Entanglement Entropy with NonInvertible Symmetries

Pablo Saura Bastida

TU of Cartagena and IFT-UAM/CSIC
In collaboration with
Javier Molina Vilaplana (TU of Cartagena)
Nabil Iqbal (Durham U.)
Arpit Das (Edinburgh U.)

Ávila 16/11/2023

TABLE
 OF
 CONTENTS

- Anomalies and Generalized Symmetries
- Symmetry Resolved Entanglement Entropy
- Some Examples: Ising Model
- Conclussions

TABLE
 OF
 CONTENTS

- Anomalies and Generalized Symmetries
- Symmetry Resolved Entanglement Entropy
- Some Examples: Ising Model
- Conclussions

Generalized Symmetries and Charges

A global symmetry has an associated Noether current that can be written as a pform:

$$
\nabla_{\mu_{1}} j_{p}^{\mu_{1} \ldots \mu_{p}}=0 \quad d \star j_{p}=0
$$

Generalized Symmetries and Charges

A global symmetry has an associated Noether current that can be written as a pform:

$$
\nabla_{\mu_{1}} j_{p}^{\mu_{1} \ldots \mu_{p}}=0 \quad d \star j_{p}=0
$$

The charge associated to the current can be obtained by integrating in a codimension p subspace.

$$
Q=\int_{\mathcal{M}_{d-p}} \star j_{p}
$$

Generalized Symmetries and Charges

A global symmetry has an associated Noether current that can be written as a pform:

$$
\nabla_{\mu_{1}} j_{p}^{\mu_{1} \ldots \mu_{p}}=0 \quad d \star j_{p}=0
$$

The charge associated to the current can be obtained by integrating in a codimension p subspace.

$$
Q=\int_{\mathcal{M}_{d-p}} \star j_{p}
$$

This defines a $\mathrm{U}(1)$-valued topological operator:

$$
U_{\alpha}\left(\mathcal{M}_{d-p}\right)=\exp \left(i \alpha \int_{\mathcal{M}_{d-p}} \star j_{p}\right)
$$

Chiral Anomaly

In 4-dimensional massless fermion theory, one can define 2 conserved currents associated to global symmetries:

$$
S=\int d^{4} x \bar{\psi}(\not \partial+A) \psi \quad \begin{aligned}
& j_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi \\
& j_{A}^{\mu}=\bar{\psi} \gamma_{5} \gamma^{\mu} \psi
\end{aligned}
$$

Chiral Anomaly

In 4-dimensional massless fermion theory, one can define 2 conserved currents associated to global symmetries:

$$
S=\int d^{4} x \bar{\psi}(\not \varnothing+\not A) \psi \quad \begin{array}{ll}
j_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi \\
j_{A}^{\mu}=\bar{\psi} \gamma_{5} \gamma^{\mu} \psi
\end{array}
$$

When the theory is quantized an extra term appears in the Ward Identity of the axial current, breaking its conservation. This is the chiral anomaly.

$$
\begin{aligned}
& d \star j_{V}=0 \\
& d \star j_{A}=F \wedge F
\end{aligned}
$$

Axial charge is not conserved in the quantum theory!

Can we define a conserved charge associated to the axial current?

$$
d \star j_{A}=F \wedge F=d(A \wedge F) \quad \Rightarrow \quad d\left(\star j_{A}-A \wedge F\right)=0
$$

Can we define a conserved charge associated to the axial current?

$$
\begin{array}{cl}
d \star j_{A}=F \wedge F=d(A \wedge F) & \Rightarrow d\left(\star j_{A}-A \wedge F\right)=0 \\
Q=\int_{\mathcal{M}_{3}}^{\star J} & U_{\alpha}\left(\mathcal{M}_{3}\right)=\exp (i \alpha Q)
\end{array}
$$

But we lose gauge invariance!

Can we define a conserved charge associated to the axial current?

$$
\begin{array}{cl}
d \star j_{A}=F \wedge F=d(A \wedge F) & \Rightarrow d\left(\star j_{A}-A \wedge F\right)=0 \\
Q=\int_{\mathcal{M}_{3}}^{\star J} & U_{\alpha}\left(\mathcal{M}_{3}\right)=\exp (i \alpha Q)
\end{array}
$$

But we lose gauge invariance!
A way to restore it is adding an extra field. We introduce a compact scalar field $\theta(x)$ on \mathcal{M}_{3} :

García-Etxebarria and Iqbal, 2023

$$
\begin{gathered}
A \rightarrow A+d \Lambda \quad \theta \rightarrow \theta+\Lambda \\
\star j_{A}-A \wedge F+d \theta \wedge F \\
U_{\alpha}\left(\mathcal{M}_{3}\right)=\int \mathcal{D} \theta \exp i \alpha\left(\int_{\mathcal{M}_{3}} \star j_{A}-(A-d \theta) \wedge F\right)
\end{gathered}
$$

But now the operator is non-invertible \longrightarrow Non-Invertible Symmetry

TABLE
 OF
 CONTENTS

- Anomalies and Generalized Symmetries
- Symmetry Resolved Entanglement Entropy
- Some Examples: Ising Model
- Conclussions

Symmetry Resolved Entanglement Entropy

Entanglement entropy measures the entanglement between two subsystems. It is defined as the von Neumann entropy of the density matrix after tracing out the complementary surface.

$$
\begin{gathered}
\rho_{A}=\operatorname{Tr}_{A^{c}}|\psi\rangle\langle\psi| \\
S_{v N}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
\end{gathered}
$$

Symmetry Resolved Entanglement Entropy

Entanglement entropy measures the entanglement between two subsystems. It is defined as the von Neumann entropy of the density matrix after tracing out the complementary surface.

$$
\begin{gathered}
\rho_{A}=\operatorname{Tr}_{A^{c}}|\psi\rangle\langle\psi| \\
S_{v N}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
\end{gathered}
$$

Symmetry Resolved Entanglement Entropy (SREE) is defined as the entanglement entropy of the reduced density matrix projected in blocks of charge. This is, how much entropy goes to each charged sector.

Goldstein and Sela, 2018

Symmetry Resolved Entanglement Entropy

Entanglement entropy measures the entanglement between two subsystems. It is defined as the von Neumann entropy of the density matrix after tracing out the complementary surface.

$$
\begin{gathered}
\rho_{A}=\operatorname{Tr}_{A^{c}}|\psi\rangle\langle\psi| \\
S_{v N}=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
\end{gathered}
$$

Symmetry Resolved Entanglement Entropy (SREE) is defined as the entanglement entropy of the reduced density matrix projected in blocks of charge. This is, how much entropy goes to each charged sector.

Goldstein and Sela, 2018
Entanglement entropy is UV divergent, we
 need a cutoff ϵ.

SREE with Replica Trick

SREE can be computed using the replica trick

$$
\begin{aligned}
S_{S R E E}(q, r) & =\lim _{n \rightarrow 1} \frac{1}{1-n} \log \frac{Z\left(q^{n}, r\right)}{(Z(q, r))^{n}} \\
q & =e^{-\pi^{2} / \log (\ell / \epsilon)}
\end{aligned}
$$

SREE with Replica Trick

SREE can be computed using the replica trick

$$
\begin{aligned}
S_{S R E E}(q, r) & =\lim _{n \rightarrow 1} \frac{1}{1-n} \log \frac{Z\left(q^{n}, r\right)}{(Z(q, r))^{n}} \\
q & =e^{-\pi^{2} / \log (\ell / \epsilon)}
\end{aligned}
$$

The partition function for some irrep is:

$$
Z\left(q^{n}, r\right)=\frac{d_{r}}{|G|} \sum_{g \in G} \chi_{r}^{*}(g) \frac{Z\left(q^{n}, g\right)}{(Z(q))^{n}}
$$

With:

$$
\begin{aligned}
& Z(q)=\operatorname{Tr} q^{L_{0}-\frac{c}{24}} \\
& Z\left(q^{n}, g\right)=\operatorname{Tr}\left(U^{A}(g) q^{n\left(L_{0}-\frac{c}{24}\right)}\right)
\end{aligned}
$$

SREE with Replica Trick

SREE can be computed using the replica trick

$$
\begin{aligned}
S_{S R E E}(q, r) & =\lim _{n \rightarrow 1} \frac{1}{1-n} \log \frac{Z\left(q^{n}, r\right)}{(Z(q, r))^{n}} \\
q & =e^{-\pi^{2} / \log (\ell / \epsilon)}
\end{aligned}
$$

The partition function for some irrep is:

$$
Z\left(q^{n}, r\right)=\frac{d_{r}}{|G|} \sum_{g \in G} \chi_{r}^{*}(g) \frac{Z\left(q^{n}, g\right)}{(Z(q))^{n}}
$$

Kusuki, Murciano, Ooguri, Pal, 2023
With:

$$
\begin{aligned}
& Z(q)=\operatorname{Tr} q^{L_{0}-\frac{c}{24}} \\
& Z\left(q^{n}, g\right)=\operatorname{Tr}\left(U^{A}(g) q^{n\left(L_{0}-\frac{c}{24}\right)}\right)
\end{aligned}
$$

Symmetry Operator

Charged moment

Under the modular transformation $q \rightarrow \tilde{q}=e^{-4 \log (\ell / \epsilon)}$ the charged moment:

$$
Z\left(q^{n}, g\right)={ }_{g}\left\langle a_{1}\right| \tilde{q}^{\frac{1}{n}}\left(L_{0}-\frac{c}{24}\right)\left|a_{2}\right\rangle_{g}
$$

Kusuki, Murciano, Ooguri, Pal, 2023
We may demand our states to be symmetric under the action of every element of the group.

$$
\begin{aligned}
U^{A}(g)|a\rangle & =\left\langle U^{A}(g)\right\rangle|a\rangle \\
U^{A}(g)|a\rangle & =|a\rangle+\ldots
\end{aligned}
$$

Strongly Symmetric
Weakly Symmetric
Choi, Rayhaun, Sanghavi, Shao, 2023

Under the modular transformation $q \rightarrow \tilde{q}=e^{-4 \log (\ell / \epsilon)}$ the charged moment:

$$
Z\left(q^{n}, g\right)={ }_{g}\left\langle a_{1}\right| \tilde{q}^{\frac{1}{n}\left(L_{0}-\frac{c}{24}\right)}\left|a_{2}\right\rangle_{g}
$$

Kusuki, Murciano, Ooguri, Pal, 2023
We may demand our states to be symmetric under the action of every element of the group.

$$
\begin{aligned}
U^{A}(g)|a\rangle & =\left\langle U^{A}(g)\right\rangle|a\rangle \\
U^{A}(g)|a\rangle & =|a\rangle+\ldots
\end{aligned}
$$

Strongly Symmetric
Weakly Symmetric
Choi, Rayhaun, Sanghavi, Shao, 2023

The operator implementing the symmetry is a topological co-dimension 1 operator.

$$
U_{\alpha}^{A}\left(\mathcal{M}_{d-1}\right)=\exp \left(i \alpha \int_{\mathcal{M}_{d-1}} \star j\right)
$$

For $\mathrm{d}=2$ they are lines

Verlinde Lines

Verlinde Lines

Verlinde lines are topological 1-dimensional operators. They have a denifed product over them called fusion.

Verlinde Lines

Verlinde lines are topological 1-dimensional operators. They have a denifed product over them called fusion.

The product may not be one of a group but something wider: Fusion Category.
Some elements of the category may not have an inverse: non-Invertible lines!

Verlinde Lines

Verlinde lines are topological 1-dimensional operators. They have a denifed product over them called fusion.

Verlinde, 1988

The product may not be one of a group but something wider: Fusion Category.
Some elements of the category may not have an inverse: non-Invertible lines!

$$
\sqrt{v}
$$

We can compute SREE for non-Invertible symmetries with Verlinde Lines.

General Result for Finite Groups

Verlinde lines are also useful to compute SREE for groups.
For finite groups, the identity sector dominates over the other elements of the group in the small cutoff limit:

$$
\lim _{\tilde{q} \rightarrow 0} \frac{Z\left(q^{n}, g\right)}{Z\left(q^{n}, e\right)}=\delta_{g, e}
$$

Furthermore, the leading contribution comes from the ground state:
Kusuki, Murciano, Ooguri, Pal, 2023

General Result for Finite Groups

Verlinde lines are also useful to compute SREE for groups.
For finite groups, the identity sector dominates over the other elements of the group in the small cutoff limit:

$$
\lim _{\tilde{q} \rightarrow 0} \frac{Z\left(q^{n}, g\right)}{Z\left(q^{n}, e\right)}=\delta_{g, e}
$$

Furthermore, the leading contribution comes from the ground state:
Kusuki, Murciano, Ooguri, Pal, 2023

$$
S(q, r)=\log \frac{d_{r}}{|G|}+\frac{c}{3} \log \frac{\ell}{\epsilon}+\log \left\langle a_{1} \mid 0\right\rangle\left\langle 0 \mid a_{2}\right\rangle
$$

General Result for Finite Groups

Verlinde lines are also useful to compute SREE for groups.
For finite groups, the identity sector dominates over the other elements of the group in the small cutoff limit:

$$
\lim _{\tilde{q} \rightarrow 0} \frac{Z\left(q^{n}, g\right)}{Z\left(q^{n}, e\right)}=\delta_{g, e}
$$

Furthermore, the leading contribution comes from the ground state:
Kusuki, Murciano, Ooguri, Pal, 2023

$$
S(q, r)=\underbrace{\log \frac{d_{r}}{|G|}+\frac{c}{3} \log \frac{\ell}{\epsilon}+\log \left\langle a_{1} \mid 0\right\rangle\left\langle 0 \mid a_{2}\right\rangle}_{\substack{\text { Representation } \\ \text { part }}}
$$

General Result for Finite Groups

Verlinde lines are also useful to compute SREE for groups.
For finite groups, the identity sector dominates over the other elements of the group in the small cutoff limit:

$$
\lim _{\tilde{q} \rightarrow 0} \frac{Z\left(q^{n}, g\right)}{Z\left(q^{n}, e\right)}=\delta_{g, e}
$$

Furthermore, the leading contribution comes from the ground state:
Kusuki, Murciano, Ooguri, Pal, 2023

$$
S(q, r)=\underbrace{\log \frac{d_{r}}{|G|}+\sqrt[c]{\frac{c}{3} \log \frac{\ell}{\epsilon}}+\log \left\langle a_{1} \mid 0\right\rangle\left\langle 0 \mid a_{2}\right\rangle}_{\substack{\text { Representation } \\ \text { part }}}
$$

General Result for Finite Groups

Verlinde lines are also useful to compute SREE for groups.
For finite groups, the identity sector dominates over the other elements of the group in the small cutoff limit:

$$
\lim _{\tilde{q} \rightarrow 0} \frac{Z\left(q^{n}, g\right)}{Z\left(q^{n}, e\right)}=\delta_{g, e}
$$

Furthermore, the leading contribution comes from the ground state:
Kusuki, Murciano, Ooguri, Pal, 2023

$$
S(q, r)=\underbrace{\log \frac{d_{r}}{|G|}+\sqrt[c]{\text { Model- }} \frac{c}{3} \log \frac{\ell}{\epsilon}}_{\substack{\text { Representation } \\
\text { part }}}+\underbrace{\log \left\langle a_{1} \mid 0\right\rangle\left\langle 0 \mid a_{2}\right\rangle}_{\begin{array}{c}
\text { Boundary } \\
\text { pependent } \\
\text { part }
\end{array}}
$$

TABLE
 OF
 CONTENTS

- Anomalies and Generalized Symmetries
- Symmetry Resolved Entanglement Entropy
- Some Examples: Ising Model
- Conclussions

Critical Ising Model

The Critical Ising Model $\left(c=\frac{1}{2}\right)$ has three primaries and three lines

$$
\begin{array}{cccccc}
& \mathbb{1} & \varepsilon & \sigma & & \\
\widehat{\mathbb{1}}: & 1 & 1 & 1 & \varepsilon: \text { energy operator } \\
\widehat{\eta}: & 1 & 1 & -1 & \sigma: \text { spin operator } \\
\widehat{N}: & \sqrt{2} & -\sqrt{2} & 0 & &
\end{array}
$$

Critical Ising Model

The Critical Ising Model $\left(c=\frac{1}{2}\right)$ has three primaries and three lines

$$
\begin{array}{cccccl}
& \mathbb{1} & \varepsilon & \sigma & & \\
\widehat{\mathbb{1}}: & 1 & 1 & 1 & \varepsilon: \text { energy operator } \\
\widehat{\eta}: & 1 & 1 & -1 & \sigma: \text { spin operator } \\
\widehat{N}: & \sqrt{2} & -\sqrt{2} & 0 & &
\end{array}
$$

The fusion rules:

$$
\eta^{2}=\mathbb{1} \quad N^{2}=\mathbb{1}+\eta \quad \eta N=N \eta=N
$$

The lines $\{\mathbb{1}, \eta\}$ implement the group-like \mathbb{Z}_{2} symmetry of the model. The N line is non-invertible and it implements the Krammers-Wannier duality.

One can find three simple boundary states in the model:

$$
\begin{aligned}
& \left.\left.\left.|\uparrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle+\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& \left.\left.\left.|\downarrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle-\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& |f\rangle=|\mathbb{1}\rangle\rangle-|\varepsilon\rangle\rangle
\end{aligned}
$$

One can find three simple boundary states in the model:

$$
\begin{aligned}
& \left.\left.\left.|\uparrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle+\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& \left.\left.\left.|\downarrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle-\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& |f\rangle=|\mathbb{1}\rangle\rangle-|\varepsilon\rangle\rangle
\end{aligned}
$$

Only the last one is invariant under the action of the \mathbb{Z}_{2} group:

$$
\eta|\uparrow\rangle=|\downarrow\rangle \quad \eta|\downarrow\rangle=|\uparrow\rangle \quad \eta|f\rangle=|f\rangle
$$

One can find three simple boundary states in the model:

$$
\begin{aligned}
& \left.\left.\left.|\uparrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle+\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& \left.\left.\left.|\downarrow\rangle=\frac{1}{\sqrt{2}}|\mathbb{1}\rangle\right\rangle+\frac{1}{\sqrt{2}}|\varepsilon\rangle\right\rangle-\frac{1}{2^{1 / 4}}|\sigma\rangle\right\rangle \\
& |f\rangle=|\mathbb{1}\rangle\rangle-|\varepsilon\rangle\rangle
\end{aligned}
$$

Only the last one is invariant under the action of the \mathbb{Z}_{2} group:

$$
\eta|\uparrow\rangle=|\downarrow\rangle \quad \eta|\downarrow\rangle=|\uparrow\rangle \quad \eta|f\rangle=|f\rangle
$$

However, under the non-invertible line

$$
N|f\rangle=|\uparrow\rangle+|\downarrow\rangle
$$

It is not possible to compute SREE for the category of Critical Ising model.

Tricritical Ising Model

The Tricritical Ising Model $\left(c=\frac{7}{10}\right)$ has six primary operators:

	1	ε	ε^{\prime}	$\varepsilon^{\prime \prime}$	σ	σ^{\prime}	
$\widehat{\eta}:$	1	1	1	1	-1	-1	
$\widehat{N}:$	$\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	0	0	$\varphi=\frac{1+\sqrt{5}}{2}$
$\widehat{W}:$	φ	$-\varphi^{-1}$	$-\varphi^{-1}$	φ	$-\varphi^{-1}$	φ	

We recognize η and N lines like in the Critical Ising Model.

Tricritical Ising Model

The Tricritical Ising Model $\left(c=\frac{7}{10}\right)$ has six primary operators:

	1	ε	ε^{\prime}	$\varepsilon^{\prime \prime}$	σ	σ^{\prime}
$\widehat{\eta}:$	1	1	1	1	-1	-1
$\widehat{N}:$	$\sqrt{2}$	$-\sqrt{2}$	$\sqrt{2}$	$-\sqrt{2}$	0	0

We recognize η and N lines like in the Critical Ising Model.
We can also notice a new non-Invertible line:

$$
W^{2}=\mathbb{1}+W
$$

The lines $\{\mathbb{1}, W\}$ form a subcategory within the whole category: Fibonacci Category. We can compute SREE using this subcategory.

For the Fibonacci subcategory one can find three (weakly) symmetric boundary states.

$$
\begin{gathered}
W|W\rangle=|W\rangle+|\mathbb{1}\rangle \quad W|\eta W\rangle=|\eta W\rangle+|\eta\rangle \\
W|N W\rangle=|N W\rangle+|N\rangle
\end{gathered}
$$

Choi, Rayhaun, Sanghavi, Shao, 2023
SREE can be computed for a subcategory containing a non-Invertible line!

For the Fibonacci subcategory one can find three (weakly) symmetric boundary states.

$$
\begin{gathered}
W|W\rangle=|W\rangle+|\mathbb{1}\rangle \quad W|\eta W\rangle=|\eta W\rangle+|\eta\rangle \\
W|N W\rangle=|N W\rangle+|N\rangle
\end{gathered}
$$

Choi, Rayhaun, Sanghavi, Shao, 2023
SREE can be computed for a subcategory containing a non-Invertible line! At leading order, with boundary conditions $\langle N W|$ and $|N W\rangle$:

$$
S(q, r)=\log \frac{d_{r}}{|G|}+\frac{7}{30} \log \frac{\ell}{\epsilon}+\log (\sqrt{10-4 \sqrt{5}})
$$

For the Fibonacci subcategory one can find three (weakly) symmetric boundary states.

$$
\begin{gathered}
W|W\rangle=|W\rangle+|\mathbb{1}\rangle \quad W|\eta W\rangle=|\eta W\rangle+|\eta\rangle \\
W|N W\rangle=|N W\rangle+|N\rangle
\end{gathered}
$$

Choi, Rayhaun, Sanghavi, Shao, 2023
SREE can be computed for a subcategory containing a non-Invertible line! At leading order, with boundary conditions $\langle N W|$ and $|N W\rangle$:

$$
S(q, r)=\underbrace{\substack{ \\
\hline \\
\hline}}_{\substack{\log \frac{d r}{|G|}+\frac{7}{30} \log \frac{\ell}{\epsilon}+\log (\sqrt{10-4 \sqrt{5}}) \\
\\
\begin{array}{c}
\text { Representation } \\
\text { part }
\end{array}}}
$$

For the Fibonacci subcategory one can find three (weakly) symmetric boundary states.

$$
\begin{gathered}
W|W\rangle=|W\rangle+|\mathbb{1}\rangle \quad W|\eta W\rangle=|\eta W\rangle+|\eta\rangle \\
W|N W\rangle=|N W\rangle+|N\rangle
\end{gathered}
$$

Choi, Rayhaun, Sanghavi, Shao, 2023
SREE can be computed for a subcategory containing a non-Invertible line! At leading order, with boundary conditions $\langle N W|$ and $|N W\rangle$:

$$
S(q, r)=\underbrace{\log \frac{d_{r}}{|G|}}_{\substack{\text { Representation } \\ \text { part }}}+\sqrt{\frac{7}{30}} \log \frac{\ell}{\epsilon}+\log (\sqrt{10-4 \sqrt{5}})
$$

For the Fibonacci subcategory one can find three (weakly) symmetric boundary states.

$$
\begin{gathered}
W|W\rangle=|W\rangle+|\mathbb{1}\rangle \quad W|\eta W\rangle=|\eta W\rangle+|\eta\rangle \\
W|N W\rangle=|N W\rangle+|N\rangle
\end{gathered}
$$

Choi, Rayhaun, Sanghavi, Shao, 2023
SREE can be computed for a subcategory containing a non-Invertible line! At leading order, with boundary conditions $\langle N W|$ and $|N W\rangle$:

$$
\left.\left.S(q, r)=\begin{array}{|c}
\begin{array}{|c}
\text { Representation } \\
\text { part }
\end{array} \\
\log \frac{d_{r}}{|G|} \\
\frac{c}{3}
\end{array} \log \frac{\ell}{\epsilon}+\sqrt[{\log (\sqrt{10-4 \sqrt{5}}})\right]{\substack{\text { Boundary } \\
\text { part }}}\right)
$$

TABLE
 OF
 CONTENTS

- Anomalies and Generalized Symmetries
- Symmetry Resolved Entanglement Entropy
- Some Examples: Ising Model
- Conclussions
- We have been able to compute SREE for non-invertible symmetries. We found that it is not possible to compute it for every non-invertible symmetry, but just for some of them.
- For the ones we can compute SREE the result is the same as the ordinary symmetry one. So to this quantity they behave exactly as ordinary symmetries.
- What are the irreps of a fusion category? What are their dimensions? (WIP)
- There were some lines for which SREE cannot be computed:
- Does this mean that SREE is ill-defined in some cases?
- On the other hand, this quantity is intimately related to the notion of conserved charge. Could the impossibility of computing SREE for some lines mean there is no good definition of charge in those cases? (WIP)
- Though we could make a good analysis based on SREE, there are some other quantities worth computing. Don't miss Javi's talk tomorrow.
- We have been able to compute SREE for non-invertible symmetries. We found that it is not possible to compute it for every non-invertible symmetry, but just for some of them.
- For the ones we can compute SREE the result is the same as the ordinary symmetry one. So to this quantity they behave exactly as ordinary symmetries.
- What are the irreps of a fusion category? What are their dimensions? (WIP)
- There were some lines for which SREE cannot be computed:
- Does this mean that SREE is ill-defined in some cases?
- On the other hand, this quantity is intimately related to the notion of conserved charge. Could the impossibility of computing SREE for some lines mean there is no good definition of charge in those cases? (WIP)
- Though we could make a good analysis based on SREE, there are some other quantities worth computing. Don't miss Javi's talk tomorrow.

THANK YOU!

