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Dp-branes in String Theory

@ are p—branes where open (10D super)string can have its endpoints
attached [Sagnotti 1988, Dai+Leigh+Polchinski 1989, HoFava 1989].

@ Their ground states can be described by supersymmetric solitonic
solutions of type Il supergravity [Duff+Lu 1982, ...].

@ Their dynamics is described by action given by the sum of SUSY DBI
and WZ functionals [Cederwall, von Gussich, Nilsson, Westerberg, 1996,
Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996, Aganagic, Popescu,
Schwarz 96, 96; Bergshoeff, Townsend 96].

@ They carry charges of RR gauge fields of type IIA and type 11B
Supergravity (for even and odd p, respectively)).

.

DO-brane

@ The worldvolume of Dp-brane is d = p + 1-dimensional so that

@ DO0-brane is just massive superparticle in (D=10, A = 2) type IIA
superspace the (standard) action of which [Bergshoeff, Townsend 96] is
10D generalization of the four dimensional ' = 2 superparticle action
by de Azcarraga and Lukierski [1982].

€
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Quantization

The quantization of Dp-branes and particularly DO-branes were
addressed in the literature (e.g. [Kallosh, 1997]), mainly for contrasting it
with the superstring quantization (ask me what is the difference).

However, to our best knowledge neither the quantum state spectrum of
DO0-brane was analysed nor its field theory was elaborated.

One of the aims of (the papers on which is based) this talk is to fill this
gap by quantization of DO-brane in its spinor moving frame formulation
[1B:2000].

The choice of spinor moving frame formulation is motivated by that this
allows to elaborate the so-called spinor helicity formalism for type IIA
amplitudes and superamplitudes involving DO-branes.

But even more important motivation is that in such a way we create the
basis for quantization of multiple DO-brane (mDQ) model from [IB+Unai
Sarraga:2022] which is know in its spinor moving frame formulation only.
We will also show this mDO0 action and discuss briefly its symmetries and
properties in this talk.

But first let us recall what are multiple Dp-brane or mDp systems.
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Multiple Dp-branes (mDp)

@ mDp is the system of N nearly coincident Dp-branes and N? strings
ending on different branes or on the same branes
@ [E. Witten 1995]: mDp
e carries non-Abelian gauge fields on a center of mass worldvolume;
e at very low energy it is described by the action of U(/N) maximally
supersymmetric Yang—Mills (SYM) theory.
@ Initthe U(1) sector describes the center of mass motion of the multiple
Dp-brane (mDp) system while the SU(N) sector describes the relative
motion of the mDp constituents.

@ Actually, U(1) SYM action decouples and can be identified as a low
energy limit of gauge fixed version of the complete nonlinear action for a
single Dp-brane [Cederwall, von Gussich, Nilsson, Westerberg, 1996,
Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996, Aganagic, Popescu,
Schwarz 96, 96; Bergshoeff, Townsend 96; IB, Sorokin, Tonin, 97].

@ Then the natural problem was to find a complete action for multiple
Dp-brane (mDp) system: with all expected fields and
, i.e. invariant under spacetime SUSY and x—symmetry.
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30 years of search: many interesting results

The problem of multiple Dp-brane action has a 30 years of history and is
not solved yet in its complete form.

However, certain progress was reached and many interesting results
were obtained during these years

Let us particularly mention [Tseytlin:1997;Emparan:1998;Myers:1999;Yolanda
Lozano+:2002,2005;Howe, Lindstrom, Wulff:2005,2007]
In particular,

o the bosonic limit is widely believed to be given by the Myers’s ‘dielectric
brane’ action [Myers:1999] obtained from the requirement of consistency
with T-duality transformations of D-branes and background fields.

o (Notice that this action is not Lorentz invariant).

@ A very interesting complete and supersymmetric construction on ’-1
quantization level’ was proposed in [Howe, Lindstrom, Wulff:2005,2007].
There such a dynamical system was constructed, that its quantization
should reproduce the desired multiple Dp-brane (mDp) action.

o (However, the complete realization of this step in a fool glory seems to imply
the quantization of the complete interacting system of supergravity and
super-Dp-brane).
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mDO and other m0-th

@ A complete action (of the usual type) including fermions and invariant
under spacetime SUSY and x-symmetry (worldline susy) is known
presently for

o the system of ten-dimensional (70D) multiple 0-branes
[Sorokin:2001,Panda+Sorokin:2003]

e for 11D multiple MO-branes (mMO) or multiple M-waves [I1B:2012].

o In D=3 some N = 1 supersymmetric multibrane actions are known: these
are the non-Abelian Born-Infeld action of [Drummond,Howe and
Lindstrom:2002] and non-Abelian multiwave action of [IB:2013] (the 3d
N = 1 counterpart of the mM0).

e mDO action in flat superspace constructed in [I.B. + Sarraga: PRD 2022] and
studied in [I.B. + Sarraga: PRD 2023].

@ To be more precise, this is a family of the actions with all the known properties
expected for mDO-branes in flat target superspace.

@ The generalization to curved background is not known (yet, | suppose).

@ As we have shown in [I.B. + Sarraga: PRD 2023], one of the representatives of
this family of candidate mDO actions can be obtained by dimensional reduction of
11D mMo-action from [I.B., JHEP 2012].

@ Let us stress that mD0O-action of [I.B. + Sarraga: PRD 2022] (as well as
mMO- action of [I.B., JHEP 2012]) is known in the frame of spinor moving
frame approach only.

v
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Our mDO and BFSS Matrix model

@ The quantization of the dynamical system described by our mDO action
should result in a field theory in superspace enhanced by additonal
bosonic and fermionic matrix coordinates.

@ Why this should be interested in?

@ Reason proceeds from the fact that the mDO-action of [I.B. + Sarraga:
PRD 2023] (as well as mMO0- action from [I.B., JHEP 2012]) can be
considered as 10D (11D) Lorentz invariant generalization of the BFSS
Matrix model [Banks, Fischler, Shenker, and Susskind, PRD 1996] .

@ This latter was conjectured to provide a complete description of M-theory
in certain limits (hance the name M(atrix) theory)

@ and still attracts much attention in their different aspects and provides
inspirations for new studies (see e.g. [Juan Maldacena, Talk at Strings
2024 at CERN, https://www.youtube.com/watch?v=b0OnMIfpZ9-0] as well
as J.Phys.A 2024, JHEP 2024].

@ This allows us to conjecture that the mDO field theory obtained by
quatization of the dynamical system described by our mDO action might
give new insight in the structure and properties of String/M-theory.
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after describing the spinor moving frame formulation of DO-brane | will
show the (family of) candidate mDO actions and

briefly discuss its properties.

Then as a preparatory stage, to quantization of this system,

| describe the covariant quantization of single DO—brane

analyse DO-brane quantum state spectrum

and describe DO-brane field theory both in a more standard form and in
a formalism which will be used to describe mDO field theory in future.

@ Notice that such a formalism produces so-called on-shell superfields,
one-particle counterparts of superamplitudes.
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e DO brane action in (spinor) moving frame formalism and induced
supergravity
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DO-brane action in de Azcérraga—Lukierski type formulation

@ Let us denote the pull-backs of superveilbein forms of flat 10D type IIA
superspace X.('°F*2) to the superparticle worldline by
E? = dx*(1) — id0*" (7)0230" (1) — id6Z ()57 05(7) =: dTEZ , |
E =do*' (1) = dr0.0°",  Ei = db3(r) = drd.6%,

I

where a,b,c = 0,1, ...,9 are ten-vector indices, o, 8,7 =1, ..., 16 are
10D MW spinor indices and (x3(r), 82" (r), 62 (7)) are bosonic vector
and fermionic spinor coordinate functions of the proper time = which
define parametrically the superparticle worldline,

w0 A= xA(r), 0 =6""(7), 6A=6(r).

@ These are sufficient to write the standard action for DO-brane
[Bergshoeff+Townsend 1996]

Spp — g/dT\/EfEaT —iM [ (d6™'6% — 671 de2)
W1

which is the D=4 generalization of the D = 4 A/ = 2 action for massive
superparticle [de Azcarraga + Lukierski 1982].
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Moving frame and spinor moving frame variables (Lorentz harmonics)

@ The spinor moving frame formulation of DO-brane involves also
@ a set of orthogonal and normalized vector fields u2(7) and u4(7),

wu® =1, Wi =0, uhu® = 57 |
which form the Lorentz group valued moving frame matrix
uP(r) = (b, uk) € SO(1,9)
@ as well as 16 x 16 Spin(1,9) valued spinor moving frame matrix
9 € Spin(1,9)
providing a kind of square roots of the moving frame in the sense of
Wols = vaTvg?, Uhols = va"yf,pvy’

q 045
= Vo V,B = U 6qp o U“’)/qp 9

where v, = ~p, are d = 9 gamma matrices obeying '+ = 47.




DO action
00®000

Moving frame and spinor moving frame variables (Lorentz harmonics)

@ These constraints
0 _a i _a i
Usols = vaTvs?,  upols = valvlovs” & V3G v — WLdap + Ulvep

@ which provide a massive and multi-dimensional generalization of D=4
Cartan-Penrose representation for light-like vector which is one of the
basic relations of twistor approach [Penrose 1963],

@ can be deduced from the Lorentz invariance of sigma- matrices
u{’ o5 = viai) vE by choosing the representation with o) = (dgp, Vip),

Spinor moving frame formulation of DO-brane. Action

@ The spinor moving frame action of the 10D DO-brane [IB:2000] can be
written with the use of just one timelike unit vector of the moving frame

Spo = M| EAS—iM [ (d6°'6% —6°"d6?) .

w1 wi

o If considered in its literal form, with u3 = u3(7) obeying just udu® =1, it
can be deduced from the first order form of de Azcarraga—Lukierski

action [, (paEa — 20 (p.p? — Mz)) —iM [, (d0°"62 — 0" d6?3).
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Spinor moving frame formulation of DO—brane. Action

@ However, when the composite nature of the moving frame is taken into
account,
«@ 1 «@
vI5ePVE = Uldep + Uy vep = U = ﬁv"auﬁv[3 ,
@ it becomes clear that Spo = M [, E2u3 — iM [, (d6*'63 — 0" d63)
actually hides a 10D and massive generalization of the D=4 twistor—like
or Ferber—Schirafuji action ([ Aa;(ax** — 2id@”* 8% + c.c.))

Spp = M vivi E%5% —iM [ (do°"63 —0°"db3) .
16 S Wi
@ The advantage of the spinor moving frame action is also that it can be
used, through the generalized action principle [I.B.+Sorokin+Volkov=
PLB96], as a basis of constructing superembedding approach
[1.B.+Pasti+Sorokin+Tonin+Volkov=NPB95, Howe+Sezgin=PLB96, 97,
Sorokin=Phys.Repts2000, I.B.+Sorokin=in Handbook on QG, 2024].

@ It also allows to construct (candidate) mDO action [I.B.+Sarraga=PRD2022].
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Spinor moving frame and induced worldline supergravity

@ The moving frame vectors can be used to split the bosonic supervielbein
in a Lorentz invariant manner,

E°=FE%), E =E%;
while spinor moving frame matrix v, 7 and its inverse v4* € Spin(1,9),

obeying v4® v.” = §4°, allow to introduce two fermionic 1—forms with the
same indices of SO(9) gauge group

E9 = do*' v, 9, EZ = doZve" .

@ The Lagrangian one-form of the DO-brane action can be written in the
form

£P = ME®—iM(E"6: - 67 EZ),

with 09" =0°" v, 9, 05 = 0%vg".
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Induced worldline supergravity

@ But really important is that
E° and EY - Ei=d0""v.? — dAv®

provide us with the induced 1d N' = 16 supergravity multiplet for local
fermionic k—symmetry of the DO-brane action,
6.0 = KIVS,  8.0% = —kIVaY,

Sux” = i6,.0"0"0" +i5.0°610%,  5.vo9 =

Indeed: 3.E® = —2i(E" — EZ)x%, 0.(E? — EZ) = 2Dx7,

where D := dr? + 1Q7KP~}, is the covariant derivative with induced
SO(9) connection Q7 = uj,du*.

@ As the relative motion of mDO system should be described by traceless
N x N matrix fields of d = 1 A = 16 SYM, X/, Vg, Ag, making its
supersymmetry local by coupling to the induced supergravity allows to
construct the simplest candidate mDO action [I.B. 2018].

@ More general nonlinear actions were found in [I.B. +Sarraga 2022].
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e (A family of candidate) Multiple DO-brane action(s)
@ Fields of mDO system
@ Multiple DO-brane (candidate) action(s)
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Fields of mDO system

Fields of mDO: center of energy + A" = 16 SU(N) SYM

The fields used to describe mDO system include coordinate functions,
describing center of energy motion and d = 1 A = 16 SU(N) SYM
multiplet: traceless hermitian N x N matrices

1d gauge field A~ (7), which we prefer to include in A = d7A-(7),
nanoplet of bosonic fields X'(7) in vector rep. of SO(9)
hexadecuplet of fermionic matrix fields W4 in the spinor rep. of SO(9).

We also use auxiliary fields: spinor moving frame v..? and bosonic
matrix fields IP'(7) playing the role of momenta conjugate to X'(7).

The Lagrangian one-form for the action of d =1 AN =16 SYM is
LM = drLsyy = tr(—P'VX' + 4iWgVV,) + drH
where VX' = dX' + [A, X'], VW, = dW, + [A, W ] and
o . a2 g N
H=itr (P'P') — L [X’,X’] _otr (X’ \ww)

. q 2
is the SYM Hamiltonian including potential V = — g tr [X’, X’] .
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Fields of mDO system
e The action o [, £§™ is invariant under the rigid d = 1 A" = 16 SUSY

0:X' = 4ie?(yV)g, &P = [sq( W), X1,
5oV = Se P’ — 2P X, X
(55A = —drey,

@ In the weak field limit, the complete multiple DO-brane action should
reduce to the sum of the above SU(N) SYM and of U(1) SYM action,
with later decoupled [Witten: 1995] (and can be identified with gauge
fixed version of single DO-brane action).

@ Supersymmetry of SYM action, as it is seen from its U(1) part, is related
to k—symmetry of single DO action.

@ In the complete mDO action this thus should become local (worldline)
supersymmetry, the counterpart of kappa—symmetry of single DO-brane.

@ The rigid SU(N) SYM SUSY becomes local due to coupling to
supergravity induced by center of energy motion.

@ Now we will show the (family of) complete nonlinear action(s)

constructed from these physical fields and auxiliary fields and having all
the properties expected from mDO action in flat superspace.
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Multiple DO-brane (candidate) action(s)

Our multiple DO-brane action is

Smoo=m [ E°—im [ (d0'6®—0'd6?) +
wi wi
1 imsel | A 2 1 [ dM(H)
+E/ <tr (IP’ DX +4:quwq) i H) - = | e
w1

y2
w1

r(P'X")

1 1

wt /2 (7—[ (£

i i, 1 i e
" E5) (<4 V)P + (Pl X1

@ where m and p are constants of dimension of mass,

@ E°=F3, EY =E*I=do0*""v,9 Ei=FEivg"=db2v,°,
@ v.% € Spin(1,9) obeying udols = valvs? = vl =1,
°

The covariant derivatives use the SU(N) gauge fields and Ql = v du,

DX':= X' — Q"X + [A,X'], DVg:=dV¥, — Q’/yqp\llp + [A, Vg,
. . a2 . .

o H=1tr <IP”]P”> — atr [X’,X’] —2tr (X’ \U'y'\lf> is SYM Hamiltonian

and M(7H) is an arbitrary positive definite function of this.
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Multiple DO-brane (candidate) action(s)

Spacetime SYSY and local worldline SUSY (k—symmetry)

@ By construction, the action is invariant under the rigid spacetime SUSY,
which acts nontrivially on the center of mass variables only,

1 ad | 2.3 2 1 1 2 2
0.x2 =i0'0%" +i0°6% , 0.0%" = ¥, 005, = €0,

6vg® =0 = 6Sd=6u,=0,

6X'=0, SWg=0, 6P =0, GHA=0.

@ Moreover, for any choice of positive definite M(#), this action is
invariant under worldline supersymmetry which acts on center of mass
variables as k—symmetry of single DO-brane

5:0° = KUY, k05 = —kI(T)Va?,
(Sﬁxa ES —i91aa§,ﬁ1 - iez&aéngz ’
(5an0 = 0= 6,€U2:6,@U;:0;

@ while its action on the matrix field is more complicated:
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Multiple DO-brane (candidate) action(s)
Worldline supersymmetry transformations of the matrix fields
. , . , .
M H X~ I MAKP

5. X = \;iﬂ kYW + 5 7
0xP' = — o [V, X~ g K 6, HP

J "AK (16[[XI Xj] X]] *"rpq{wpa q})

§ (o)oK, X0) — gl &4 ALK [(5/0)g, X].

(E' — E5)(v'r)q X'

1

+-%

L ((m")qIP’ -

1
) + NAY
(4 W) P + 30 (X, X

_(Flg _ 2y 1 M 1 p
(E Eq) & VoA T b . K \U(q tr
s * 2

@ This is a local version of deformation of rigid SYM supersymmetry

69M (ask me why so strange definition)

@ where M’ = p° &4
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Multiple DO-brane (candidate) action(s)

Worldline supersymmetry transformations of the matrix fields

r_  6dM
@ where M =K G

| w (Fﬂwq ([X’,P’] — 4i{v,, wq}))

"= T T+ 5% 5
with )
Ho=tr (IP"]P’”) + 11—6tr [X",X’] +2tr (X’ \w’\u) 7
o (cf #=jtr (PP - & [X",X/‘r —2tr (X wy'w))
@ and

1w (4 WP + (e WX X))

AKK: = ’
1 M
2V M 14 M
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Multiple DO-brane (candidate) action(s)

@ All the family of action has the properties expected for mDO system in
flat target superspace,
@ but two members are special.
@ The action with M = m is the simplest representative found in [1.B.2018].
@ The action with
m m?  H
M = E + T - E
can be obtained from 11D mMO action [I.B.2012]. We show this in
[I.B.+Sarraga 2023]
@ where we also establish an interesting correspondence between the
complete relative motion Egs. of mD0 and the Egs. of d=1 A/ = 16 SYM.

@ This correspondence does not imply a gauge equivalence but
establishes a relation between solutions.

@ In particular, it implies that all the SUSY solutions of mDO equations in its
relative motion part coincide with supersymmetric solutions of the SYM
equations.
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Multiple DO-brane (candidate) action(s)

Towards field theory of mDO

@ The quantization of the dynamical system described by our mDO0 action
should result in a field theory in superspace enhanced by additional
bosonic and fermionic matrix coordinates

@ which might give new insight in the structure and properties of
String/M-theory.

o Let us recall that the reason for this hope is the fact that our mD0O-action (as
well as mMO- action from [I.B., JHEP 2012]) can be considered as 10D
(11D) Lorentz invariant generalization of the BFSS Matrix model [Banks,
Fischler, Shenker, and Susskind, PRD 1996] ,

@ which was conjectured to provide a complete description of M-theory in
certain limits (hance the name M(atrix) theory).

@ As our mDO action is known only in the frame of spinor moving frame
formulation,

@ the natural first step to approach the problem of such quantization is to
quantize 10D DO-brane in its spinor moving frame formulation.
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e DO-brane Hamiltonian mechanics and quantization
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Dirac quantization of the constrained system

@ The most commonly used method to quantize systems with constraints
was proposed by Dirac on the basis of his generalized Hamiltonian
approach.

@ ltimplies the identification of the constraints from calculation of momenta
canonically conjugate to coordinates as derivaties of Lagrangian with
respect to associated velocities and the conservation of these
constraints in the evolution.

@ Then one separates constraints in the sets of the first class, which
generate symmetries on Poisson brackets (classical analogs of
commutators or anti-commutators).

@ and second class, which can be spilit (in principle) on conjugated pair
having non-degenerate Poisson brackets.

@ In quantum theory the first class constraints are imposed as conditions
on the state vectors,

@ while this is impossible to do with second class constraints.
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Dirac quantization of the constrained system

@ The conjugate pairs of second class constraints should be either
resolved explicitly (converted in the pair of equalities of the type p. = 0,
q* = f(other variables)), which allows to reduce the phase space,

@ or resolved implicitly by passing to the so—called Dirac brackets,
@ or converted into the first class constraint.

@ This latter is done by just omitting one of the conjugate second class
constraint thus converting the second in effective first class constraint.

@ This latter is then imposed on the state vector.

Dirac quantization of our system

@ As spinor moving frame variables are strongly constrained and the study
indicates mixtures of first and second class constraints, DO—brane in
spinor moving frame formulation is not easy to quantize.

@ However, what help are clear group-theoretical meaning of spinor
moving frame variables and

@ passing to the so-called analytical coordinate basis [Sokatchev 1985,
87nk, 1.B. 90].
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Analytical coordinate basis (AnB)

@ We are working with superspace enlarged by spinor moving frame
variables (Lorentz harmonic superspace) where we can change from the
original coordinate basis 2™ = (x*, 6,62, v3) to

ZA{\r/Il - (XO7 X/I‘\nz e(h é(h Vg) Wlth
i
=X e = X0 = 5 (07 — 00 +0p),
%=0" 105, B9=0"-05, 07 =0""vI, Gi=0%v.

@ The expressions for x/;, is chosen in such a way that ©9 disappears from
the Lagrangian which reads

LY =m(dx" —id0g0, — 1QY0e —x'Q") , 1’0 =440,

QY = uldu®, Q' = uddu?) and includes only 16 of 32 coordinate
functlons
Qg =0""+65=0""vo 7 +62vg*
@ Thus k—symmetry is realized trivially in AnB, or one can say it is
automatically gauge fixed when we pass to AnB.
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@ The Lagrangian 1—form
LY = m(dx’ — id®q 04 — ;2000 —x'Q') ,  ©7Y0 = 0¢146p
involves also the SO(1,9)/SO(9) Cartan forms: SO(9) covariant
Q' = uf,dut' and composite SO(9) connection Q¥ = ], du™”.

@ These provide the basis for space co-tangent to SO(1,9) parametrized
by spinor frame variable vJ and/or moving frame vectors.

@ Using these instead of (v = dvZ/dr) to define covariant momenta

DI _ oL __ 9Ly DIJ — _ oL ALy

— ool T oal ok —  oql

instead of canonical momenta Py = g’fvl, for strongly constrained v¢,

allows to streamline essentially and to simplify drastically the
calculations with highly constrained spinor frame variables.

@ One can find

I _ 1 oY M _ 1.9 oY
0 =3 a’quPp ) 0" = EVa’quP

and check: they have vanishing Poisson brackets with constraints on v.
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@ To construct the Hamiltonian formalism, we first calculate the canonical
and covariant momenta.

@ All these results in (primary) constraints (i.e. in relations without time
derivatives of phase variables):

Po—m:=p, —m~0,
pI::pXI %07
A

= ! I
=0 +mxp~0,
I im

4
g =0, = Mg +iMOg ~ 0,

I

0" =0 ©q73pp ~ 0.,

Canonical Hamiltonian vanishes on the surface of these constraints.
@ This set includes the pair of explicitly resolved second class constraints

x'~ —0'/m, pi~0

which hence can be used to reduce the phase space by removing (x/, pr)
directions.
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The bosonic constraint (linear combination of 3% and v)

1
0¥ =0 + 1 0g MMy ~ 0

is of the first class. It generate SO(9) gauge symmetry on the reduced
phase space.

® py—m:=p, —m~0isalso of the first class. It implies that x°(7) can
be gauged away, but we prefer to keep it (ask me why, if interested).

@ Finally we have 16 imaginary fermionic second class constraints
g = N§ +iOgpo
which obey the algebra
{04, %} P8 = —2iPydgp -

@ Most problems for quantization come from these fermionic constraints.

@ We are going to discuss the quantization in super—coordinate
representation and will conventionally describe all the constraints by
differential operators providing their quantum realization.
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@ By prescription of Dirac [Dirac:1963] we have to impose the first class
constraints on the state vector.
@ Imposing the generator of SO(9) gauge symmetry we arrive at

v, 1 w9 \— 1 VoY 0
<D +§eq7qp@ _—O, D —+2 o pqa

which implies that the state vector superfield = is SO(9) invariant.
@ Imposing the last bosonic constraint py —
(=i0 —m==0
we fix the x° dependence of the state vector to be exponential,
=(x°,v,0) = €™ o(v,0).

@ The main problem is how to impose the quantum version of the fermionic
constraints which can be realized as 0q = —iDq with

Do =0, + @40 (& 8, —mOy )

obeying

{Dq, Dp} = 2ibgp0y0 (& —2migp ) .
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Internal spinor frame and Gupta-Bleuler (conversion) method

@ The problem can be solved if we could split imaginary Dy on two sets of
complex conjugate and canonically conjugate constraints.

@ Then we can just "omit” one of conjugate constraints and impose the
second, which thus becomes first class.

@ This is called Gupta—Bleuler method (first applied to quantize gauge
fixed description of Maxwell Electrodynamics).

@ For realizing this program we need to introduce complex structure.

@ This will break SO(9) symmetry. But to make such breaking a kind of
spontaneous, i.e. realized with Stikelberg mechanism, we can use the
counterpart of spinor moving frame variables (internal harmonics).

@ First we introduce the SO(9) frame described by SO(7) x U(1) covariant
blocks of SO(9) valued matrix

U = (U7, U®,U®) = (U7, 5 (U+T), & (U - T)) € SO(@)
the columns of which are two complex null and 6 orthogonal unit vectors

Uli=0=00;, UU=2 UU’=0=0U° U'UX=2¢k.
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Internal spinor frame and Gupta-Bleuler (conversion) method

@ Now let us introduce the Spin(9) valued matrix

ws? = (Wpa , wy?) € Spin(9) ,

which provides a double covering of the vector frame matrix as an
element of SO(9). This implies, in particular,

I ~  7AB = T A B
U/’yqp = 2Wun WpB , U/’yqp = 2unABWp 5
J ~J
U/ Vop = WG (0 U)a® Wgp + i Wen(5°U) s
~AB
WoaygoWos = Ullhas wgveewp = U™,
= I B _ dr - J77\ B
WoaYgeWp = iUj (0°U)a

@ Here 38 = —gds = +oi = (678)" are SO(7) Klebsh-Gordan
coefficients and Uap is complex symmetric unitary matrix.

@ We can chose Uas = a5, U*® = (Uns)* = 6”8 but... (ask me why).
@ Furthermore, as Spin(9) ¢ SO(16),

= = A B = B B = A A=
WoaWgs = 0 = wgwy WgaWg = 64 , WaaWy ~+ Wg Wpa = dgp|.
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@ We can also avoid introduction of moving frame and just set

U =6® +i5/, u’ =/’

thus explicitly breaking SO(9) down to SO(7) x SO(2).
@ However, we will need to introduce anyway their factorization on
products of wga, W(’;‘ as these allow

@ to split the fermionic coordinates on a pair of conjugate octuplets,
of=e), ©i=0%Wu.
@ and also split the real constraint/derivative Dy on conjugate octuplets
Dp = WgaDg = 94 + iGpd,0 = e~ 04%0 5, gt1®"®a00
DA = WiDg = —(Da)" = 5 + i0%0,0 = 677" A 710"0a%0

which obey the algebra

{Da,Dp} =0, {Da, D°} = —2ms,° , {DAD°r=0.
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@ With such algebra of constraints,
{Da,Dg} =0,  {Da, D%} =-2mss®, {D"D°}=o0,

@ we can forget about constraints D,, thus converting D? into the first
class constraints (conversion),

@ and/or just impose this latter on the state vector (Gupta—Bleuler),
D==o0.

@ This suggests the conclusion that the state vector is just chiral
(analytical) superfield.

@ But this is not exactly the case (this is not the end of story).
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@ The solution of D*=(x°, ©8,85,v,w) = 0and (—ido — m==0is

g —i"ON=(x0 0 & v, w) = ¢ + ©4a + 05O pag +
+4,0°0%0"apc + 1:0°0°0°0 Pagcp +
+ 515 €Ay .. As By B,8,0% ... @M B1BBs 1 131 €Ay . Ay 5, 0% ... 0% kB |
+en,..a,80% . OMPE  Lep  450% .. 0%G.
@ This chiral superfield is similar to the so-called on-shell superfields for
D=4 N = 8 supergravity.

@ As in this case, chiral superfield does not describe irreducible
representation: one can reduce it by imposing

QZ;B1 F2Bs =X (w515253)*7 ‘55182 =X (¢B1 52)*7 1238 =X (77/15)*, ¢;:O< (d))* 5
as well as the duality relation for the intermediate component,

1 ~B, ByB3B, ~B, ByB3B,
DAy Ay = €A ABBoBaB, D 2B (¢5,..5,)" = §71BBeBs
4141
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@ These relations can be collected in one superfield duality equations

1

DA1 coo DA4E = W€A

N5 PnBi= =\* _ =
1. AuB BB, DT D= E==.

@ The imposing of the additional condition is motivated by requirement that
the state vector should be described by an irrep of SUSY

@ (cf. the paradigm that elementary particle is described by irreducible
representation of the Poincaré group).

@ Thus we have reduced the field content of the state vector superfield to
bosonic

o(v,w,w),  das(V,w, W) = —¢pa(V,w, W),
DA A, = ﬁ€A1mA4B1 B,B,8,(08,..8,)"
and fermionic spin-tensors of SO(7)
a(v, w,w) , papc(V, W, W) = Yjage)(V, W, w) .

@ These describe the quantum state spectrum of DO-brane.
But what is the supermultiplet described by these?
@ We will show: this is the massive counterpart of 10D type II1A SUGRA.
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To show that the above obtained quantum state spectrum of DO brane is
described by massive counterpart of type IIA SUGRA, we should

know the linearized equations of this,
solve these and

show that their general solution can be expressed in terms of the above
set of SO(7) spin tensors.

@ To our best knowledge such a massive counterpart of IIA supergravity
was not elaborated before.

@ (Notice that this cannot be neither Romans massive SUGRA nor
Howe—Lambert—West massive SG model; ask me why).

@ As the usual (massless) type IIA supergravity can be obtained by “zero
mode” dimensional reduction of 11D SUGRA, the natural way to search
for its massive counterpart is to consider a nontrivial "massive” mode of
such dimensional reduction.
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Massive type IIA SG from 11D SG. Fermionic story

@ In 11D RS equation r“"”a V2 = 0 we make SO(1,9) invariant splitting

A= (vay*)y QK - (81/78*)7
G (221()« Y A(x, y*))
20y Ay

@ and use the ansatz

vel(x,y") = w‘”(x) cos(my™) , A (G YT) = Ao (X) cos(my™)

VoL 06GYT) = Via(x) sin(my™) . A%2(x,y") = A"*(x) sin(my”) .
@ Then local supersymmetry allows to fix the gauge A,' = 0 = A*® and to
obtain the following split form of the gauge fixed equations
aaﬁwum = mwuaZ ) gaﬁwuﬁz = —m\ll“‘“ )
ol =0 | ' Pw,2 =0,

v, =0 OMVW,L2=0.
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Solution of the dimensionally reduced RS equations. SO(9) invariant form

@ Passing to the momentum representation and using the spinor moving
frame method with p,, = muﬂ, we solve these equations by

\Ilff' = vqauL\Ué, , V.t = vaquL\IJg ,
with gamma-traceless SO(9) vector-tensor \U{,,
’Yzlvqwiz =0.

@ Notice that the gauge fixed version of the original massless 11D
equation in momentum representataion and with the use of 11D spinor
moving frame method with p,= p#uz is also solved

a 0, ay!
!&—Hﬁvq v,

in terms of similar gamma-traceless SO(9) vector-tensor, vV, = 0, but

dependent on 11D moving frame variables (parametrizing 11D celestial
sphere),

I I = I I
Vo =Yo(p"up) Vs Wo=Ve(u)).
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Dimensional reduction of graviton equation

@ As the linearized Riemann tensor reads R0 = 28[m8[,,hj|£], the
linearized Einstein equation obeyed by 11D graviton is

R wvu, =0 = Ohy u,—0u,0% hypy—0puy 0% Nypsy +0u, 0 H*y = 0.
@ We can fix the gauge in which these equation splits into
Ohy =0, 0%hu, =0, h.,=0,

which in momentum representation is solved by moving frame method
with p = p* Uy by

hlJ _ hJI hll -0
@ Now we use the splitting and dimensional reduction ansatz

h A * *
P (X) = (*A“” 7,”) v b (6YT) = B (X) cosmy”
A, h

A (x,y") = Au(x)sinmy” . h(x,y") = h(x)cosmy” .
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Massive graviton equations and its solution
@ With this ansatz and fixing by diffeomorphisms the gauge A, = 0, we

find the gauge fixed form the dimensionally reduced 11D linearized
Einstein equations, which are equations for massive graviton

(O+m)hu(x)=0,  9"hu(x)=0, ht=0.

@ In momentum representation, using moving frame method with
p. = muj,, we can solve these equations in terms of symmetric traceless
SO(9) tensor

B = upush” . AV =n"  H'=0.

@ So, like in 11D case above, the solution is expressed in terms of
symmetric and traceless SO(9) tensor of second rank, but now this
tensor field depends on 10D vector frame variables,

W =h"w))  vs  BY(p"up).
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Dimensional reduction of 3-form gauge field. SO(9) invariant solution

@ Similarly, one can show that the gauge fixed version of the Maxwell
equation for 3-form gauge field

0%Fpyps =0, Fuvpo = 401, Ay pol
splits into Klein-Gordon equation and divergence-free conditions

DA, =0,  0°Au, =0,

which in momentum representations, after using the residual gauge
invariance, are solved by

! J, K
Agzp =uuuy Ak >

in terms of antisymmetric SO(9) tensor A, = A[,J,q(p#, u,) -
@ The dimensionally reduced gauge fixed equations for 3-form gauge field
are given by
(D aF m2)A[_LVP = 0 ) 6ﬂAl“’P = 0 )
@ which are solved by A,., = uj,u;uf Ay in terms of a similar
antisymmetric SO(9) tensor Aux = Aquq(US)-
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DO-brane field theory: SO(9) vector-spinor and SO(7) fermionic spin-tensors

@ Now the problem is to show that the parameters of solution of lineraized
massive (counterpart of) type A supergravity equations,

@ this is to say, the components of fermionic gamma traceless W, bosonic
symmetric traceless h” and bosonic totally antisymmetric Ay,

@ are in one-to-one correspondence with SO(7) spin-tensors which were
shown to describe quantum state spectrum of DO—brane.

@ This is indeed the case.
@ For fermionic and bosonic field the one-to-one correspondence is

describe by
1 1o op g g - i ALl
W; = EUI wo A + EU/WquA + U}quAUéchBc + Ul w55 e

(128 = 8+ 8 + 56 + 56) .

0 58 = _5'4 and oz = (5'%4)* are SO(7) counterpart of Pauli matrices,

® Uup = Upa and its inverse U"P = (Uas)* parametrize SU(8)/SO(7)
coset and play the role of SO(7) charge conjugation matrix,
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DO-brane field theory: SO(9) tensors in terms of SO(7) spin-tensors

hy = UUp+U U+ UZIUJ)&7A5¢AB + UZIUJ)U;BQ;AB 8
+UIUHTP papco — U UsE5P dasco
(44=1+1+7+7+28),

A = U[’/ Uy Uk i5°%° pagep + U[I/ Uy U,’((] it dasco +
+UNUS Uk (5700)* pas + U U3 T (o™t a5 32
(84=7+35+21+21).

0 58 = 5P and oz = (5'%4)* are SO(7) counterpart of Pauli matrices,

® Ung = Upa and U*E = (Uss)* = (U~ ")*E play the role of SO(7) charge
conjugation matrix,

® tigep = (o [KU)[AB(UJK]U)CD]+(U[ Jus(o”)coy = e BOPEFCH.

ZABCD 19177\[AB ~.CD] |K] JJK N+ ____ 1 _ABCDEFGH slJK

° iy = (6M1z7)B5 PR = (K ) == — i€ tEFGH
FABCD __ (~IK77\[AB~CDIK __ (4] % __ 1 _ABCDEFGH 41

o 18 = (5™ U85 PIK = (tagep)™ = Fre tEFGH
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DO0-brane field theory: linearized equations

@ Thus we have shown that the quantum state spectrum of DO brane,
originally described by chiral (analytical) on-shell superfield,

@ is actually given by massive (counterpart of) type IIA supergravity
multiplet.

@ The standard form of equations of this supermultiplet are given by 10D
Fierz-Pauli equation

(O + M)A — 20° 0 hyyo + 00 NP + N[00 hyo — (O + MPYN,P] 3

Ul
o

@ massive 3-form gauge field equations
0" Frvpo + MPA,e =0 .

@ and type IIA generalization of massive gravitino equations

1 2 ~ 2 =D
POV, = —ma" Wy, PO,V = mett v, |
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DO0-brane field theory: linearized action

@ These equationa can be obtained from the following Lagrangian
L = —m @0+ mP)h. +2h"8°8,h,, —
- h"9,0,h," — h;a"a%,w + h,°(0+ mP)h,” +
+ %Fw’po = 3] AWPAWP +
+iWLaMPAN) + VRGP,V 4 2miV), ot WY

@ which is invariant unbder the following supersymmetry transformations:

Shuy = —2iV{,0,) € —2iV%,5,) & — fa(uwj,) &+ a(uw,,) e,

0Auwp = 3N"Eu‘7w}] ¢ — 3iw[2u5vp] ¢ — 6—8[#\111 g € — 6*6[#‘1"2‘791 ¢
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DO0-brane field theory: linearized action
@ This Lagrangian is invariant under the following SUSY transformations:

Shuy = —2iV{,0,) € —2iV%,5,) & — fa(uw,‘,) &+ a(uwy) e,

. . 6/ 6/ "
5A,Wp = SIWEMUW,] 62 — Slw[zu&up] 61 — Ea[#\u:,ap] 61 — Ea[uwf,ap] 62

oV, = —26"" ¢ O, hy., + 2mE" e hy, —
_ % |:<6Lv6P7>\] _ %&HVPTA> FVp‘r)\ _ auAka&pTA] 62 _
1 [4] ~[2]
~ 18 8 wFa 5™ + mA[a]O'H — 6mA 26 €
SV = 2577 9, h,, +2mae' hy,, —

_ % |:<6Luo_pﬂ')\] _ %Uuupﬂ')\> Fup‘r/\ _ 8/,LApT)\5-pT)\:| 61 +

1
= 18 (78 F[4](T[ ! aF mA[g]G“ = 6mAu[2]U[2]) é
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Conclusion: mDO action

In this talk | have shown the family of candidate for complete
supersymmetric action of the system of N nearly coincident DO-branes
(mDO0 system) in flat ten dimensional type IIA superspace.

Particular representative of this family can be obtained by dimensional
reduction of mMO0—action.

As the model can be considered as 10D Lorentz covariant version of
BFSS matrix model, the basis of M(atrix) theory, its quantization
resulting in obtaining the mDO field theory might shed new light on the
structure and properties of String/M-thery.

Conclusion
[ 1]
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Conclusion

DO quantization

@ As these mDQ actions are known in the frame of spinor moving frame
formulation only, it is natural to begin with quantization of single
D0-brane in its spinor moving frame formulations.

@ Curiously, to our best knowledge the DO-brane quantization and its field
theory had not been elaborated before; its quantum state spectrum had
not been discussed.

@ We have done covariant quantization of DO—brane and have shown that
its quantum state spectrum is given by massive counterpart of type IIA
supergravity.

@ We have derived linearized equations of this supergravity by dimensional
reduction of 11D supergravity, solved them and wrote solutions in terms
of SO(7) spin—tensors describing quantum state spectrum of DO in the
quantization scheme which we have used.

@ Many interesting technical problems appeared and were solved on the
way.
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@ Many interesting problems is to be solved.

@ The next step towards field theory of mDO system is to quantize the
model from [I.B.2018] which is member of our family of candidate mDO
actions [|.B.+Sarraga=2022] with M(#) = m = const.

@ Notice that massive type IIA supergravity gives rise to a higher spin
model in D=4, which folklore relates to problems with causality.

@ However, one can expect that this problem, if appears, is to be resolved
in a complete type IIA string theory, including DO—branes.

@ Actually the spinor moving frame formulation is providing us with a basis
of the spinor helicty formalism which can be used to study amplitudes
involving DO—branes and type IlIA supergraviton (quantum state of
massless type IlA superparticle and also massless supestring modes).

@ The quantization of mDO0 action, beginning the simplest M = m
representative of the family, will be the subject of forthcoming papers and
talks.

@ Also the search for higher p mDp actions and mDO and mMO actions in
supergravity superspaces is on the way.
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THANK YOU FOR YOUR ATTENTION!
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Infrared limit of mM2 and so on

@ The infrared fixed points of the system of N M2-branes is believed to be
described by Bagger—-Lambert—Gustavsson (BLG) model [2006,2007]
for N=2 and

@ by Aharony—Bergman-Jafferis—Maldacena (ABJM) model [2008] for
N>2.

@ The infrared fixed point of multiple M5-brane system is given by an
enigmatic D = 6 (2, 0) superconformal theory;

@ in 2010 it was conjectured [Douglas:2010; Lambert, Papageorgakis,
Schmidt-Sommerfeld:2010] that this can be described by D = 5 SYM
model.
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