Hamiltonian mechanics and quantization of simplest 3D counterpart of multiple D0-brane system: progress report

Unai De Miguel Sárraga

Department of Physics and EHU Quantum Center, University of the Basque Country UPV/EHU, Bilbao, Spain.

Based on JHEP 2022, PRD 2022 and a paper in preparation with Igor Bandos

Contents

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) 3 D mD 0 , the $\mathrm{D}=3$ counterpart of 10 D mD 0 action

- The simplest 3D counterpart of mD0-brane system
(4) Hamiltonian formalism for simplest 3D mD0
(5) Towards quantization of simplest 3D mD0 system
- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) 3 D mD 0 , the $\mathrm{D}=3$ counterpart of 10 D mD 0 action

- The simplest 3D counterpart of mD0-brane system
(4) Hamiltonian formalism for simplest 3D mD0
(5) Towards quantization of simplest 3D mDO system
- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

Dirichlet p-branes (or Dp-branes) are supersymmetric extended objects

- On which the fundamental $D=10$ superstrings can have its ends attached.
- In 10D, there exist supersymmetric $\mathrm{D} p$-branes:
- $p=0,2,4,6,8$ in type IIA superspace.
- $p=1,3,5,7,9$ in type IIB superspace.
- Its worldvolume action is given by the sum of the nonlinear Dirac-Born-Infeld (DBI) term and Wess-Zumino (WZ) term [Cederwall, von Gussich, Nilsson, Westerberg, 1996; Cederwall, von Gussich, Nilsson, Sundell, Westerberg 1996; Aganagic, Popescu, Schwarz 1996; Bergshoeff, Townseng 1996; Bandos, Sorokin, Tonin 1997].

Systems of multiple branes

- In 1995, E . Witten argued that the system of N nearly coincident $\mathrm{D} p$-branes
- carries non-Abelian gauge fields on center of energy worldvolume.
- Its gauge fixed description at very low energy limit is given by the action of non-Abelian $\mathrm{U}(N)$ SUSY Yang-Mills (SYM) theory at low energy.
- In it, the $N=1$ case gives the action for Abelian $\mathrm{U}(1) \mathrm{SYM}$ which can be identified as a weak field limit of gauge fixed version of the single $\mathrm{D} p$-brane.

Problem statement

- Despite a number of very interesting results and certain progress during these years [Tseytlin 1997; Emparan 1998; Myers 1999; Lozano, Janssen et al 2002-2005; Howe, Lindstrom, Wulff 2005,2007] the complete supersymmetric action for $\mathrm{mD} p$-branes had not been known even for the simplest case of $p=0$. However,
- it is widely believed that the bosonic limit of this system is given by the Myers's "dielectric brane" action [Myers 1999] (but it still resists the supersymmetric generalization).
- A very interesting supersymmetric '-1 quantization level’ approach was proposed in [Howe, Lindstrom, Wulff:2005,2007] and its quantization should reproduce the desired $\mathrm{mD} p$ action (but the complete consistent realization of this step seems to require the quantization of the complete interacting system of supergravity and super-D p-brane).
- A complete set of candidates for mD0-brane system was constructed in our [PRD 2022, PRD 2023].
- In this talk we will
- present our (complete set of) 3D mD0 action(s) [Bandos, Sarraga; JHEP 2022] i.e. the $\mathrm{D}=3$ counterpart of 10 D mD0-brane system which is doubly supersymmetric (spacetime supersymmetry + worldline supersymmetry)
- construct the Hamiltonian approach of the simplest 3D counterpart of mD0 model and proceed with its quantization.
- Some problems found in this way are also present in the case (3D counterpart) of single DO-brane.
- To solve this, we quantized first this single D0-brane system using a new basis.

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) 3 D mD 0 , the $\mathrm{D}=3$ counterpart of 10 D mD 0 action - The simplest 3D counterpart of mD0-brane system
(4) Hamiltonian formalism for simplest 3D mD0
(5) Towards quantization of simplest 3D mD0 system

- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

Dynamical variables describing the 3D mD0 system

- The set of center of energy variables contains coordinate functions

$$
Z^{M}(\tau)=\left(x^{a}(\tau), \theta^{\alpha}(\tau), \bar{\theta}^{\alpha}(\tau)\right), \quad a=0,1,2, \quad \alpha=1,2,
$$

given by bosonic 3 -vector and two complex conjugate fermionic spinors, describing the embedding of the center of energy worldline \mathcal{W}^{1} in flat $\mathrm{D}=3$ $\mathcal{N}=2$ target superspace,

$$
\mathcal{W}^{1} \subset \Sigma^{(3 \mid 4)}: \quad Z^{M}=Z^{M}(\tau)
$$

- The relative motion of the constituents is described by the matrix fields from the $\mathrm{D}=3 \mathcal{N}=2 \mathrm{SU}(N)$ SYM model dimensionally reduced to $\mathrm{d}=1$.
- We also use some auxiliary fields: Spinor moving frame variables and momenta for the bosonic matrix fields.

Spinor moving frame in 3D

- Spinor moving frame (also called Lorentz harmonics [Bandos 1990]) matrix

$$
\left(v_{\alpha}^{1}, v_{\alpha}^{2}\right) \in \mathrm{SL}(2, \mathbb{R}) \Longleftrightarrow v^{\alpha 2} v_{\alpha}^{1}=1
$$

it is used as basis to construct our 3D mD0 candidate.

- However, it is more convenient to describe the spinor moving frame by

$$
w_{\alpha}=\frac{1}{\sqrt{2}}\left(v_{\alpha}^{1}-i v_{\alpha}^{2}\right), \quad \bar{w}_{\alpha}=\frac{1}{\sqrt{2}}\left(v_{\alpha}^{1}+i v_{\alpha}^{2}\right) \text { which obey } \bar{w}^{\alpha} w_{\alpha}=i
$$

- These variables are called spinor (moving) frame variables because it can be considered as a kind of square root of a vector frame in the sense that

Spinor moving frame $=\sqrt{\text { moving frame }}$

- we can construct the moving frame vectors

$$
u_{a}^{(0)}=w \gamma_{a} \bar{w}, \quad u_{a}=w \gamma_{a} w, \quad \bar{u}_{a}=\bar{w} \gamma_{a} \bar{w}
$$

These obey

$$
u^{(0) a} u_{a}^{(0)}=1, \quad u^{a} \bar{u}_{a}=-2, \quad u^{(0) a} u_{a}=0=u^{(0) a} \bar{u}_{a}
$$

- These moving frame vectors provide a 3D version of the 4D light-like tetrade of the Newman-Penrose formalism [Newman-Penrose 1962] and can be collected in the $\mathrm{SO}(1,2)$ valued matrix

$$
u_{a}^{(b)}=\left(u_{a}^{(0)}, \frac{1}{2}\left(u_{a}+\bar{u}_{a}\right), \frac{1}{2 i}\left(u_{a}-\bar{u}_{a}\right)\right) \in \mathrm{SO}(1,2) .
$$

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) $3 \mathrm{D} m \mathrm{mD}$, the $\mathrm{D}=3$ counterpart of 10 D mD 0 action

- The simplest 3D counterpart of mD0-brane system
(4) Hamiltonian formalism for simplest 3D mD0
(5) Towards quantization of simplest 3D mD0 system
- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

The complete nonlinear action for the description of 3D multiple D0-brane system

$$
\begin{aligned}
& S_{\text {mDo }}^{3 D}=-m \int_{\mathcal{W}^{1}} \mathrm{E}^{0}-m \int_{\mathcal{W}^{1}}\left(\mathrm{~d} \theta^{\alpha} \bar{\theta}_{\alpha}-\theta^{\alpha} \mathrm{d} \bar{\theta}_{\alpha}\right)+\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}} \frac{\mathrm{~d} \mathcal{M}}{\mathcal{M}} \operatorname{tr}(\mathbb{P} \mathbb{Z}+\mathbb{P} \bar{Z})+ \\
& +\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}}\left[\operatorname{tr}\left(\overline{\bar{P}} D \mathbb{Z}+\mathbb{P D} \overline{\mathbb{Z}}+\frac{i}{8} \mathrm{D} \Psi \bar{\Psi}-\frac{i}{8} \Psi D \bar{\Psi}\right)-\frac{2}{\mathcal{M}} E^{0} \mathcal{H}\right]- \\
& -\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}} \frac{i}{\sqrt{\mathcal{M}}}\left(\mathrm{~d} \theta^{\alpha} w_{\alpha} \bar{\nu}+\mathrm{d} \bar{\theta}^{\alpha} \bar{w}_{\alpha} \nu\right), \\
& \text { where } \\
& \nu:=\operatorname{tr}(-\boldsymbol{\Psi} \mathbb{P}+\overline{\boldsymbol{\Psi}}[\mathbb{Z}, \overline{\mathbb{Z}}]), \quad \bar{\nu}:=\operatorname{tr}(-\overline{\boldsymbol{\Psi}} \overline{\mathbb{P}}+\boldsymbol{\Psi}[\mathbb{Z}, \overline{\mathbb{Z}}]) \\
& \text { and } \quad \mathcal{H}=\operatorname{tr}\left(\mathbb{P} \overline{\mathbb{P}}+[\mathbb{Z}, \overline{\mathbb{Z}}]^{2}-\frac{i}{2} \mathbb{Z} \Psi \Psi+\frac{i}{2} \overline{\mathbb{Z}} \bar{\Psi} \bar{\Psi}\right) \text {. }
\end{aligned}
$$

- It is written in terms of the variables used for the single D0-brane (now the center of mass variables) and
- traceless $N \times N$ complex bosonic and fermionic matrix matter fields

$$
\mathbb{Z}=(\overline{\mathbb{Z}})^{\dagger}, \quad \mathbb{P}=(\overline{\mathbb{P}})^{\dagger}, \quad \boldsymbol{\Psi}=(\overline{\mathbf{\Psi}})^{\dagger}
$$

describing the relative motion of the constituents of the system as well as

- the bosonic anti-Hermitean worldline gauge field $\mathbb{A}=\mathrm{d} \tau \mathbb{A}_{\tau}$.
- The latter enters in the action from the covariant derivatives of matrix matter fields

$$
\begin{array}{ll}
\mathrm{D} \mathbb{Z}=\mathrm{d} \mathbb{Z}+2 i a \mathbb{Z}+[\mathbb{A}, \mathbb{Z}], & \mathrm{D} \Psi=\mathrm{d} \mathbf{\Psi}-i a \mathbf{\Psi}+[\mathbb{A}, \Psi] \\
\mathrm{D} \overline{\mathbb{Z}}=\mathrm{d} \overline{\mathbb{Z}}-2 i a \overline{\mathbb{Z}}+[\mathbb{A}, \overline{\mathbb{Z}}], & \mathrm{D} \bar{\Psi}=\mathrm{d} \bar{\Psi}+i a \bar{\Psi}+[\mathbb{A}, \bar{\Psi}]
\end{array}
$$

which also include the composite $\mathrm{U}(1)$ connection

$$
a=-\frac{i}{4} \bar{u}^{a} \mathrm{~d} u_{a}=\frac{i}{4} u^{a} \mathrm{~d} \bar{u}_{a}=w^{\alpha} \mathrm{d} \bar{w}_{\alpha}=\bar{w}^{\alpha} \mathrm{d} w_{\alpha} .
$$

Below we will also use the $\operatorname{SU}(1,1) / \mathrm{U}(1,1)$ Cartan forms

$$
f=w^{\alpha} \mathrm{d} w_{\alpha}, \quad \bar{f}=\bar{w}^{\alpha} \mathrm{d} \bar{w}_{\alpha} .
$$

- Moving frame vector $u_{a}^{(0)}$ and complex spinors w_{α} and \bar{w}_{α} are used to construct bosonic and fermionic forms on the worldvolume

$$
E^{0}=\Pi^{a} u_{a}^{(0)}, \quad E^{w}=\mathrm{d} \theta^{\alpha} w_{\alpha}, \quad \bar{E}^{\bar{w}}=\mathrm{d} \bar{\theta}^{\alpha} \bar{w}_{\alpha},
$$

where

$$
\Pi^{a}=\mathrm{d} x^{a}-i \mathrm{~d} \theta \gamma^{a} \bar{\theta}+i \theta \gamma^{a} \mathrm{~d} \bar{\theta}=\mathrm{d} \tau \Pi_{\tau}^{a}
$$

is the 3D Volkov-Akulov 1-form.

- $\mathcal{M}=\mathcal{M}\left(\mathcal{H} / \mu^{6}\right)$ is an arbitrary non-vanishing function.
- The particular case of this action with

$$
\mathcal{M}=\frac{m}{2}+\sqrt{\frac{m^{2}}{4}+\frac{\mathcal{H}}{\mu^{6}}}
$$

can be obtained by dimensional reduction of the 4D counterpart of the 11D multiple M-wave (mM0-brane) action (but this is another story [Bandos, Sarraga; JHEP 2022].

Doubly supersymmetry (spacetime supersymmetry + worldline supersymmetry):

- The target superspace $\mathrm{D}=3 \mathcal{N}=2$ SUSY of this action is manifest.
- The local worldline SUSY
- acts on the center of mass variables as κ-symmetry of single D0-brane.
- acts on the matrix matter fields with an important role of the function $\mathcal{M}=\mathcal{M}\left(\mathcal{H} / \mu^{6}\right)$ [Bandos, Sarraga; JHEP 2022].

The simplest 3D counterpart of mD0-brane system $\Longrightarrow \mathcal{M}\left(\mathcal{H} / \mu^{6}\right)=m$

$$
\begin{aligned}
S_{\mathrm{mDO}}^{3 \mathrm{D}} & =-m \int_{\mathcal{W}^{1}} \mathrm{E}^{0}-m \int_{\mathcal{W}^{1}}\left(\mathrm{~d} \theta^{\alpha} \bar{\theta}_{\alpha}-\theta^{\alpha} \mathrm{d} \bar{\theta}_{\alpha}\right)-\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}} \frac{i}{\sqrt{m}}\left(\mathrm{~d} \theta^{\alpha} w_{\alpha} \bar{\nu}+\mathrm{d} \bar{\theta}^{\alpha} \bar{w}_{\alpha} \nu\right)+ \\
& +\frac{1}{\mu^{6}} \int_{\mathcal{W}^{1}}\left[\operatorname{tr}\left(\overline{\mathbb{P}} \mathrm{DZ}+\mathbb{P D} \overline{\mathbb{Z}}+\frac{i}{8} \mathrm{D} \Psi \bar{\Psi}-\frac{i}{8} \Psi \mathrm{D} \bar{\Psi}\right)-\frac{2}{m} E^{0} \mathcal{H}\right]
\end{aligned}
$$

will be the system we study in this talk.

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) $3 \mathrm{D} \mathrm{mD0}$, the $\mathrm{D}=3$ counterpart of $10 \mathrm{D} \mathrm{mD0}$ action - The simplest 3D counterpart of mD0-brane system
(4) Hamiltonian formalism for simplest 3D mD0
(5) Towards quantization of simplest 3D mD0 system

- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

The canonical Hamiltonian H_{0}

- is defined by the Legendre transformation of the Lagrangian

$$
\begin{aligned}
H_{0} & =\dot{x}^{a} P_{a}+\dot{\theta}^{\alpha} \Pi_{\alpha}+\dot{\bar{\theta}}^{\alpha} \bar{\Pi}_{\alpha}+i a \mathfrak{0}^{(0)}+i f \overline{\mathfrak{d}}-i \bar{f} \mathfrak{o}+\frac{1}{\mu^{6}} \operatorname{tr}(\dot{\mathbb{Z}} \overline{\mathbb{P}})+\frac{1}{\mu^{6}} \operatorname{tr}(\dot{\overline{\mathbb{Z}} \mathbb{P}})+ \\
& +\frac{i}{8 \mu^{6}} \operatorname{tr}(\dot{\Psi} \bar{\Psi})+\frac{i}{8 \mu^{6}} \operatorname{tr}(\dot{\bar{\Psi}} \Psi)+\operatorname{tr}\left(\dot{\mathbb{A}} \mathbb{P}_{\mathbb{A}}\right)-\mathcal{L}_{\mathrm{mDO}}^{3 \mathrm{D}} .
\end{aligned}
$$

- In it, we denote the momenta conjugate to the bosonic and fermionic coordinates functions by

$$
P_{a}=\frac{\partial \mathcal{L}}{\partial \dot{x}^{a}}, \quad \Pi_{\alpha}=\frac{\partial \mathcal{L}}{\partial \dot{\theta}^{\alpha}}, \quad \bar{\Pi}_{\alpha}=\frac{\partial \mathcal{L}}{\partial \overline{\bar{\theta}}^{\alpha}}
$$

satisfying the non-vanishing Poisson brackets

$$
\left[P_{a}, x^{b}\right]_{\mathrm{PB}}=-\delta_{a}^{b}, \quad\left\{\Pi_{\alpha}, \theta^{\beta}\right\}_{\mathrm{PB}}=-\delta_{\alpha}^{\beta}, \quad\left\{\bar{\Pi}_{\alpha}, \bar{\theta}^{\beta}\right\}_{\mathrm{PB}}=-\delta_{\alpha}^{\beta},
$$

- and the covariant momenta of complex spinor variables

$$
\mathfrak{d}=w_{\alpha} P^{\alpha}, \quad \overline{\mathfrak{d}}=\bar{w}_{\alpha} \bar{P}^{\alpha}, \quad \mathfrak{d}^{(0)}=\bar{w}_{\alpha} P^{\alpha}-w_{\alpha} \bar{P}^{\alpha}
$$

which have the following Poisson brackets

$$
\begin{array}{rll}
{\left[\mathfrak{d}, w_{\alpha}\right]_{\mathrm{PB}}=0,} & {\left[\overline{\mathfrak{d}}, w_{\alpha}\right]_{\mathrm{PB}}=-\bar{w}_{\alpha},} & {\left[\mathfrak{d}{ }^{(0)}, w_{\alpha}\right]_{\mathrm{PB}}=w_{\alpha},} \\
{\left[\mathfrak{d}, \bar{w}_{\alpha}\right]_{\mathrm{PB}}=-\bar{w}_{\alpha},} & {\left[{\left.\overline{\mathfrak{d}}, \bar{w}_{\alpha}\right]_{\mathrm{PB}}=0,}^{[\mathfrak{d}}{ }^{(0)}, \bar{w}_{\alpha}\right]_{\mathrm{PB}}=-\bar{w}_{\alpha} .}
\end{array}
$$

- Calculating the canonical momenta we find the set of primary constraints

$$
\begin{gathered}
\Phi_{a}:=P_{a}+\left(m+\frac{2}{\mu^{6}} \frac{\mathcal{H}}{m}\right) u_{a}^{0} \approx 0, \\
d_{\alpha}:=\Pi_{\alpha}+i P_{a}\left(\gamma^{a} \bar{\theta}\right)_{\alpha}+m \bar{\theta}_{\alpha}+\frac{i}{\mu^{6} \sqrt{m}} w_{\alpha} \bar{\nu} \approx 0 \quad \text { with } \bar{\nu}:=\operatorname{tr}(-\overline{\mathbf{\Psi}} \overline{\mathbb{P}}+\boldsymbol{\Psi}[\mathbb{Z}, \overline{\mathbb{Z}}]), \\
\bar{d}_{\alpha}:=\bar{\Pi}_{\alpha}+i P_{a}\left(\gamma^{a} \theta\right)_{\alpha}-m \theta_{\alpha}+\frac{i}{\mu^{6} \sqrt{m}} \bar{w}_{\alpha} \nu \approx 0 \quad \text { with } \nu:=\operatorname{tr}(-\boldsymbol{\Psi} \mathbb{P}+\overline{\mathbf{\Psi}}[\mathbb{Z}, \overline{\mathbb{Z}}]), \\
\mathfrak{d} \approx 0, \quad \overline{\mathfrak{d}} \approx 0, \quad U^{(0)}:=\mathfrak{d}^{(0)}-\frac{2}{\mu^{6}} \mathcal{B} \approx 0 \quad \text { with } \mathcal{B}:=\operatorname{tr}\left(\overline{\mathbb{P} \mathbb{Z}}-\mathbb{P} \overline{\mathbb{Z}}-\frac{i}{8} \Psi \bar{\Psi}\right) \\
\mathbb{P}_{\mathbb{A}}:=\frac{\partial \mathcal{L}_{m \mathrm{D} 0}^{3 \mathrm{D}}}{\partial \dot{\mathbb{A}}} \approx 0,
\end{gathered}
$$

- and the secondary constraint $\mathbb{G}:=\frac{1}{\mu^{6}}\left([\overline{\mathbb{Z}}, \mathbb{P}]+[\mathbb{Z}, \overline{\mathbb{P}}]+\frac{i}{4}\{\mathbf{\Psi}, \bar{\Psi}\}\right) \approx 0$.

The canonical Hamiltonian vanishes in the weak sense $H_{0} \approx 0$

The total Hamiltonian H of this system

- can then be defined [Dirac 1967] as a sum of constraints with Lagrange multipliers

$$
H=b^{a} \Phi_{a}+\kappa^{\alpha} d_{\alpha}+\bar{\kappa}^{\alpha} \bar{d}_{\alpha}+i k \overline{\mathfrak{d}}-i \bar{k} \mathfrak{d}+i k^{(0)}\left(\mathfrak{d}^{(0)}-\frac{2}{\mu^{6}} \mathcal{B}\right)+\operatorname{tr}(\mathbb{Y} \mathbb{G}) .
$$

- These coefficients are restricted by $\frac{\mathrm{d}}{\mathrm{d} \tau}$ (constraints) $=[\text { constraints, } H]_{\mathrm{PB}} \approx 0$.
- This procedure results in some conditions for Lagrange multipliers, which are solved in terms of a few independent functions corresponding to gauge symmetries:

$$
H=b u^{a(0)} \Phi_{a}+\kappa \bar{w}^{\alpha} d_{\alpha}+\bar{\kappa} w^{\alpha} \bar{d}_{\alpha}+i k^{(0)}\left(\mathfrak{d}^{(0)}-\frac{2}{\mu^{6}} \mathcal{B}\right)+\operatorname{tr}(\mathbb{Y} \mathbb{G})
$$

where the arbitrary $b, \kappa, \bar{\kappa}, k^{(0)}$ and \mathbb{Y} reflect the reparametrization, κ-symmetry, $\mathrm{U}(1)$ and $\mathrm{SU}(N)$ symmetries of our model.

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) $3 \mathrm{D} \mathrm{mD0}$, the $\mathrm{D}=3$ counterpart of $10 \mathrm{D} \mathrm{mD0}$ action - The simplest 3D counterpart of mD0-brane system

4 Hamiltonian formalism for simplest $3 \mathrm{D} m \mathrm{mD} 0$
(5) Towards quantization of simplest 3D mD0 system

- Quantization of the 3D single D0-brane
(6) Conclusions and outlook
- Some difficulties appear when we proceed to quantize this system using BRST or Gupta-Bleuler methods even if we only consider single D0-brane.
- To overcame these problems \Longrightarrow we introduce the so-called analytical basis as follows:
(1) We note that our center of mass superspace is an extended (Lorentz harmonic) superspace: $\left.\Sigma^{(3+3 \mid 4)}=\left\{x^{a}, \theta^{\alpha}, \bar{\theta}^{\alpha} ; w_{\alpha}, \bar{w}_{\alpha}\right)\right\}$.
(2) We define a new basis: $\Sigma^{(3+3 \mid 4)}=\left\{\left(\mathrm{x}^{(0)}, \mathrm{x}_{A}, \overline{\mathrm{x}}_{A}, \theta^{w}, \theta^{\bar{w}}, \bar{\theta}^{w}, \bar{\theta}^{\bar{w}} ; w_{\alpha}, \bar{w}_{\alpha}\right)\right\}$

$$
\mathrm{x}^{(0)}=x^{a} u_{a}^{(0)}, \quad \mathrm{x}_{A}=\mathrm{x}-2 i \theta^{w} \bar{\theta}^{w}, \quad \overline{\mathrm{x}}_{A}=\overline{\mathrm{x}}+2 i \theta^{\bar{w}} \bar{\theta}^{\bar{w}}
$$

with $\mathrm{x}=x^{a} u_{a}, \overline{\mathrm{x}}=x^{a} \bar{u}_{a}$ and

$$
\begin{array}{ll}
\theta^{w}:=\theta^{\alpha} w_{\alpha}, & \theta^{\bar{w}}:=\theta^{\alpha} \bar{w}_{\alpha}, \\
\bar{\theta}^{w}:=\bar{\theta}^{\alpha} w_{\alpha}, & \bar{\theta}^{\bar{w}}:=\bar{\theta}^{\alpha} \bar{w}_{\alpha} .
\end{array}
$$

(3) We rewrite our Lagrangian in this analytical coordinate basis and we proceed with its quantization but it could be a good warm-up exercise to start with the single D0-brane case.

3D single D0-brane

- Lagrangian of a single 3D D0-brane in spinor moving frame formalism

$$
\mathcal{L}_{\mathrm{D} 0}=-m \mathrm{E}^{(0)}-m\left(\mathrm{~d} \theta^{\alpha} \bar{\theta}_{\alpha}-\mathrm{d} \bar{\theta}^{\alpha} \theta_{\alpha}\right)
$$

can be rewrite in this analytical basis as

$$
\mathcal{L}_{\mathrm{D} 0}=-m \mathrm{dx}{ }^{(0)}+i m f \overline{\mathrm{x}}_{A}-i m \bar{f} \mathrm{x}_{A}+4 m a \theta^{\bar{w}} \bar{\theta}^{w}+2 i m\left(\mathrm{~d} \theta^{\bar{w}} \bar{\theta}^{w}+\mathrm{d} \bar{\theta}^{w} \theta^{\bar{w}}\right) .
$$

- The momenta of the bosonic coordinate functions are related to the momenta in central basis by

$$
p^{(0)}:=u^{a(0)} p_{a}, \quad p:=-\frac{1}{2} u^{a} p_{a}, \quad \bar{p}:=-\frac{1}{2} \bar{u}^{a} p_{a}
$$

and satisfying the set of Poisson bracket relations with non-vanishing

$$
\left[p^{(0)}, x^{(0)}\right]_{\mathrm{PB}}=-1, \quad\left[p, \overline{\mathrm{x}}_{A}\right]_{\mathrm{PB}}=-1, \quad\left[\bar{p}, \mathrm{x}_{A}\right]_{\mathrm{PB}}=-1
$$

- Similarly, the momenta conjugate to the fermionic coordinates functions $\left(\theta^{w}, \theta^{\bar{w}}, \bar{\theta}^{w}, \bar{\theta}^{\bar{w}}\right)$ are related to the central basis by

$$
\begin{array}{ll}
\Pi_{w}^{\theta}:=-i \bar{w}^{\alpha} \Pi_{\alpha}+2 i \bar{\theta}^{w} \bar{p}, & \Pi_{\bar{w}}^{\theta}:=i w^{\alpha} \Pi_{\alpha}-2 i \bar{\theta}^{\bar{w}} p \\
\bar{\Pi}_{w}^{\bar{\theta}}:=-i \bar{w}^{\alpha} \bar{\Pi}_{\alpha}-2 i \theta^{w} \bar{p}, & \bar{\Pi}_{\bar{w}}^{\bar{\theta}}:=i w^{\alpha} \bar{\Pi}_{\alpha}+2 i \theta^{\bar{w}} p
\end{array}
$$

and have the non-vanishing Poisson brackets

$$
\left\{\Pi_{w}^{\theta}, \theta^{w}\right\}_{\mathrm{PB}}=-1, \quad\left\{\Pi_{w}^{\theta}, \theta^{\bar{w}}\right\}_{\mathrm{PB}}=-1, \quad\left\{\bar{\Pi}_{w}^{\bar{\theta}}, \bar{\theta}^{w}\right\}_{\mathrm{PB}}=-1, \quad\left\{\bar{\Pi}_{w}^{\bar{\theta}}, \bar{\theta}^{\bar{w}}\right\}_{\mathrm{PB}}=-1 .
$$

- Now, we proceed to quantize this system:
(1) We compute the constraints and check which are first class and which are second class.
(2) We apply Gupta-Bleuler procedure \Longrightarrow we reduce the number of constraints, leaving only one from a pair of conjugate second class constraints.
(3) We represent our "effective" first class constraints as differential operators.
- Quantum first class constraints imposed on the state vector Ξ :

$$
\begin{gathered}
\hat{\Phi}^{(0)} \Xi=\left(-i \partial_{\times}(0)+m\right) \Xi=0, \quad \hat{\bar{\Phi}} \Xi=-i \partial_{x_{A}} \Xi=0, \quad \hat{\Phi} \Xi=-i \bar{\partial}_{\bar{x}_{A}} \Xi=0 \\
\hat{\bar{d}}_{w} \Xi=-i\left(\bar{\partial}_{\bar{\theta} w}+2 m \theta^{\bar{w}}\right) \Xi=0, \quad \hat{d}_{w} \Xi=-i \partial_{\theta} \Xi=0, \quad \hat{\bar{d}}_{\bar{w}} \Xi=-i \bar{\partial}_{\bar{\theta} \bar{w}} \Xi=0 \\
\hat{\tilde{U}}^{(0)} \Xi=-i\left(\mathbb{D}^{(0)}-2 x_{A} \partial_{x_{A}}+2 \bar{x}_{A} \partial_{\bar{x}_{A}}-\bar{\theta}^{w} \partial_{\bar{\theta} w}+\theta^{\bar{w}} \partial_{\theta} \bar{w}-q\right) \Xi=0,
\end{gathered}
$$

where derivatives and covariant derivatives are defined as follows

$$
\begin{aligned}
& \partial_{x}(0)=\frac{\partial}{\partial x^{(0)}}, \partial_{x_{A}}=\frac{\partial}{\partial x_{A}}, \\
& \bar{D}_{\bar{x}_{A}}=\frac{\partial}{\partial \bar{x}_{A}} \\
& \mathbb{D}^{(0)}=\bar{w}_{\alpha} \frac{\partial}{\partial \bar{w}_{\alpha}}-w_{\alpha} \frac{\partial}{\partial w_{\alpha}}, \mathbb{D}=w_{\alpha} \frac{\partial}{\partial \bar{w}_{\alpha}},
\end{aligned} \overline{\mathbb{D}=\bar{w}_{\alpha} \frac{\partial}{\partial w_{\alpha}}} .
$$

- And imposing these conditions, the state vector superfield has the form

$$
\Xi=\Xi^{q}=e^{-i m x^{(0)}}\left(\phi^{q}\left(\bar{w}_{\alpha}, w_{\alpha}\right)+i \theta^{\bar{w}} \xi^{q-1}\left(\bar{w}_{\alpha}, w_{\alpha}\right)+2 \theta^{\bar{w}} \bar{\theta}^{w} \phi^{q}\left(\bar{w}_{\alpha}, w_{\alpha}\right)\right)
$$

- But let's take it one step further: For the case of $q=0$ (and all $\theta=0$), the state vector can be written as

$$
\left.\Xi^{(0)}\right|_{\theta=0}=e^{-i m \mathbf{x}^{(0)}} \phi^{(0)}\left(\bar{w}_{\alpha}, w_{\alpha}\right) \text { which is a realization of }\left.e^{-i p_{a} x^{a}} \phi(p)\right|_{p^{2}=m^{2}} .
$$

with $p_{a}=m u_{a}^{(0)}=m w \gamma \bar{w}$.

- So, to have a usual state vector in the coordinate representation, we should integrate over on-shell momentum. In our variables $p_{a}=m u_{a}^{(0)}=m w \gamma \bar{w}$ this is realized as

$$
\phi(x)=\int \bar{f} \wedge f e^{-i m x^{a} u_{a}^{(0)}} \phi^{(0)}(\bar{w}, w), \quad q=0
$$

This can be easy generalised for the case of non-vanishing q

$$
\phi_{\alpha_{1} \ldots \alpha_{q}}(x)=\int \bar{f} \wedge f w_{\alpha_{1}} \ldots w_{\alpha_{q}} e^{-i m x^{a} u_{a}^{(0)}} \phi^{q}(\bar{w}, w), \quad q \geq 0
$$

and

$$
\phi_{\alpha_{1} \ldots \alpha_{-q}}(x)=\int \bar{f} \wedge f \bar{w}_{\alpha_{1}} \ldots \bar{w}_{\alpha_{-q}} e^{-i m x^{a} u_{a}^{(0)}} \phi^{q}(\bar{w}, w), \quad q<0 .
$$

- Restoring θ, we find the state vector superfield reads

$$
\Xi_{\alpha_{1} \ldots \alpha_{|q|}}(x, \theta, \bar{\theta})=\left\{\begin{array}{l}
\int \bar{f} \wedge f w_{\alpha_{1}} \ldots w_{\alpha_{q}} e^{-i m x^{a} u_{a}^{(0)}+2 m \theta \bar{w} \bar{\theta} w} \chi^{q}(\bar{w}, w, \theta \bar{w}), q \geq 0 \\
\int \bar{f} \wedge f \bar{w}_{\alpha_{1}} \ldots \bar{w}_{\alpha_{-q}} e^{-i m x^{a} u_{a}^{(0)}+2 m \theta \bar{w} \bar{\theta} w} \chi^{q}(\bar{w}, w, \theta \bar{w}), q<0
\end{array}\right.
$$

with $\chi\left(\theta^{\bar{w}}, \bar{w}_{\alpha}, w_{\alpha}\right)=\phi\left(\bar{w}_{\alpha}, w_{\alpha}\right)+i \theta^{\bar{w}} \xi\left(\bar{w}_{\alpha}, w_{\alpha}\right)$. This superfield obeys

$$
\left(\bar{D}_{\alpha}-i m \theta_{\alpha}\right) \Xi_{\alpha_{1} \ldots \alpha_{|q|}}(x, \theta, \bar{\theta})=0 .
$$

- This superfield obeys the Klein-Gordon

$$
\left(\partial_{a} \partial^{a}+m^{2}\right) \Xi_{\alpha_{1} \ldots \alpha_{|q|}}(x, \theta, \bar{\theta})=0
$$

and the Dirac equation

$$
\partial^{\alpha \alpha_{1}} \Xi_{\alpha_{1} \alpha_{2} \ldots \alpha_{|q|}}=2 m \frac{q}{|q|} \Xi^{\alpha}{ }_{\alpha_{2} \ldots \alpha_{|q|}} \quad q \neq 0 .
$$

- The quantization of $\mathbf{m D 0}$ on this line is on the way (hence progress report in the title of this talk).

Outline

(1) Introduction
(2) 3D (spinor) moving frame formalism
(3) $3 \mathrm{D} \mathrm{mD0}$, the $\mathrm{D}=3$ counterpart of $10 \mathrm{D} \mathrm{mD0}$ action - The simplest 3D counterpart of mD0-brane system

4 Hamiltonian formalism for simplest $3 \mathrm{D} m \mathrm{mD} 0$
(5) Towards quantization of simplest 3D mD0 system

- Quantization of the 3D single D0-brane
(6) Conclusions and outlook

Conclusions

- The Hamiltonian description of the simplest 3D mD0-brane system has been obtained. The gauge symmetries of the model (reparametrization, κ-symmetry, $\mathrm{U}(1)$ and $\mathrm{SU}(N)$ symmetries) are generated by the first class constraints in it.
- The quantization of the system in the natural "central basis" of configuration space meets some technical difficulties.
- To overcame these, we reformulate our model in the so-called analytical basis of the configuration superspace of the system.
- As a preparation stage, we have performed the quantization of the 3D single D0-brane system in the analytical basis that
- provides us with the superfield representation of the state vector as a superfield in the standard $\mathrm{D}=3 \mathcal{N}=2$ superspace obeying

$$
\left(\bar{D}_{\alpha}-i m \theta_{\alpha}\right) \Xi_{\alpha_{1} \ldots \alpha_{|q|}}(x, \theta, \bar{\theta})=0 .
$$

- The quantization of the (simplest) 3D mD0 is on the way.
- This, in its turn, will be a preliminary step to approach the quantum description of 10D mD0 system which in its turn might shed a new light on the properties of String theory.

Outlook

- To complete the quantization of 3D multiple D0-system [work in progress] and to obtain and to study the system of equations of a superfield theory in an extended superspace enlarged by bosonic and fermionic matrix coordinates.
- Quantization of 10D mD0-brane system and studying the superfield equations in enlarged superspace which results from these.
- Quantization of 11D mM0-brane system and study its relation with mD0-brane equations.
- Searching for new insights in String/M-theory studying the mD0 and mM0 field theories thus obtained.

The end!

Thank you for your attention!

Appendix I: The canonical Hamiltonian H_{0} vanishes in the weak sense

- The canonical Hamiltonian of mD0-brane is defined by the Legendre transformation of the Lagrangian

$$
\begin{aligned}
H_{0} & =\dot{x}^{a} P_{a}+\dot{\theta}^{\alpha} \Pi_{\alpha}+\dot{\bar{\theta}}^{\alpha} \bar{\Pi}_{\alpha}+i a \mathfrak{d}^{(0)}+i f \overline{\mathfrak{d}}-i \bar{f} \mathfrak{d}+\frac{1}{\mu^{6}} \operatorname{tr}(\dot{\mathbb{Z}} \overline{\mathbb{P}})+\frac{1}{\mu^{6}} \operatorname{tr}(\dot{\overline{\mathbb{Z}}} \mathbb{P})+ \\
& +\frac{i}{8 \mu^{6}} \operatorname{tr}(\dot{\Psi} \bar{\Psi})+\frac{i}{8 \mu^{6}} \operatorname{tr}(\dot{\bar{\Psi}} \Psi)+\operatorname{tr}\left(\dot{\mathbb{A}} \mathbb{P}_{\mathbb{A}}\right)-\mathcal{L}_{\mathrm{mD} 0}^{3 \mathrm{D}} .
\end{aligned}
$$

- Substituting the $\mathcal{L}_{\text {mDD }}^{3 \mathrm{D}}$ expression and taking into account the definitions of constraints, the canonical Hamiltonian reads

$$
H_{0}=E_{\tau}^{a} \Phi_{a}+\dot{\theta}^{\alpha} d_{\alpha}+\dot{\bar{\theta}}^{\alpha} \bar{d}_{\alpha}+i a U^{(0)}+i f \overline{\mathfrak{d}}-i \bar{f} \mathfrak{d}+\operatorname{tr}\left(\dot{\mathbb{A}}_{\mathbb{A}}\right)-\operatorname{tr}\left(\mathbb{A}_{\tau} \mathbb{G}\right) \approx 0
$$

which vanishes if we consider all the constraints.

