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1. Introduction



Entanglement

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state
|ψ⟩ ∈ HA ⊗HB.

If |ψ⟩ can be written as |ψ⟩ = |ϕ⟩A⊗|ϕ̃⟩B =⇒ |ψ⟩ is called separable.
If |ψ⟩ cannot be written as |ψ⟩ = |ϕ⟩A⊗|ϕ̃⟩B =⇒ |ψ⟩ is called entangled.

In the latter case, the state of each subsystem cannot be fully described with-
out the other. The two form a single inseparable entity ⇔ taking partial traces
we loose information.
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Entanglement is real!
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Quantifying entanglement

Von Neumann entropy ⇔ standard notion of entropy associated to any quan-
tum state ρ:

SvN(ρ) ≡ −Tr ρ log ρ

SvN(ρ) ≥ 0 for any state.
SvN(ρ) = 0 if ρ is pure.
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Quantifying entanglement

Given a system composed of two subsystems A and B in some pure state
ρAB,

the Entanglement Entropy of A with respect to B is defined as the von
Neumann entropy of ρA:

S(A) ≡ SvN(ρA) = −TrA ρA log ρA

where ρA ≡ TrB ρAB is the reduced density matrix.
S(A) quantifies “how entangled” is A with B.
If ρAB is separable, ρA will be pure and then S(A) = 0.
By definition it satisfies S(A) = S(B).
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⋆ Entanglement in QFT



Entanglement in quantum field theory

The natural subsystems in QFT are spacetime regions, e.g., fix some time-
slice Σ, divide it in two regions A and B:

Associated to A there is an algebra of operators A(A) (associated to B
there is another).
Given a global state and some region A, one would like to associate a
density matrix to A(A) and compute functionals such as the EE...

6 24



Entanglement in quantum field theory

The natural subsystems in QFT are spacetime regions,

e.g., fix some time-
slice Σ, divide it in two regions A and B:

Associated to A there is an algebra of operators A(A) (associated to B
there is another).
Given a global state and some region A, one would like to associate a
density matrix to A(A) and compute functionals such as the EE...

6 24



Entanglement in quantum field theory

The natural subsystems in QFT are spacetime regions, e.g., fix some time-
slice Σ, divide it in two regions A and B:

Associated to A there is an algebra of operators A(A) (associated to B
there is another).
Given a global state and some region A, one would like to associate a
density matrix to A(A) and compute functionals such as the EE...

6 24



Entanglement in quantum field theory

The natural subsystems in QFT are spacetime regions, e.g., fix some time-
slice Σ, divide it in two regions A and B:

Associated to A there is an algebra of operators A(A) (associated to B
there is another).

Given a global state and some region A, one would like to associate a
density matrix to A(A) and compute functionals such as the EE...

6 24



Entanglement in quantum field theory

The natural subsystems in QFT are spacetime regions, e.g., fix some time-
slice Σ, divide it in two regions A and B:

Associated to A there is an algebra of operators A(A) (associated to B
there is another).
Given a global state and some region A, one would like to associate a
density matrix to A(A) and compute functionals such as the EE...

6 24



Entanglement in QFT

In QFT the entanglement entropy of subregions is divergent in any state:

S(A) = +∞ .

Any state is intrinsically and infinitely entangled across A(A) and A(B).
We can either regulate the theory (e.g., in the lattice) or consider alterna-
tive well-defined measures.
In a general QFT in d dimensions, in any state, the EE of any spacetime
region A has the structure:

S(d)(A) = bd−2
Ld−2

δd−2 + bd−4
Ld−4

δd−4 + · · ·+

{
b1

L
δ + (−1) d−1

2 suniv , (odd d) ,
b2

L2

δ2 + (−1) d−2
2 suniv log

( L
δ

)
+ b0 , (even d) .

where L is some characteristic length of A and δ is a UV regulator.
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Entanglement in three-dimensional CFTs

Let us focus on d = 3 conformal field theories (CFTs).

The vacuum EE of some region A is given by:

S(d=3)(A) = b1 ·
perimeter(∂A)

δ
− F(A) +O(δ)

We will be interested in the universal term, F(A).
It is not possible to resolve A with more precision than the one deter-
mined by δ: perimeter and perimeter·(1 + aδ) with a ∼ O(1) cannot be
distinguished. This uncertainty pollutes F(A) via the area-law term:

F(A) → F(A)− a · b1 · perimeter(∂A)
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Entanglement in three-dimensional CFTs

In order to define F(A) rigorously, we can use mutual information,

I(A,B) ≡ S(A) + S(B)− S(A ∪ B) ,

which is well-defined in the continuum.

Robust definition of F(A):

I(A+,A−) = κ

∫
∂A

ds
ε(s)−2F(A)+O(ε) .

[Casini, Huerta, Myers, Yale]
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2. Entanglement entropy shape dependence



Which shape minimizes F(A)?

Obvious candidate ⇔ A = round disk
Let F0 ≡ F(round disk).
This coincides with the Euclidean free energy on the round sphere for
general theories: [Casini, Huerta, Myers]

F0 = − log ZS3 ∀ CFT3

“Natural” to expect that F(A) ≥ F0 ∀ region A. Previous evidence from
holographic theories [Alexakis, Mazzeo; Astaneh, Gibbons, Solodukhin], small deformations of disk
regions [Mezei], regions with sharp features,
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Which shape minimizes F(A)?

the EMI model...
[PB, Casini, Moreno, Lasso Andino]
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Disks globally maximize the EE in three dimensions

General proof from strong subaddtivitiy of EE.
[PB, Casini, Moreno, Lasso Andino]

∀ CFT3, ∀ region A :
F(A)
F0

≥ 1 , with F(A)
F0

= 1 ⇔ A = round disk

For regions with n∂A connected boundaries, the bound can be improved:

∀ CFT3, ∀ region A : F(A) ≥ n∂AF0
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3. Conformal bounds from entanglement



⋆ Conformal bounds



Conformal bounds

Originally obtained from positivity of energy flux escaping at infinity for
states resulting from local insertions of the stress tensor on the vacuum

⇒ constraints on local correlators’ ⟨TT⟩ and ⟨TTT⟩ coefficients.
[Hofman, Maldacena]

Rigorous proof using bootstrap methods [Hofman, Li, Meltzer, Poland, Rejon-Barrera]

Prototypical example in d = 4 for trace-anomaly coefficients

⟨Tµµ⟩ = − a
16π2X4 +

c
16π2CµνρσC

µνρσ

Universal bound:

c
a

∣∣∣
Maxwell

≤ c
a ≤ c

a

∣∣∣
free scalar

∀ CFT4
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3.1 A new conjecture



A new conjecture

♦ Conjecture:
[PB, Casini, Moreno, Lasso Andino]

F(A)
F0

∣∣∣∣
Maxwell

≤ F(A)
F0

≤ F(A)
F0

∣∣∣∣
free scalar

∀ CFT3 ∀ region A
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3.2 Hints from four dimensions



Hints from four dimensions

In d = 4, the universal term is local in nature and appears as the coefficient
of a logarithmic divergence. [Solodukhin; Perlmutter, Rangamani, Rota]

S4d
univ(A)
a =

1
π

[
W∂A +

( c
a − 1

) K∂A

2

]
,

W∂A and K∂A are fixed positive definite and positive semidefinite respectively,
so an analogous conjecture to ours:

S4d
univ(A)
a

∣∣∣∣∣
Maxwell

≤ S4d
univ(A)
a ≤ S4d

univ(A)
a

∣∣∣∣∣
free scalar

∀ CFT4 ∀ region A

is trivially equivalent to the HM bounds!
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3.3 Orbifold theories and multicomponent
regions



Orbifold theories

Consider a theory O obtained from quotienting some complete theory C by
some finite symmetry group G.

The mutual information is given by [Casini, Huerta, Magan, Pontello]

IO(A+,A−) = IC(A+,A−)− n∂A log |G|+∆ , ∆ ≥ 0

Using the definition of F(A) from the MI, one finds

n∂A ≤
F(A)
F0

∣∣∣∣
O
≤
F(A)|C + n∂A

2 log |G|
F0|C + 1

2 log |G| ≤ F(A)
F0

∣∣∣∣
C

Hence, the ratio F(A)/F0 for the parent theory is always greater than the
one for the orbifold theory.
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Orbifold theories

The same happens for infinite symmetry groups.

The Maxwell theory is an orbifold of the free scalar under R implementing
ϕ→ ϕ+ δ.
One has: F(A)|Maxwell = F(A)|free scalar + n∂A/4 log(− log(δ)), and from this:

F(A)
F0

∣∣∣∣
Maxwell

= n∂A

Hence, the lower bound is equivalent to the improved general bound for
topologically non-trivial regions.
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Conjecture
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Conjecture

n∂A ≤
F(A)
F0

≤ F(A)
F0

∣∣∣∣
free scalar

∀ CFT3 ∀ region A

Lower bound not conjectural (follows from the general shape-dependence results).
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3.4 Disconnected regions



Disconnected components and large separations

Consider region with two disconnected components: A = A1 ∪ A2.

Then, S(A1 ∪ A2) = S(A1) + S(A2)− I(A1,A2). If A1 and A2 are disks:
F(A1 ∪ A2)

F0
= 2 +

I(A1,A2)

F0

For long separations, free scalar provides greatest value of I(A1,A2). In
general: [Cardy; Agon, Faulkner]

I(A1,A2) ∼ |rA1−rA2|−4∆CFT3 where ∆CFT3 ≡ smallest scaling dimension
Now, ∀ CFT3 one has

∆CFT3 ≥ ∆free scalar =
(d− 2)

2 (unitarity bound)

Then, F(A1 ∪ A2)/F0 is absolutely maximized by the free scalar.
Also holds for general shapes if it holds for A1 and A2 individually.
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Disconnected components & thin deformations on a null cone

Let A1(δ, ϵ) be the causal cone of some disk region A to which one has
removed a conical frustrum of angle ϵ and radial height δ.

Let A2 be some
other disk region and A = A1(δ, ϵ) ∪ A2. Then, the so-called “pinching
property” implies that: [Casini, Teste, Torroba]

F(limϵ→0 limδ→0 A)
F0

= 2 , (interacting CFTs)

F(limϵ→0 limδ→0 A)
F0

= 2 +
I(A1,A2)

F0
, (free CFTs)

regardless of the separation between A1 and A2.
In this case, F(A)/F0 is smaller for any interacting CFT than for any free
one.
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Disconnected components & thin deformations on a null cone

Now, strong numerical evidence suggests that:
[Agon, PB, Lasso Andino, Vilar Lopez]

I(A1,A2)

F0

∣∣∣∣
free fermion

<
I(A1,A2)

F0

∣∣∣∣
free scalar

for arbitrary spatial regions A1,A2.

Once again the free scalar provides an absolute maximum for F(A)/F0.
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3.5 Connected regions



⋆ Small deformations of a disk region



Small deformations of a disk region

Consider general slightly deformed disks

r(θ)
R = 1 + ϵ√

π

∑
ℓ

[aℓ,(c) cos(ℓθ) + aℓ,(s) sin(ℓθ)] , (ϵ≪ 1)

Then, at leading order in ϵ, we have [Mezei; Faulkner, Leigh, Parrikar]

F(A)
F0

= 1 + π3

24
CT
F0

∑
ℓ

ℓ(ℓ2 − 1)
[
a2
ℓ,(c) + a2

ℓ,(s)
]
ϵ2 ,

where CT controls, for a general CFT, the stress-tensor two-point
function,

⟨Tµν(x)Tρσ(0)⟩R3 =
CT
x6

[
Iµ(ρIσ)ν −

δµνδρσ
3

]
,

19 24
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Conformal bounds in three dimensions

From our general conjecture it follows that:

0 ≤ CT
F0

≤ CT
F0

∣∣∣∣
free scalar

=
3

4π2 log 2 − 6ζ[3] ≃ 0.14887 . . .

New three-dimensional version of HM bounds!
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Conformal bounds in three dimensions
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Conformal bounds in three dimensions

ABJM model
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⋆ Ellipses and corners



Ellipses and corners

Moving from the perturbed-
disks regime, values of
F(A)/F0 for more complicated
regions exist in some cases,
at least for a few theories.

The conjectural bounds are
always satisfied.
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4. Future



Future

Find additional evidence/general proof/counterexample

More restrictive upper bound for SUSY theories?
Analogous conjecture in d = 5 CFTs?
Bounds on other ratios of seemingly unrelated universal quantities?
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The End
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