat target superspace.
The generalization to curved background is not known (yet, I suppose).
As we have shown in [I.B. + Sarraga: PRD 2023], one of the representatives of
this family of candidate mD0 actions can be obtained by dimensional reduction of
11D mM0-action from [I.B., JHEP 2012].

Let us stress that mD0–action of [I.B. + Sarraga: PRD 2022] (as well as
mM0- action of [I.B., JHEP 2012]) is known in the frame of spinor moving
frame approach only.
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Our mD0 and BFSS Matrix model

The quantization of the dynamical system described by our mD0 action
should result in a field theory in superspace enhanced by additonal
bosonic and fermionic matrix coordinates.

Why this should be interested in?

Reason proceeds from the fact that the mD0–action of [I.B. + Sarraga:
PRD 2023] (as well as mM0- action from [I.B., JHEP 2012]) can be
considered as 10D (11D) Lorentz invariant generalization of the BFSS
Matrix model [Banks, Fischler, Shenker, and Susskind, PRD 1996] .

This latter was conjectured to provide a complete description of M-theory
in certain limits (hance the name M(atrix) theory)

and still attracts much attention in their different aspects and provides
inspirations for new studies (see e.g. [Juan Maldacena, Talk at Strings
2024 at CERN, https://www.youtube.com/watch?v=b0nMIfpZ9-0] as well
as J.Phys.A 2024, JHEP 2024].

This allows us to conjecture that the mD0 field theory obtained by
quatization of the dynamical system described by our mD0 action might
give new insight in the structure and properties of String/M-theory.
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In this talk,

after describing the spinor moving frame formulation of D0-brane I will

show the (family of) candidate mD0 actions and

briefly discuss its properties.

Then as a preparatory stage, to quantization of this system,

I describe the covariant quantization of single D0–brane

analyse D0–brane quantum state spectrum

and describe D0-brane field theory both in a more standard form and in
a formalism which will be used to describe mD0 field theory in future.

Notice that such a formalism produces so-called on-shell superfields,
one-particle counterparts of superamplitudes.
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D0–brane action in de Azcárraga–Lukierski type formulation

Let us denote the pull–backs of superveilbein forms of flat 10D type IIA
superspace Σ(10|32) to the superparticle worldline by

Ea = dxa(τ)− idθα1(τ)σa
αβθ

β1(τ)− idθ2
α(τ)σ̃

aαβθ2
β(τ) =: dτEa

τ , ,

Eα1 = dθα1(τ) = dτ∂τθα1 , E2
α = dθ2

α(τ) = dτ∂τθ2
α , ,

where a, b, c = 0, 1, ..., 9 are ten-vector indices, α, β, γ = 1, ..., 16 are
10D MW spinor indices and (xa(τ), θα1(τ), θ2

α(τ)) are bosonic vector
and fermionic spinor coordinate functions of the proper time τ which
define parametrically the superparticle worldline,

W1 ⊂ Σ(10|32) : xa = xa(τ), θα1 = θα1(τ), θ2
α = θ2

α(τ) .

These are sufficient to write the standard action for D0-brane
[Bergshoeff+Townsend 1996]

SD0 =
M
2

∫
dτ

√
Ea

τEaτ − iM
∫
W1

(dθα1θ2
α − θα1dθ2

α) ,

which is the D=4 generalization of the D = 4 N = 2 action for massive
superparticle [de Azcárraga + Lukierski 1982].
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Moving frame and spinor moving frame variables (Lorentz harmonics)

The spinor moving frame formulation of D0-brane involves also

a set of orthogonal and normalized vector fields u0
a(τ) and u i

a(τ),

u0
aua0 = 1, u0

auai = 0 , u i
auaj = −δij ,

which form the Lorentz group valued moving frame matrix

u(b)
a (τ) =

(
u0

a, u i
a

)
∈ SO(1, 9)

as well as 16 × 16 Spin(1, 9) valued spinor moving frame matrix

vα
q ∈ Spin(1, 9)

providing a kind of square roots of the moving frame in the sense of

u0
aσ

a
αβ = vα

qvβ
q , u i

aσ
a
αβ = vα

qγ i
qpvβ

p

⇔ vq
ασ̃

αβ
µ vp

β = u0
µδqp + u i

µγ
i
qp ,

where γ i
qp = γ i

pq are d = 9 gamma matrices obeying γ(iγ j) = δij .
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Moving frame and spinor moving frame variables (Lorentz harmonics)

These constraints

u0
aσ

a
αβ = vα

qvβ
q , u i

aσ
a
αβ = vα

qγ i
qpvβ

p ⇔ vq
ασ̃

αβ
µ vp

β = u0
µδqp + uI

µγ
I
qp

which provide a massive and multi-dimensional generalization of D=4
Cartan-Penrose representation for light-like vector which is one of the
basic relations of twistor approach [Penrose 1963],
can be deduced from the Lorentz invariance of sigma-matrices
u(b)

a σa
αβ = vq

ασ
(b)
qp vp

β by choosing the representation with σ(b)
qp = (δqp, γ

i
qp),

Spinor moving frame formulation of D0–brane. Action

The spinor moving frame action of the 10D D0-brane [IB:2000] can be
written with the use of just one timelike unit vector of the moving frame

SD0 = M
∫
W1

Eau0
a − iM

∫
W1

(dθα1θ2
α − θα1dθ2

α) .

If considered in its literal form, with u0
a = u0

a(τ) obeying just u0
aua0 = 1, it

can be deduced from the first order form of de Azcárraga–Lukierski
action

∫
W1

(
paEa − e(τ)

2

(
papa − M2))− iM

∫
W1(dθα1θ2

α − θα1dθ2
α).
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Spinor moving frame formulation of D0–brane. Action

However, when the composite nature of the moving frame is taken into
account,

vq
ασ̃

αβ
µ vp

β = u0
µδqp + uI

µγ
I
qp ⇒ u0

µ =
1

16
vq
ασ̃

αβ
µ vq

β ,

it becomes clear that SD0 = M
∫
W1 Eau0

a − iM
∫
W1(dθα1θ2

α − θα1dθ2
α)

actually hides a 10D and massive generalization of the D=4 twistor–like
or Ferber–Schirafuji action (

∫
λAλ̄Ȧ(dx ȦA − 2idΘA Θ̄Ȧ + c.c.))

SD0 =
M
16

∫
W1

vq
αvq

β Eaσ̃αβ
a − iM

∫
W1

(dθα1θ2
α − θα1dθ2

α) .

The advantage of the spinor moving frame action is also that it can be
used, through the generalized action principle [I.B.+Sorokin+Volkov=
PLB96], as a basis of constructing superembedding approach
[I.B.+Pasti+Sorokin+Tonin+Volkov=NPB95, Howe+Sezgin=PLB96, 97,
Sorokin=Phys.Repts2000, I.B.+Sorokin=in Handbook on QG, 2024].

It also allows to construct (candidate) mD0 action [I.B.+Sarraga=PRD2022].
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Spinor moving frame and induced worldline supergravity

The moving frame vectors can be used to split the bosonic supervielbein
in a Lorentz invariant manner,

E0 = Eau0
a , E i = Eau i

a

while spinor moving frame matrix vα
q and its inverse vq

α ∈ Spin(1, 9),
obeying vq

αvα
p = δq

p, allow to introduce two fermionic 1–forms with the
same indices of SO(9) gauge group

Eq1 = dθα1 vα
q , E2

q = dθ2
αvq

α .

The Lagrangian one-form of the D0-brane action can be written in the
form

LD0
1 = ME0 − iM(Eq1θ2

q − θq1E2
q ) ,

with θq1 = θα1 vα
q , θ2

q = θ2
αvq

α.
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Induced worldline supergravity

But really important is that

E0 and Eq1 − E2
q = dθα1 vα

q − dθ2
αvq

α

provide us with the induced 1d N = 16 supergravity multiplet for local
fermionic κ–symmetry of the D0–brane action,

δκθ
1α = κqvα

q , δκθ
2
α = −κqvα

q ,

δκxµ = iδκθ1σµθ1 + iδκθ2σ̃µθ2, δκvα
q = 0 .

Indeed: δκE0 = −2i(Eq1 − E2
q )κ

q , δκ(Eq1 − E2
q ) = 2Dκq ,

where Dκq := dκq + 1
4Ω

ijκpγ ij
pq is the covariant derivative with induced

SO(9) connection Ωij = u i
µduµj .

As the relative motion of mD0 system should be described by traceless
N × N matrix fields of d = 1 N = 16 SYM, Xi ,Ψq ,A0, making its
supersymmetry local by coupling to the induced supergravity allows to
construct the simplest candidate mD0 action [I.B. 2018].

More general nonlinear actions were found in [I.B. +Sarraga 2022].
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Fields of mD0 system

Fields of mD0: center of energy + N = 16 SU(N) SYM

The fields used to describe mD0 system include coordinate functions,
describing center of energy motion and d = 1 N = 16 SU(N) SYM
multiplet: traceless hermitian N × N matrices

1d gauge field Aτ (τ), which we prefer to include in A = dτAτ (τ),

nanoplet of bosonic fields Xi(τ) in vector rep. of SO(9)

hexadecuplet of fermionic matrix fields Ψq in the spinor rep. of SO(9).

We also use auxiliary fields: spinor moving frame vα
q and bosonic

matrix fields Pi(τ) playing the role of momenta conjugate to Xi(τ).

The Lagrangian one-form for the action of d = 1 N = 16 SYM is

LSYM
1 = dτLSYM = tr(−Pi∇Xi + 4iΨq∇Ψq) + dτH ,

where ∇Xi = dXi + [A,Xi ], ∇Ψq = dΨq + [A,Ψq] and

H = 1
2 tr

(
PiPi

)
− 1

64 tr
[
Xi ,Xj

]2
− 2 tr

(
Xi Ψγ iΨ

)
is the SYM Hamiltonian including potential V = − 1

64 tr
[
Xi ,Xj

]2
.
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Fields of mD0 system

The action ∝
∫

W 1 LSYM
1 is invariant under the rigid d = 1 N = 16 SUSY

δεXi = 4iεq(γ iΨ)q , δεPi = [εq(γ ijΨ)q ,Xj ] ,

δεΨq =
1
2
εpγ i

pqPi − i
16
εpγ ij

pq[Xi ,Xj ] ,

δεA = −dτεqΨq .

In the weak field limit, the complete multiple D0-brane action should
reduce to the sum of the above SU(N) SYM and of U(1) SYM action,
with later decoupled [Witten: 1995] (and can be identified with gauge
fixed version of single D0-brane action).

Supersymmetry of SYM action, as it is seen from its U(1) part, is related
to κ–symmetry of single D0 action.

In the complete mD0 action this thus should become local (worldline)
supersymmetry, the counterpart of kappa–symmetry of single D0–brane.

The rigid SU(N) SYM SUSY becomes local due to coupling to
supergravity induced by center of energy motion.

Now we will show the (family of) complete nonlinear action(s)
constructed from these physical fields and auxiliary fields and having all
the properties expected from mD0 action in flat superspace.
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Multiple D0-brane (candidate) action(s)

Our multiple D0-brane action is

SmD0 = m
∫
W1

E0 − im
∫
W1

(dθ1θ2 − θ1dθ2) +

+
1
µ6

∫
W1

(
tr
(
PiDXi + 4iΨqDΨq

)
+

2
ME0 H

)
− 1

µ6

∫
W1

dM(H)

M(H)
tr(PiXi)

+
1
µ6

∫
W1

1√
2M(H)

(E1q − E2
q) tr

(
−4i(γ iΨ)qPi +

1
2
(γ ijΨ)q[Xi ,Xj ]

)

where m and µ are constants of dimension of mass,
E0 = Eau0

a , Eq1 = Eα1vq
α = dθα1 vα

q , E2
q = E2

αvq
α = dθ2

αvq
α,

vα
q ∈ Spin(1, 9) obeying u0

aσ
a
αβ = vα

qvβ
q ⇒ ua0u0

a = 1,

The covariant derivatives use the SU(N) gauge fields and Ωij = uaidu j
a,

DXi := dXi − ΩijXj + [A,Xi ], DΨq := dΨq − 1
4Ω

ijγ ij
qpΨp + [A,Ψq],

H = 1
2 tr

(
PiPi

)
− 1

64 tr
[
Xi ,Xj

]2
− 2 tr

(
Xi Ψγ iΨ

)
is SYM Hamiltonian

and M(H) is an arbitrary positive definite function of this.
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Multiple D0-brane (candidate) action(s)

Spacetime SYSY and local worldline SUSY (κ–symmetry)

By construction, the action is invariant under the rigid spacetime SUSY,
which acts nontrivially on the center of mass variables only,

δεxa = iθ1σaϵ1 + iθ2σ̃aϵ2 , δϵθ
α1 = ϵα1 , δϵθ

2
α = ϵα

2 ,

δϵvq
α = 0 ⇒ δϵu0

a = δϵu i
a = 0 ,

δϵXi = 0 , δϵΨq = 0 , δϵPi = 0 , δεA = 0 .

Moreover, for any choice of positive definite M(H), this action is
invariant under worldline supersymmetry which acts on center of mass
variables as κ–symmetry of single D0-brane

δκθ
α1 = κq(τ)vq

α , δκθ
2
α = −κq(τ)vα

q ,

δκxa = −iθ1σaδκθ
1 − iθ2σ̃aδκθ

2 ,

δκvq
α = 0 ⇒ δκu0

a = δκu i
a = 0 ;

while its action on the matrix field is more complicated:
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Multiple D0-brane (candidate) action(s)

Worldline supersymmetry transformations of the matrix fields

δκXi = 4i√
M κγ iΨ+ 1

µ6
M′

M δκH Xi − 1
µ6

M′

M ∆κKPi ,

δκPi = − 1√
M [κγ ijΨ,Xj ]− 1

µ6
M′

M δκHPi+

+ 1
µ6

M′

M ∆κK
(

1
16 [[X

i ,Xj ],Xj ]− γ i
pq{Ψp,Ψq}

)
,

δκΨq = − 1
2
√
M

(
(κγ i)qPi − i

8 (κγ ij)q[Xi ,Xj ]
)
− i

4µ6
M′

M ∆κK [(γ iΨ)q ,Xi ].

δκA = − 2
M

√
M E0 (κqΨq)

(
1− 1

µ6
M′
M H

)
(

1+ 1
µ6

M′
M H

) + 1√
2M

(E1q − E2
q )(γ

iκ)q Xi −

−(E1q − E2
q )

1
µ6

M′
√

2M2
1(

1+ 1
µ6

M′
M H

)κp Ψ(q tr
(

4i(γ iΨ)p)Pi + 5
2 (γ

ijΨ)p)[Xi ,Xj ]
)
.

This is a local version of deformation of rigid SYM supersymmetry

where M′ = µ6 dM
dH (ask me why so strange definition),
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Multiple D0-brane (candidate) action(s)

Worldline supersymmetry transformations of the matrix fields

where M′ = µ6 dM
dH ,

δκH =
1√
M

tr
(
κqΨq

(
[Xi ,Pi ]− 4i{Ψq ,Ψq}

))
1 + 1

µ6
M′
M H

with
H := tr

(
PiPi

)
+

1
16

tr
[
Xi ,Xj

]2
+ 2 tr

(
Xi Ψγ iΨ

)
,

(cf. H = 1
2 tr

(
PiPi

)
− 1

64 tr
[
Xi ,Xj

]2
− 2 tr

(
Xi Ψγ iΨ

)
)

and

∆κK =
1

2
√
M

tr
(

4i(κγ iΨ)Pi + 5
2 (κγ

ijΨ)[Xi ,Xj ]
)

1 + 1
µ6

M′
M H

.
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Multiple D0-brane (candidate) action(s)

All the family of action has the properties expected for mD0 system in
flat target superspace,

but two members are special.

The action with M = m is the simplest representative found in [I.B.2018].

The action with

M =
m
2

+

√
m2

4
+

H
µ6

can be obtained from 11D mM0 action [I.B.2012]. We show this in
[I.B.+Sarraga 2023]

where we also establish an interesting correspondence between the
complete relative motion Eqs. of mD0 and the Eqs. of d=1 N = 16 SYM.

This correspondence does not imply a gauge equivalence but
establishes a relation between solutions.

In particular, it implies that all the SUSY solutions of mD0 equations in its
relative motion part coincide with supersymmetric solutions of the SYM
equations.
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Multiple D0-brane (candidate) action(s)

Towards field theory of mD0

The quantization of the dynamical system described by our mD0 action
should result in a field theory in superspace enhanced by additional
bosonic and fermionic matrix coordinates
which might give new insight in the structure and properties of
String/M-theory.

Let us recall that the reason for this hope is the fact that our mD0–action (as
well as mM0- action from [I.B., JHEP 2012]) can be considered as 10D
(11D) Lorentz invariant generalization of the BFSS Matrix model [Banks,
Fischler, Shenker, and Susskind, PRD 1996] ,
which was conjectured to provide a complete description of M-theory in
certain limits (hance the name M(atrix) theory).

As our mD0 action is known only in the frame of spinor moving frame
formulation,

the natural first step to approach the problem of such quantization is to
quantize 10D D0–brane in its spinor moving frame formulation.
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Dirac quantization of the constrained system

The most commonly used method to quantize systems with constraints
was proposed by Dirac on the basis of his generalized Hamiltonian
approach.

It implies the identification of the constraints from calculation of momenta
canonically conjugate to coordinates as derivaties of Lagrangian with
respect to associated velocities and the conservation of these
constraints in the evolution.

Then one separates constraints in the sets of the first class, which
generate symmetries on Poisson brackets (classical analogs of
commutators or anti-commutators).

and second class, which can be split (in principle) on conjugated pair
having non-degenerate Poisson brackets.

In quantum theory the first class constraints are imposed as conditions
on the state vectors,

while this is impossible to do with second class constraints.
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Dirac quantization of the constrained system

The conjugate pairs of second class constraints should be either
resolved explicitly (converted in the pair of equalities of the type p∗ = 0,
q∗ = f (other variables)), which allows to reduce the phase space,

or resolved implicitly by passing to the so–called Dirac brackets,

or converted into the first class constraint.

This latter is done by just omitting one of the conjugate second class
constraint thus converting the second in effective first class constraint.

This latter is then imposed on the state vector.

Dirac quantization of our system

As spinor moving frame variables are strongly constrained and the study
indicates mixtures of first and second class constraints, D0–brane in
spinor moving frame formulation is not easy to quantize.
However, what help are clear group-theoretical meaning of spinor
moving frame variables and
passing to the so-called analytical coordinate basis [Sokatchev 1985,
87nk, I.B. 90].
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Analytical coordinate basis (AnB)

We are working with superspace enlarged by spinor moving frame
variables (Lorentz harmonic superspace) where we can change from the
original coordinate basis ZM = (xµ, θα1, θ2

α, vq
α) to

ZM
An = (x0, xI

An,Θq , Θ̃q , vq
α) with

x0 = xµu0
µ , xI

An = xµuI
µ − i

2
(θq1 − θ2

q)γ
I
qp(θ

p1 + θ2
p),

Θq = θq1 + θ2
q , Θ̃q = θq1 − θ2

q , θq1 = θα1vq
α , θ2

q = θ2
αvα

q .

The expressions for xI
An is chosen in such a way that Θ̃q disappears from

the Lagrangian which reads

LD0
1 = m

(
dx0 − idΘq Θq − i

4Ω
IJΘγ IJΘ− xIΩI) , Θγ IJΘ ≡ Θqγ

IJ
qpΘp

(ΩIJ = uI
aduaJ , ΩI = u0

adua)) and includes only 16 of 32 coordinate
functions,

Θq = θ1q + θ2
q = θα1vα

q + θ2
αvq

α .

Thus κ–symmetry is realized trivially in AnB, or one can say it is
automatically gauge fixed when we pass to AnB.
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Cartan forms

The Lagrangian 1–form

LD0
1 = m

(
dx0 − idΘq Θq − i

4Ω
IJΘγ IJΘ− xIΩI) , Θγ IJΘ ≡ Θqγ

IJ
qpΘp

involves also the SO(1,9)/SO(9) Cartan forms: SO(9) covariant
ΩI = u0

µduµI and composite SO(9) connection ΩIJ = uI
µduµJ .

These provide the basis for space co-tangent to SO(1,9) parametrized
by spinor frame variable vq

α and/or moving frame vectors.
Using these instead of (v̇q

α = dvq
α/dτ ) to define covariant momenta

dI = ∂L
∂ΩI

τ
= ∂L1

∂ΩI , dIJ = − ∂L
∂ΩIJ

τ
= − ∂L1

∂ΩIJ ,

instead of canonical momenta Pα
q = ∂L1

∂dvq
α

for strongly constrained vq
α,

allows to streamline essentially and to simplify drastically the
calculations with highly constrained spinor frame variables.
One can find

dI = 1
2 vq

αγ
I
qpPα

p , dIJ = 1
2 vq

αγ
IJ
qpPα

p

and check: they have vanishing Poisson brackets with constraints on v .
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To construct the Hamiltonian formalism, we first calculate the canonical
and covariant momenta.

All these results in (primary) constraints (i.e. in relations without time
derivatives of phase variables):

p0 − m := p
x0 − m ≈ 0 ,

pI := p
xI
A
≈ 0 ,

d̃I = dI + mx I
A ≈ 0 ,

d̃IJ = dIJ − im
4
Θqγ

IJ
qpΘp ≈ 0 ,

dq := dΘq
= ΠΘ

q + imΘq ≈ 0 ,

Canonical Hamiltonian vanishes on the surface of these constraints.

This set includes the pair of explicitly resolved second class constraints

xI ≈ −dI/m , pI ≈ 0

which hence can be used to reduce the phase space by removing (xI , pI)
directions.
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The bosonic constraint (linear combination of d̃IJ and dq)

˜̃dIJ = dIJ +
1
4
Θqγ

IJ
qpΠ

Θ
p ≈ 0

is of the first class. It generate SO(9) gauge symmetry on the reduced
phase space.

p0 − m := p
x0 − m ≈ 0 is also of the first class. It implies that x0(τ) can

be gauged away, but we prefer to keep it (ask me why, if interested).

Finally we have 16 imaginary fermionic second class constraints

dq = ΠΘ
q + iΘqp0

which obey the algebra

{dq , dp}PB = −2ip0δqp .

Most problems for quantization come from these fermionic constraints.

We are going to discuss the quantization in super–coordinate
representation and will conventionally describe all the constraints by
differential operators providing their quantum realization.
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By prescription of Dirac [Dirac:1963] we have to impose the first class
constraints on the state vector.
Imposing the generator of SO(9) gauge symmetry we arrive at(

DIJ +
1
2
Θqγ

IJ
qp

∂

∂Θq

)
Ξ = 0, DIJ = +

1
2

vp
αγ

IJ
pq

∂

∂vq
α

,

which implies that the state vector superfield Ξ is SO(9) invariant.
Imposing the last bosonic constraint p̂0 − m,

(−i∂x0 − m)Ξ = 0

we fix the x0 dependence of the state vector to be exponential,

Ξ(x0, v ,Θ) = eimx0
Φ(v ,Θ) .

The main problem is how to impose the quantum version of the fermionic
constraints which can be realized as d̂q = −iDq with

Dq = ∂Θq
+ iΘq∂x0 (⇔ ∂Θq

− mΘq )

obeying
{Dq ,Dp} = 2iδqp∂x0 (⇔ −2mδqp ) .
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Internal spinor frame and Gupta-Bleuler (conversion) method

The problem can be solved if we could split imaginary Dq on two sets of
complex conjugate and canonically conjugate constraints.
Then we can just ”omit” one of conjugate constraints and impose the
second, which thus becomes first class.
This is called Gupta–Bleuler method (first applied to quantize gauge
fixed description of Maxwell Electrodynamics).
For realizing this program we need to introduce complex structure.
This will break SO(9) symmetry. But to make such breaking a kind of
spontaneous, i.e. realized with Stükelberg mechanism, we can use the
counterpart of spinor moving frame variables (internal harmonics).
First we introduce the SO(9) frame described by SO(7)× U(1) covariant
blocks of SO(9) valued matrix

U(J)
I =

(
UI

J̌ ,UI
(8),UI

(9)
)
=

(
UI

J̌ , 1
2

(
UI + ŪI

)
, 1

2i

(
UI − ŪI

))
∈ SO(9)

the columns of which are two complex null and 6 orthogonal unit vectors

UIUI = 0 = ŪIŪI , UIŪI = 2, UIUI
J̌ = 0 = ŪIUI

J̌ , UI
J̌UI

Ǩ = δJ̌Ǩ .
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Internal spinor frame and Gupta-Bleuler (conversion) method

Now let us introduce the Spin(9) valued matrix

w (q)
p =

(
w̄pA , wp

A
)
∈ Spin(9) ,

which provides a double covering of the vector frame matrix as an
element of SO(9). This implies, in particular,

UIγ
I
qp = 2w̄qAŪABw̄pB , Ū Iγ

I
qp = 2wA

q UABwB
p ,

U J̌
I γ

I
qp = iwA

q (σ
J̌ Ū)A

Bw̄qB + iw̄qA(σ̃
J̌U)A

BwB
q ,

w̄qAγ
I
qpw̄pB = UIUAB , wA

q γ
I
qpwB

p = ŪI ŪAB ,

w̄qAγ
I
qpwB

p = iU J̌
I (σ

J̌ Ū)A
B .

Here σ̃J̌AB = −σJ̌
AB = +σJ̌

BA = (σ̃J̌AB)† are SO(7) Klebsh-Gordan
coefficients and UAB is complex symmetric unitary matrix.

We can chose UAB = δAB , ŪAB = (UAB)
∗ = δAB but... (ask me why).

Furthermore, as Spin(9) ⊂ SO(16),

w̄qAw̄qB = 0 = wA
q wB

q , w̄qAwB
q = δA

B , w̄qAwA
p + wA

q w̄pA = δqp .
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We can also avoid introduction of moving frame and just set

UI = δI
(8) + iδI

(9), UI
J̌ = δI

J̌

thus explicitly breaking SO(9) down to SO(7)× SO(2).
However, we will need to introduce anyway their factorization on
products of w̄qA, wA

q as these allow
to split the fermionic coordinates on a pair of conjugate octuplets,

ΘA = ΘqwA
q , Θ̄A = Θqw̄qA .

and also split the real constraint/derivative Dq on conjugate octuplets

DA = w̄qADq = ∂A + iΘ̄A∂x0 = e−iΘAΘ̄A∂x0 ∂A e+iΘAΘ̄A∂x0 , ,

D̄A = wA
q Dq = −(DA)

∗ = ∂̄A + iΘA∂x0 = e+iΘAΘ̄A∂x0 ∂̄A e−iΘAΘ̄A∂x0 ,

which obey the algebra

{DA,DB} = 0 , {DA, D̄B} = −2mδA
B , {D̄A, D̄B} = 0 .
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With such algebra of constraints,

{DA,DB} = 0 , {DA, D̄B} = −2mδA
B , {D̄A, D̄B} = 0 ,

we can forget about constraints DA, thus converting D̄B into the first
class constraints (conversion),

and/or just impose this latter on the state vector (Gupta–Bleuler),

D̄AΞ = 0 .

This suggests the conclusion that the state vector is just chiral
(analytical) superfield.

But this is not exactly the case (this is not the end of story).
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The solution of D̄AΞ(x0,ΘB, Θ̄B, v ,w) = 0 and (−i∂x0 − m)Ξ = 0 is

eim(x0−iΘAΘ̄A)Ξ(x0,Θ, Θ̄, v ,w) = ϕ+ΘAψA + 1
2Θ

BΘAϕAB +

+ 1
3!Θ

CΘBΘAψABC + 1
4!Θ

DΘCΘBΘAψABCD +

+ 1
5! 3! ϵA1...A5B1B2B3Θ

A5 . . .ΘA1 ψ̃B1B2B3 + 1
6! 2! ϵA1...A4B1B2Θ

A6 . . .ΘA1 ϕ̃B1B2 +

+ 1
7! ϵA1...A7BΘ

A7 . . .ΘA1 ψ̃B + 1
8! ϵA1...A7BΘ

A8 . . .ΘA1 ϕ̃ .

This chiral superfield is similar to the so-called on-shell superfields for
D=4 N = 8 supergravity.

As in this case, chiral superfield does not describe irreducible
representation: one can reduce it by imposing

ψ̃B1B2B3 =∝ (ψB1B2B3)
∗, ϕ̃B1B2 =∝ (ϕB1B2)

∗, ψ̃B =∝ (ψB)
∗, ϕ̃ =∝ (ϕ)∗ ,

as well as the duality relation for the intermediate component,

ϕA1...A4 =
1

4! 4!
ϵA1...A4B1B2B3B4 ϕ̃

B1B2B3B4 , (ϕB1...B4)
∗ = ϕ̃B1B2B3B4 .
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These relations can be collected in one superfield duality equations

DA1 . . .DA4Ξ =
1

4! 4!
ϵA1...A4B1B2B3B4 D̄B1 . . . D̄B4 Ξ̄ , (Ξ)∗ = Ξ̄ .

The imposing of the additional condition is motivated by requirement that
the state vector should be described by an irrep of SUSY
(cf. the paradigm that elementary particle is described by irreducible
representation of the Poincaré group).
Thus we have reduced the field content of the state vector superfield to
bosonic

ϕ(v ,w , w̄) , ϕAB(v ,w , w̄) = −ϕBA(v ,w , w̄) ,

ϕA1...A4 =
1

4! 4!
ϵA1...A4B1B2B3B4(ϕB1...B4)

∗

and fermionic spin-tensors of SO(7)

ψA(v ,w , w̄) , ψABC(v ,w , w̄) = ψ[ABC](v ,w , w̄) .

These describe the quantum state spectrum of D0-brane.
But what is the supermultiplet described by these?
We will show: this is the massive counterpart of 10D type IIA SUGRA.
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To show that the above obtained quantum state spectrum of D0 brane is
described by massive counterpart of type IIA SUGRA, we should

know the linearized equations of this,

solve these and

show that their general solution can be expressed in terms of the above
set of SO(7) spin tensors.

To our best knowledge such a massive counterpart of IIA supergravity
was not elaborated before.

(Notice that this cannot be neither Romans massive SUGRA nor
Howe–Lambert–West massive SG model; ask me why).

As the usual (massless) type IIA supergravity can be obtained by ”zero
mode” dimensional reduction of 11D SUGRA, the natural way to search
for its massive counterpart is to consider a nontrivial ”massive” mode of
such dimensional reduction.
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Massive type IIA SG from 11D SG. Fermionic story

In 11D RS equation Γ
µνρ

αβ ∂νΨρ
β = 0 we make SO(1,9) invariant splitting

xν = (xν , y∗), ∂ν = (∂ν , ∂∗),

Ψα
µ =

(
Ψα1

µ (x , y∗) Λα2(x , y∗)

Ψ2
µα(x , y

∗) Λα
1(x , y∗)

)
,

and use the ansatz

Ψα1
µ (x , y∗) = Ψα1

µ (x) cos(my∗) , Λα
1(x , y∗) = Λα

1(x) cos(my∗) ,

Ψ2
µα(x , y

∗) = Ψ2
µα(x) sin(my∗) , Λα2(x , y∗) = Λα2(x) sin(my∗) .

Then local supersymmetry allows to fix the gauge Λα
1 = 0 = Λα2 and to

obtain the following split form of the gauge fixed equations

∂/αβΨµ
β1 = mΨµα

2 , ∂̃/αβΨµβ
2 = −mΨµ

α1 ,

σµ
αβΨµ

β1 = 0 , σ̃µαβΨµβ
2 = 0 ,

∂µΨµ
α1 = 0 , ∂µΨµα

2 = 0 .
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Solution of the dimensionally reduced RS equations. SO(9) invariant form

Passing to the momentum representation and using the spinor moving
frame method with pµ = mu0

µ, we solve these equations by

Ψα1
µ = vq

αuI
µΨ

I
q , Ψµα

2 = vα
quI

µΨ
I
q ,

with gamma-traceless SO(9) vector-tensor ΨI
q ,

γ I
pqΨ

I
q = 0 .

Notice that the gauge fixed version of the original massless 11D
equation in momentum representataion and with the use of 11D spinor
moving frame method with p

µ
= ρ#u=

µ is also solved

Ψα
µ = uI

µvq
αΨI

q

in terms of similar gamma-traceless SO(9) vector-tensor, γ I
pqΨ

I
q = 0, but

dependent on 11D moving frame variables (parametrizing 11D celestial
sphere),

ΨI
q = ΨI

q(ρ
#u=

µ ) vs ΨI
q = ΨI

q(u
0
µ) .
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Dimensional reduction of graviton equation

As the linearized Riemann tensor reads Rµνρσ = 2∂[µ|∂[ρhσ]|ν], the
linearized Einstein equation obeyed by 11D graviton is

Rν
µ

1
νµ

2
= 0 ⇒ □ hµ

1
µ

2
−∂µ1∂

ν hνµ2−∂µ2∂
ν hνµ1+∂µ1∂µ2 hν

ν = 0.

We can fix the gauge in which these equation splits into

□hµν = 0 , ∂µhµν = 0 , hµ
µ = 0 ,

which in momentum representation is solved by moving frame method
with p

µ
= ρ#u=

µ by

hµν = uI
µuJ

νhIJ , hIJ = hJI , hII = 0 .

Now we use the splitting and dimensional reduction ansatz

hµν(x) =
(

hµν Aν

Aµ h

)
, hµν(x , y

∗) = hµν(x) cosmy∗ ,

Aµ(x , y
∗) = Aµ(x) sinmy∗ , h(x , y∗) = h(x) cosmy∗ .
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Massive graviton equations and its solution

With this ansatz and fixing by diffeomorphisms the gauge Aµ = 0, we
find the gauge fixed form the dimensionally reduced 11D linearized
Einstein equations, which are equations for massive graviton

(□+ m2)hµν(x) = 0 , ∂µhµν(x) = 0 , hµ
µ = 0 .

In momentum representation, using moving frame method with
pµ = mu0

µ, we can solve these equations in terms of symmetric traceless
SO(9) tensor

hµν = uI
µuJ

νhIJ , hIJ = hJI , hII = 0 .

So, like in 11D case above, the solution is expressed in terms of
symmetric and traceless SO(9) tensor of second rank, but now this
tensor field depends on 10D vector frame variables,

hIJ = hIJ(u0
µ) vs hIJ(ρ#u=

µ ).
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Dimensional reduction of 3-form gauge field. SO(9) invariant solution

Similarly, one can show that the gauge fixed version of the Maxwell
equation for 3-form gauge field

∂µFµνρσ = 0, Fµνρσ = 4∂[µ Aνρσ]

splits into Klein-Gordon equation and divergence-free conditions

□Aµνρ = 0 , ∂ρAµνρ = 0 ,

which in momentum representations, after using the residual gauge
invariance, are solved by

Aµνρ = uI
µuJ

νuK
ρ AIJK ,

in terms of antisymmetric SO(9) tensor AIJK = A[IJK ](ρ
#, u=

µ ) .

The dimensionally reduced gauge fixed equations for 3-form gauge field
are given by

(□+ m2)Aµνρ = 0 , ∂ρAµνρ = 0 ,

which are solved by Aµνρ = uI
µuJ

νuK
ρ AIJK in terms of a similar

antisymmetric SO(9) tensor AIJK = A[IJK ](u0
µ).
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D0-brane field theory: SO(9) vector-spinor and SO(7) fermionic spin-tensors

Now the problem is to show that the parameters of solution of lineraized
massive (counterpart of) type A supergravity equations,

this is to say, the components of fermionic gamma traceless ΨI
q , bosonic

symmetric traceless hIJ and bosonic totally antisymmetric AIJK ,

are in one-to-one correspondence with SO(7) spin-tensors which were
shown to describe quantum state spectrum of D0–brane.

This is indeed the case.

For fermionic and bosonic field the one-to-one correspondence is
describe by

ΨI
q =

1
2

UIwq
AψA +

1
2

ŪIw̄qAψ̄
A + U J̌

I w̄qAσ
J̌
BCψ̄

ABC + U J̌
I wq

Aσ̃J̌BCψABC

(128 = 8 + 8 + 56 + 56) .

σ̃ ǏAB = −σ̃ ǏBA and σ Ǐ
AB = (σ̃ ǏBA)∗ are SO(7) counterpart of Pauli matrices,

UAB = UBA and its inverse ŪAB = (UAB)
∗ parametrize SU(8)/SO(7)

coset and play the role of SO(7) charge conjugation matrix,
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D0-brane field theory: SO(9) tensors in terms of SO(7) spin-tensors

hIJ = UI UJϕ+ ŪI ŪJ ϕ̄+ U Ǐ
(IUJ)σ̃

ǏABϕAB + U Ǐ
(IUJ)σ

Ǐ
ABϕ̄

AB +

+U Ǐ
I U

J̌
J t̃ABCD

ǏJ̌ ϕABCD − UI ŪJ t̃ABCD
J̌J̌ ϕABCD ,

(44 = 1 + 1 + 7 + 7 + 28) ,

AIJK = U Ǐ
[IUJ ŪK ] i t̃ABCD

Ǐ ϕABCD + U Ǐ
[IU

J̌
J U Ǩ

K ]i t̃
ABCD
ǏJ̌Ǩ ϕABCD +

+U Ǐ
[IU

J̌
J UK ] (σ̃

Ǐ J̌ Ū)ABϕAB + U Ǐ
[IU

J̌
J ŪK ] (σ

Ǐ J̌U)AB ϕ̄
AB ,

(84 = 7 + 35 + 21 + 21) .

σ̃ ǏAB = −σ̃ ǏBA and σ Ǐ
AB = (σ̃ ǏBA)∗ are SO(7) counterpart of Pauli matrices,

UAB = UBA and ŪAB = (UAB)
∗ = (U−1)AB play the role of SO(7) charge

conjugation matrix,

t Ǐ J̌
ABCD = (σ [̌IǨU)[AB(σ

J̌Ǩ ]U)CD] + (σ [̌I)[AB(σ
J̌)CD] =

1
4! ϵ

ABCDEFGH t Ǐ J̌
EFGH ,

t̃ABCD
ǏJ̌Ǩ = (σ̃ [̌IJ̌|Ū)[ABσ̃CD] |Ǩ ] = (t Ǐ J̌ Ǩ

ABCD)
∗ == − 1

4! ϵ
ABCDEFGH t Ǐ J̌ Ǩ

EFGH

t̃ABCD
Ǐ = (σ̃ ǏǨ Ū)[ABσ̃CD] Ǩ = (t Ǐ

ABCD)
∗ = 1

4! ϵ
ABCDEFGH t Ǐ

EFGH .
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D0-brane field theory: linearized equations

Thus we have shown that the quantum state spectrum of D0 brane,
originally described by chiral (analytical) on-shell superfield,
is actually given by massive (counterpart of) type IIA supergravity
multiplet.
The standard form of equations of this supermultiplet are given by 10D
Fierz-Pauli equation

(□+ m2)hµν − 2∂σ∂(µhν)σ + ∂µ∂νhρ
ρ + ηµν [∂

σ∂ρhρσ − (□+ m2)hρ
ρ] = 0,

massive 3-form gauge field equations

∂µFµνρσ + m2Aνρσ = 0 .

and type IIA generalization of massive gravitino equations

σµνρ∂νΨ
1
ρ = −mσµνΨ2

ν , σ̃µνρ∂νΨ
2
ρ = mσ̃µνΨ1

ν .
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D0-brane field theory: linearized action

These equationa can be obtained from the following Lagrangian

L = −hµν(□+ m2)hµν + 2hµν∂σ∂µhνσ −

− hµν∂µ∂νhρ
ρ − hσ

σ∂σ∂ρhρσ + hσ
σ(□+ m2)hρ

ρ +

+
1
4!

FµνρσFµνρσ − m2 1
3!

AµνρAµνρ +

+ iΨ1
µσ

µνρ∂νΨ
1
ρ + iΨ2

µσ̃
µνρ∂νΨ

2
ρ + 2miΨ1

µσ
µνΨ2

ν

which is invariant unbder the following supersymmetry transformations:

δhµν = −2iΨ1
(µσν) ϵ

1 − 2iΨ̄2
(µσ̃ν) ϵ

2 − 2i
m
∂(µΨ

1
ν) ϵ

2 +
2i
m
∂(µΨ

2
ν) ϵ

1,

δAµνρ = 3iΨ1
[µσνρ] ϵ

2 − 3iΨ2
[µσ̃νρ] ϵ

1 − 6i
m
∂[µΨ

1
νσρ] ϵ

1 − 6i
m
∂[µΨ

2
ν σ̃ρ] ϵ

2,

...
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D0-brane field theory: linearized action

This Lagrangian is invariant under the following SUSY transformations:

δhµν = −2iΨ1
(µσν) ϵ

1 − 2iΨ̄2
(µσ̃ν) ϵ

2 − 2i
m
∂(µΨ

1
ν) ϵ

2 +
2i
m
∂(µΨ

2
ν) ϵ

1,

δAµνρ = 3iΨ1
[µσνρ] ϵ

2 − 3iΨ2
[µσ̃νρ] ϵ

1 − 6i
m
∂[µΨ

1
νσρ] ϵ

1 − 6i
m
∂[µΨ

2
ν σ̃ρ] ϵ

2,

δΨ1
µ = −2σ̃νρ ϵ1 ∂νhµρ + 2mσ̃νϵ2hµν −

− 1
9

[(
δ[νµ σ̃

ρτλ] − 1
8
σ̃µ

νρτλ

)
Fνρτλ − ∂µAρτλσ̃

ρτλ

]
ϵ2 −

− 1
18

(
1

4m
∂µF[4]σ̃

[4] + mA[3]σ̃µ
[3] − 6mAµ[2]σ̃

[2]
)
ϵ1 ,

δΨ2
µ = 2σνρ ϵ2 ∂νhµρ + 2mσνϵ1hµν −

− 1
9

[(
δ[νµ σ

ρτλ] − 1
8
σµ

νρτλ

)
Fνρτλ − ∂µAρτλσ̃

ρτλ

]
ϵ1 +

+
1

18

(
1

4m
∂µF[4]σ

[4] + mA[3]σµ
[3] − 6mAµ[2]σ

[2]
)
ϵ2 .
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Conclusion

Conclusion: mD0 action

In this talk I have shown the family of candidate for complete
supersymmetric action of the system of N nearly coincident D0-branes
(mD0 system) in flat ten dimensional type IIA superspace.

Particular representative of this family can be obtained by dimensional
reduction of mM0–action.

As the model can be considered as 10D Lorentz covariant version of
BFSS matrix model, the basis of M(atrix) theory, its quantization
resulting in obtaining the mD0 field theory might shed new light on the
structure and properties of String/M-thery.
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Conclusion

D0 quantization

As these mD0 actions are known in the frame of spinor moving frame
formulation only, it is natural to begin with quantization of single
D0–brane in its spinor moving frame formulations.
Curiously, to our best knowledge the D0–brane quantization and its field
theory had not been elaborated before; its quantum state spectrum had
not been discussed.
We have done covariant quantization of D0–brane and have shown that
its quantum state spectrum is given by massive counterpart of type IIA
supergravity.
We have derived linearized equations of this supergravity by dimensional
reduction of 11D supergravity, solved them and wrote solutions in terms
of SO(7) spin–tensors describing quantum state spectrum of D0 in the
quantization scheme which we have used.
Many interesting technical problems appeared and were solved on the
way.
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Outlook

Outlook

Many interesting problems is to be solved.

The next step towards field theory of mD0 system is to quantize the
model from [I.B.2018] which is member of our family of candidate mD0
actions [I.B.+Sarraga=2022] with M(H) = m = const .

Notice that massive type IIA supergravity gives rise to a higher spin
model in D=4, which folklore relates to problems with causality.

However, one can expect that this problem, if appears, is to be resolved
in a complete type IIA string theory, including D0–branes.

Actually the spinor moving frame formulation is providing us with a basis
of the spinor helicty formalism which can be used to study amplitudes
involving D0–branes and type IIA supergraviton (quantum state of
massless type IIA superparticle and also massless supestring modes).

The quantization of mD0 action, beginning the simplest M = m
representative of the family, will be the subject of forthcoming papers and
talks.

Also the search for higher p mDp actions and mD0 and mM0 actions in
supergravity superspaces is on the way.

...
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THE END!

THANK YOU FOR YOUR ATTENTION!
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7 Additional slides



Additional slides

Infrared limit of mM2 and so on

The infrared fixed points of the system of N M2-branes is believed to be
described by Bagger–Lambert–Gustavsson (BLG) model [2006,2007]
for N=2 and
by Aharony–Bergman–Jafferis–Maldacena (ABJM) model [2008] for
N ≥ 2.
The infrared fixed point of multiple M5-brane system is given by an
enigmatic D = 6 (2, 0) superconformal theory;
in 2010 it was conjectured [Douglas:2010; Lambert, Papageorgakis,
Schmidt-Sommerfeld:2010] that this can be described by D = 5 SYM
model.
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