CONFORMAL BOUNDS FROM ENTANGLEMENT

Pablo Bueno

GRASS-SYMBHOL MEETING 2023 November $16^{\text {th }} 2023$

Universitation
BARCELONA

Based on:

- [PB, Horacio Casini, Oscar Lasso Andino, Javier Moreno] Phys.Rev.Lett. 131 (2023) 17, 171601

1. INTRODUCTION

Entanglement = non-separability (of quantum states)

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
■ If $|\psi\rangle$ can be written as $\left.|\psi\rangle=|\phi\rangle_{A} \otimes\left|\tilde{\phi_{B}} \quad \Longrightarrow \quad\right| \psi\right\rangle$ is called separable.

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
■ If $|\psi\rangle$ can be written as $\left.|\psi\rangle=|\phi\rangle_{A} \otimes\left|\tilde{\phi_{B}} \quad \Longrightarrow \quad\right| \psi\right\rangle$ is called separable.
■ If $|\psi\rangle$ cannot be written as $|\psi\rangle=|\phi\rangle_{A} \otimes|\tilde{\phi}\rangle_{B} \quad \Longrightarrow \quad|\psi\rangle$ is called entangled.

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
■ If $|\psi\rangle$ can be written as $\left.|\psi\rangle=|\phi\rangle_{A} \otimes\left|\tilde{\rangle_{B}} \quad \Longrightarrow \quad\right| \psi\right\rangle$ is called separable.
■ If $|\psi\rangle$ cannot be written as $|\psi\rangle=|\phi\rangle_{A} \otimes|\tilde{\phi}\rangle_{B} \quad \Longrightarrow \quad|\psi\rangle$ is called entangled.
In the latter case, the state of each subsystem cannot be fully described without the other.

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
■ If $|\psi\rangle$ can be written as $\left.|\psi\rangle=|\phi\rangle_{A} \otimes\left|\tilde{\rangle_{B}} \quad \Longrightarrow \quad\right| \psi\right\rangle$ is called separable.
■ If $|\psi\rangle$ cannot be written as $|\psi\rangle=|\phi\rangle_{A} \otimes|\tilde{\phi}\rangle_{B} \quad \Longrightarrow \quad|\psi\rangle$ is called entangled.
In the latter case, the state of each subsystem cannot be fully described without the other. The two form a single inseparable entity

Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
■ If $|\psi\rangle$ can be written as $\left.|\psi\rangle=|\phi\rangle_{A} \otimes\left|\tilde{\rangle_{B}} \quad \Longrightarrow \quad\right| \psi\right\rangle$ is called separable.
■ If $|\psi\rangle$ cannot be written as $|\psi\rangle=|\phi\rangle_{A} \otimes|\tilde{\phi}\rangle_{B} \quad \Longrightarrow \quad|\psi\rangle$ is called entangled.
In the latter case, the state of each subsystem cannot be fully described without the other. The two form a single inseparable entity \Leftrightarrow taking partial traces we loose information.

EnTANGLEMENT IS REAL!

"for experiments with entangled photons, establishing the violation of Bell inequalities and pioneering quantum information science"

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr} \rho \log \rho
$$

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr} \rho \log \rho
$$

■ $S_{\mathrm{vN}}(\rho) \geq$ o for any state.

Von Neumann entropy \Leftrightarrow standard notion of entropy associated to any quantum state ρ :

$$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr} \rho \log \rho
$$

■ $S_{\mathrm{vN}}(\rho) \geq$ o for any state.
■ $\mathrm{S}_{\mathrm{vN}}(\rho)=0$ if ρ is pure.

QUANTIFYING ENTANGLEMENT

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$,

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$, the Entanglement Entropy of A with respect to B is defined as the von Neumann entropy of ρ_{A} :

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$, the Entanglement Entropy of A with respect to B is defined as the von Neumann entropy of ρ_{A} :

$$
S(A) \equiv S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{Tr}_{\mathrm{A}} \rho_{A} \log \rho_{A}
$$

where $\rho_{A} \equiv \operatorname{Tr}_{B} \rho_{A B}$ is the reduced density matrix.

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$, the Entanglement Entropy of A with respect to B is defined as the von Neumann entropy of ρ_{A} :

$$
S(A) \equiv S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{Tr}_{\mathrm{A}} \rho_{A} \log \rho_{A}
$$

where $\rho_{A} \equiv \operatorname{Tr}_{B} \rho_{A B}$ is the reduced density matrix.

- $S(A)$ quantifies "how entangled" is A with B.

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$, the Entanglement Entropy of A with respect to B is defined as the von Neumann entropy of ρ_{A} :

$$
S(A) \equiv S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{Tr}_{\mathrm{A}} \rho_{A} \log \rho_{A}
$$

where $\rho_{A} \equiv \operatorname{Tr}_{B} \rho_{A B}$ is the reduced density matrix.

- $S(A)$ quantifies "how entangled" is A with B.
- If $\rho_{A B}$ is separable, ρ_{A} will be pure and then $S(A)=0$.

Given a system composed of two subsystems A and B in some pure state $\rho_{A B}$, the Entanglement Entropy of A with respect to B is defined as the von Neumann entropy of ρ_{A} :

$$
S(A) \equiv S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{Tr}_{\mathrm{A}} \rho_{A} \log \rho_{A}
$$

where $\rho_{A} \equiv \operatorname{Tr}_{B} \rho_{A B}$ is the reduced density matrix.

- $S(A)$ quantifies "how entangled" is A with B.
- If $\rho_{A B}$ is separable, ρ_{A} will be pure and then $S(A)=0$.

■ By definition it satisfies $S(A)=S(B)$.

* Entanglement in QFT

ENTANGLEMENT IN QUANTUM FIELD THEORY

- The natural subsystems in QFT are spacetime regions,

■ The natural subsystems in QFT are spacetime regions, e.g., fix some timeslice Σ, divide it in two regions A and B :

■ The natural subsystems in QFT are spacetime regions, e.g., fix some timeslice Σ, divide it in two regions A and B :

Associated to A there is an algebra of operators $\mathcal{A}(A)$ (associated to B there is another).

■ The natural subsystems in QFT are spacetime regions, e.g., fix some timeslice Σ, divide it in two regions A and B :

Associated to A there is an algebra of operators $\mathcal{A}(A)$ (associated to B there is another).
■ Given a global state and some region A, one would like to associate a density matrix to $\mathcal{A}(A)$ and compute functionals such as the EE...

■ In QFT the entanglement entropy of subregions is divergent in any state:

$$
S(A)=+\infty .
$$

■ In QFT the entanglement entropy of subregions is divergent in any state:

$$
S(A)=+\infty .
$$

■ Any state is intrinsically and infinitely entangled across $\mathcal{A}(A)$ and $\mathcal{A}(B)$.

■ In QFT the entanglement entropy of subregions is divergent in any state:

$$
S(A)=+\infty .
$$

- Any state is intrinsically and infinitely entangled across $\mathcal{A}(A)$ and $\mathcal{A}(B)$.

■ We can either regulate the theory (e.g., in the lattice) or consider alternative well-defined measures.

■ In QFT the entanglement entropy of subregions is divergent in any state:

$$
S(A)=+\infty
$$

■ Any state is intrinsically and infinitely entangled across $\mathcal{A}(A)$ and $\mathcal{A}(B)$.
■ We can either regulate the theory (e.g., in the lattice) or consider alternative well-defined measures.

- In a general QFT in dimensions, in any state, the EE of any spacetime region A has the structure:

$$
S^{(d)}(A)=b_{d-2} \frac{L^{d-2}}{\delta^{d-2}}+b_{d-4} \frac{L^{d-4}}{\delta^{d-4}}+\cdots+ \begin{cases}b_{1} \frac{L}{\delta}+(-1)^{\frac{d-1}{2}} S^{\text {univ }}, & \text { (odd } d), \\ b_{2} \frac{L^{2}}{\delta^{2}}+(-1)^{\frac{d-2}{2}} S^{\text {univ }} \log \left(\frac{L}{\delta}\right)+b_{0}, & \text { (even } d) .\end{cases}
$$

where L is some characteristic length of A and δ is a UV regulator.

Entanglement in three-dimensional CFTs

Let us focus on $d=3$ conformal field theories (CFTs).

Let us focus on $d=3$ conformal field theories (CFTs).
■ The vacuum EE of some region A is given by:

$$
S^{(d=3)}(A)=b_{1} \cdot \frac{\text { perimeter }(\partial A)}{\delta}-F(A)+\mathcal{O}(\delta)
$$

Let us focus on $d=3$ conformal field theories (CFTs).
■ The vacuum EE of some region A is given by:

$$
S^{(d=3)}(A)=b_{1} \cdot \frac{\text { perimeter }(\partial A)}{\delta}-F(A)+\mathcal{O}(\delta)
$$

■ We will be interested in the universal term, $F(A)$.

Let us focus on $d=3$ conformal field theories (CFTs).

- The vacuum EE of some region A is given by:

$$
S^{(d=3)}(A)=b_{1} \cdot \frac{\text { perimeter }(\partial A)}{\delta}-F(A)+\mathcal{O}(\delta)
$$

■ We will be interested in the universal term, $F(A)$.

- It is not possible to resolve A with more precision than the one determined by δ :

Let us focus on $d=3$ conformal field theories (CFTs).
■ The vacuum EE of some region A is given by:

$$
S^{(d=3)}(A)=b_{1} \cdot \frac{\text { perimeter }(\partial A)}{\delta}-F(A)+\mathcal{O}(\delta)
$$

■ We will be interested in the universal term, $F(A)$.
■ It is not possible to resolve A with more precision than the one determined by δ : perimeter and perimeter. $(1+a \delta)$ with $a \sim \mathcal{O}(1)$ cannot be distinguished.

Let us focus on $d=3$ conformal field theories (CFTs).

- The vacuum EE of some region A is given by:

$$
S^{(d=3)}(A)=b_{1} \cdot \frac{\text { perimeter }(\partial A)}{\delta}-F(A)+\mathcal{O}(\delta)
$$

■ We will be interested in the universal term, $F(A)$.

- It is not possible to resolve A with more precision than the one determined by δ : perimeter and perimeter $\cdot(1+a \delta)$ with $a \sim \mathcal{O}(1)$ cannot be distinguished. This uncertainty pollutes $F(A)$ via the area-law term:

$$
F(A) \rightarrow F(A)-a \cdot b_{1} \cdot \operatorname{perimeter}(\partial A)
$$

In order to define $F(A)$ rigorously, we can use mutual information,

$$
I(A, B) \equiv S(A)+S(B)-S(A \cup B)
$$

which is well-defined in the continuum.

Entanglement in three-dimensional CFTs

In order to define $F(A)$ rigorously, we can use mutual information,

$$
I(A, B) \equiv S(A)+S(B)-S(A \cup B)
$$

which is well-defined in the continuum.

Entanglement in three-dimensional CFTs

In order to define $F(A)$ rigorously, we can use mutual information,

$$
I(A, B) \equiv S(A)+S(B)-S(A \cup B)
$$

which is well-defined in the continuum.

Robust definition of $F(A)$:

$$
I\left(A^{+}, A^{-}\right)=\kappa \int_{\partial A} \frac{d s}{\varepsilon(S)}-2 F(A)+\mathcal{O}(\varepsilon) .
$$

[Casini, Huerta, Myers, Yale]

2. ENTANGLEMENT ENTROPY SHAPE DEPENDENCE

Obvious candidate $\Leftrightarrow A=$ round disk

Obvious candidate $\Leftrightarrow A=$ round disk

- Let $F_{0} \equiv F($ round disk).

Obvious candidate $\Leftrightarrow A=$ round disk

■ Let $F_{0} \equiv F$ (round disk).
■ This coincides with the Euclidean free energy on the round sphere for general theories: [casin, Huerta, Myers]

$$
F_{\mathrm{O}}=-\log Z_{\mathbb{S}^{3}} \quad \forall \mathrm{CFT}_{3}
$$

Obvious candidate $\Leftrightarrow A=$ round disk

- Let $F_{0} \equiv F$ (round disk).

■ This coincides with the Euclidean free energy on the round sphere for general theories: [casin, Huerta, Myers]

$$
F_{0}=-\log Z_{\mathbb{S}^{3}} \quad \forall \mathrm{CFT}_{3}
$$

■ "Natural" to expect that $F(A) \geq F_{0} \forall$ region A.

Obvious candidate $\Leftrightarrow A=$ round disk

- Let $F_{\mathrm{o}} \equiv F$ (round disk).

■ This coincides with the Euclidean free energy on the round sphere for general theories: [casin, Huerta, Myers]

$$
F_{\mathrm{o}}=-\log Z_{\mathbb{S}^{3}} \quad \forall \mathrm{CFT}_{3}
$$

■ "Natural" to expect that $F(A) \geq F_{0} \forall$ region A. Previous evidence from holographic theories AAlexakis, Mazzeo; Astanen, (ibbons, solodukhin,

$$
\text { Obvious candidate } \Leftrightarrow A=\text { round disk }
$$

- Let $F_{o} \equiv F$ (round disk).

■ This coincides with the Euclidean free energy on the round sphere for general theories: [casin, Huerta, Myers]

$$
F_{\mathrm{O}}=-\log Z_{\mathrm{S}^{3}} \quad \forall \mathrm{CFT}_{3}
$$

■ "Natural" to expect that $F(A) \geq F_{0} \forall$ region A. Previous evidence from holographic theories AAlexakis, Mazzeo; Astanen, (ibbons, soloduthin, small deformations of disk regions (mezeil,

$$
\text { Obvious candidate } \Leftrightarrow A=\text { round disk }
$$

- Let $F_{o} \equiv F$ (round disk).

■ This coincides with the Euclidean free energy on the round sphere for general theories: [casin, Huerta, Myers]

$$
F_{\mathrm{O}}=-\log Z_{\mathrm{S}^{3}} \quad \forall \mathrm{CFT}_{3}
$$

■ "Natural" to expect that $F(A) \geq F_{0} \forall$ region A. Previous evidence from holographic theories AAlexakis, Mazzeo; Astanen, , ibbons, soloduukhin, small deformations of disk regions (mezei), regions with sharp features,

the EMI model...

[PB, Casini, Moreno, Lasso Andino]

General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

$$
\forall \mathrm{CFT}_{3}, \quad \forall \operatorname{region} A: \quad \frac{F(A)}{F_{0}} \geq 1,
$$

General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

$$
\forall \mathrm{CFT}_{3}, \quad \forall \text { region } A: \quad \frac{F(A)}{F_{0}} \geq 1, \quad \text { with } \quad \frac{F(A)}{F_{0}}=1 \Leftrightarrow A=\text { round disk }
$$

General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

$$
\forall \mathrm{CFT}_{3}, \quad \forall \operatorname{region} A: \quad \frac{F(A)}{F_{0}} \geq 1, \quad \text { with } \quad \frac{F(A)}{F_{0}}=1 \Leftrightarrow A=\text { round disk }
$$

For regions with $n_{\partial A}$ connected boundaries, the bound can be improved:

General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

$$
\forall \mathrm{CFT}_{3}, \quad \forall \operatorname{region} A: \quad \frac{F(A)}{F_{0}} \geq 1, \quad \text { with } \quad \frac{F(A)}{F_{0}}=1 \Leftrightarrow A=\text { round disk }
$$

For regions with $n_{\partial A}$ connected boundaries, the bound can be improved:

$$
\forall \mathrm{CFT}_{3}, \quad \forall \text { region } A: \quad F(A) \geq n_{\partial A} F_{0}
$$

3. CONFORMAL BOUNDS FROM ENTANGLEMENT

CONFORMAL BOUNDS

■ Originally obtained from positivity of energy flux escaping at infinity for states resulting from local insertions of the stress tensor on the vacuum

CONFORMAL BOUNDS

- Originally obtained from positivity of energy flux escaping at infinity for states resulting from local insertions of the stress tensor on the vacuum \Rightarrow constraints on local correlators' $\langle T T\rangle$ and $\langle T T T\rangle$ coefficients.

CONFORMAL BOUNDS

■ Originally obtained from positivity of energy flux escaping at infinity for states resulting from local insertions of the stress tensor on the vacuum \Rightarrow constraints on local correlators' $\langle T T\rangle$ and $\langle T T T\rangle$ coefficients.
[Hofman, Maldacena]

- Rigorous proof using bootstrap methods [Hofman, Li, Metteer, Poland, Reion-Barrear]

CONFORMAL BOUNDS

- Originally obtained from positivity of energy flux escaping at infinity for states resulting from local insertions of the stress tensor on the vacuum \Rightarrow constraints on local correlators' $\langle T T\rangle$ and $\langle T T T\rangle$ coefficients.
[Hofman, Maldacena]
■ Rigorous proof using bootstrap methods [Hofman, Li, Melteer; Poland, Rejon-Barerea]
Prototypical example in $d=4$ for trace-anomaly coefficients

$$
\left\langle T_{\mu}^{\mu}\right\rangle=-\frac{a}{16 \pi^{2}} \mathcal{X}_{4}+\frac{c}{16 \pi^{2}} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}
$$

CONFORMAL BOUNDS

- Originally obtained from positivity of energy flux escaping at infinity for states resulting from local insertions of the stress tensor on the vacuum \Rightarrow constraints on local correlators' $\langle T T\rangle$ and $\langle T T T\rangle$ coefficients.
[Hofman, Maldacena]
■ Rigorous proof using bootstrap methods [Hofman, Li, Metteer, Poland, Rejon-Barerea]
Prototypical example in $d=4$ for trace-anomaly coefficients

$$
\left\langle T_{\mu}^{\mu}\right\rangle=-\frac{a}{16 \pi^{2}} \mathcal{X}_{4}+\frac{c}{16 \pi^{2}} C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}
$$

Universal bound:

$$
\left.\frac{c}{a}\right|_{\text {Maxwell }} \leq \frac{c}{a} \leq\left.\frac{c}{a}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{4}
$$

3.1 A NEW CONJECTURE

- Conjecture:

[PB, Casini, Moreno, Lasso Andino]

$$
\left|\frac{F(A)}{F_{0}}\right|_{\text {Maxwell }} \leq \frac{F(A)}{F_{0}} \leq\left.\frac{F(A)}{F_{0}}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{3} \quad \forall \text { region } A
$$

3.2 HINTS FROM FOUR DIMENSIONS

In $d=4$, the universal term is local in nature and appears as the coefficient of a logarithmic divergence. [solodukhini; Perlmutter, Rangamani, pota]

$$
\frac{S_{\text {univ }}^{4 d}(A)}{a}=\frac{1}{\pi}\left[\mathcal{W}_{\partial A}+\left(\frac{c}{a}-1\right) \frac{\mathcal{K}_{\partial A}}{2}\right],
$$

In $d=4$, the universal term is local in nature and appears as the coefficient of a logarithmic divergence. [solodukhini; Perlmutter, Rangamani, pota]

$$
\frac{S_{\text {univ }}^{4 d}(A)}{a}=\frac{1}{\pi}\left[\mathcal{W}_{\partial A}+\left(\frac{c}{a}-1\right) \frac{\mathcal{K}_{\partial A}}{2}\right],
$$

$\mathcal{W}_{\partial A}$ and $\mathcal{K}_{\partial A}$ are fixed positive definite and positive semidefinite respectively,

Hints from four dimensions

In $d=4$, the universal term is local in nature and appears as the coefficient of a logarithmic divergence. [solodukhini; Perlmutter, Rangamani, pota]

$$
\frac{S_{\text {univ }}^{4 d}(A)}{a}=\frac{1}{\pi}\left[\mathcal{W}_{\partial A}+\left(\frac{c}{a}-1\right) \frac{\mathcal{K}_{\partial A}}{2}\right]
$$

$\mathcal{W}_{\partial A}$ and $\mathcal{K}_{\partial A}$ are fixed positive definite and positive semidefinite respectively, so an analogous conjecture to ours:

$$
\left.\frac{S_{\text {univ }}^{4 d}(A)}{a}\right|_{\text {Maxwell }} \leq \frac{S_{\text {univ }}^{4 d}(A)}{a} \leq\left.\frac{S_{\text {univ }}^{4 d}(A)}{a}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{4} \quad \forall \text { region } A
$$

In $d=4$, the universal term is local in nature and appears as the coefficient of a logarithmic divergence. [solodukhini, Perlmutter, fangamani, pota]

$$
\frac{S_{\text {univ }}^{4 d}(A)}{a}=\frac{1}{\pi}\left[\mathcal{W}_{\partial A}+\left(\frac{c}{a}-1\right) \frac{\mathcal{K}_{\partial A}}{2}\right],
$$

$\mathcal{W}_{\partial A}$ and $\mathcal{K}_{\partial A}$ are fixed positive definite and positive semidefinite respectively, so an analogous conjecture to ours:

$$
\left.\frac{S_{\text {univ }}^{4 d}(A)}{a}\right|_{\text {Maxwell }} \leq \frac{S_{\text {univ }}^{4 d}(A)}{a} \leq\left.\frac{S_{\text {univ }}^{4 d}(A)}{a}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{4} \quad \forall \text { region } A
$$

is trivially equivalent to the HM bounds!
3.3 ORBIFOLD THEORIES AND MULTICOMPONENT REGIONS

ORBIFOLD THEORIES

Consider a theory O obtained from quotienting some complete theory C by some finite symmetry group G.

Consider a theory O obtained from quotienting some complete theory C by some finite symmetry group G.
■ The mutual information is given by [casin, Huerta, Magan, Pontello]

$$
I^{\mathrm{O}}\left(A^{+}, A^{-}\right)=I^{\mathrm{C}}\left(A^{+}, A^{-}\right)-n_{\partial A} \log |G|+\Delta, \quad \Delta \geq 0
$$

Consider a theory O obtained from quotienting some complete theory C by some finite symmetry group G.
■ The mutual information is given by [asini, Heerta, Magan, Pontello]

$$
I^{\mathrm{O}}\left(A^{+}, A^{-}\right)=I^{\mathrm{C}}\left(A^{+}, A^{-}\right)-n_{\partial A} \log |G|+\Delta, \quad \Delta \geq 0
$$

■ Using the definition of $F(A)$ from the $M I$, one finds

$$
n_{\partial A} \leq\left.\frac{F(A)}{F_{\mathrm{O}}}\right|_{\mathrm{O}} \leq \frac{\left.F(A)\right|_{\mathrm{C}}+\frac{n_{\partial A}}{2} \log |G|}{\left.F_{\mathrm{O}}\right|_{\mathrm{C}}+\frac{1}{2} \log |G|} \leq\left.\frac{F(A)}{F_{\mathrm{O}}}\right|_{\mathrm{C}}
$$

Consider a theory O obtained from quotienting some complete theory C by some finite symmetry group G.

- The mutual information is given by [casin, Huerta, Magan, Pontello]

$$
I^{\mathrm{O}}\left(A^{+}, A^{-}\right)=I^{\mathrm{C}}\left(A^{+}, A^{-}\right)-n_{\partial A} \log |G|+\Delta, \quad \Delta \geq 0
$$

- Using the definition of $F(A)$ from the $M I$, one finds

$$
n_{\partial A} \leq\left.\frac{F(A)}{F_{\mathrm{O}}}\right|_{\mathrm{O}} \leq \frac{\left.F(A)\right|_{\mathrm{C}}+\frac{n_{\partial A}}{2} \log |G|}{\left.F_{\mathrm{O}}\right|_{\mathrm{C}}+\frac{1}{2} \log |G|} \leq\left.\frac{F(A)}{F_{\mathrm{O}}}\right|_{\mathrm{C}}
$$

- Hence, the ratio $F(A) / F_{0}$ for the parent theory is always greater than the one for the orbifold theory.

■ The same happens for infinite symmetry groups.

■ The same happens for infinite symmetry groups.
■ The Maxwell theory is an orbifold of the free scalar under \mathbb{R} implementing $\phi \rightarrow \phi+\delta$.

■ The same happens for infinite symmetry groups.
■ The Maxwell theory is an orbifold of the free scalar under \mathbb{R} implementing $\phi \rightarrow \phi+\delta$.
■ One has: $\left.F(A)\right|_{\text {Maxwell }}=\left.F(A)\right|_{\text {free scalar }}+n_{\partial A} / 4 \log (-\log (\delta))$,

■ The same happens for infinite symmetry groups.
■ The Maxwell theory is an orbifold of the free scalar under \mathbb{R} implementing $\phi \rightarrow \phi+\delta$.

- One has: $\left.F(A)\right|_{\text {Maxwell }}=\left.F(A)\right|_{\text {free scalar }}+n_{\partial A} / 4 \log (-\log (\delta))$, and from this:

$$
\left.\frac{F(A)}{F_{0}}\right|_{\text {Maxwell }}=n_{\partial A}
$$

■ The same happens for infinite symmetry groups.
■ The Maxwell theory is an orbifold of the free scalar under \mathbb{R} implementing $\phi \rightarrow \phi+\delta$.
■ One has: $\left.F(A)\right|_{\text {Maxwell }}=\left.F(A)\right|_{\text {free scalar }}+n_{\partial A} / 4 \log (-\log (\delta))$, and from this:

$$
\left.\frac{F(A)}{F_{0}}\right|_{\text {Maxwell }}=n_{\partial A}
$$

■ Hence, the lower bound is equivalent to the improved general bound for topologically non-trivial regions.

$$
\left|\frac{F(A)}{F_{\mathrm{O}}}\right|_{\text {Maxwell }} \leq \frac{F(A)}{F_{\mathrm{O}}} \leq\left.\frac{F(A)}{F_{\mathrm{O}}}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{3} \quad \forall \text { region } A
$$

$$
n_{\partial A} \leq \frac{F(A)}{F_{0}} \leq\left.\frac{F(A)}{F_{0}}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{3} \quad \forall \text { region } A
$$

CONJECTURE

$$
n_{\partial A} \leq \frac{F(A)}{F_{0}} \leq\left.\frac{F(A)}{F_{0}}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{3} \quad \forall \text { region } A
$$

Lower bound not conjectural

CONJECTURE

$$
n_{\partial A} \leq \frac{F(A)}{F_{0}} \leq\left.\frac{F(A)}{F_{0}}\right|_{\text {free scalar }} \quad \forall \mathrm{CFT}_{3} \quad \forall \text { region } A
$$

Lower bound not conjectural (follows from the general shape-dependence results).

3.4 DISCONNECTED REGIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS
■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$.

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$.

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.
\square Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$. In general: [Cardy: Agon, Faukner]
$I\left(A_{1}, A_{2}\right) \sim\left|r_{A_{1}}-r_{A_{2}}\right|^{-4 \Delta_{\mathrm{CFT}_{3}}} \quad$ where $\quad \Delta_{\mathrm{CFT}_{3}} \equiv$ smallest scaling dimension

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$. In general: [Carty; Agon, Faukner] $I\left(A_{1}, A_{2}\right) \sim\left|r_{A_{1}}-r_{A_{2}}\right|^{-4 \Delta_{\mathrm{CFT}_{3}}} \quad$ where $\quad \Delta_{\mathrm{CFT}_{3}} \equiv$ smallest scaling dimension

- Now, $\forall \mathrm{CFT}_{3}$ one has

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$. In general: [Carty; Agon, Faukner]
$I\left(A_{1}, A_{2}\right) \sim\left|r_{A_{1}}-r_{A_{2}}\right|^{-4 \Delta_{\mathrm{CFT}_{3}}} \quad$ where $\quad \Delta_{\mathrm{CFT}_{3}} \equiv$ smallest scaling dimension

- Now, $\forall \mathrm{CFT}_{3}$ one has

$$
\Delta_{\mathrm{CFT}_{3}} \geq \Delta_{\text {free scalar }}=\frac{(d-2)}{2} \quad(\text { unitarity bound })
$$

DISCONNECTED COMPONENTS AND LARGE SEPARATIONS

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.
\square Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$. In general: [Cardy; Agon, Faukner]
$I\left(A_{1}, A_{2}\right) \sim\left|r_{A_{1}}-r_{A_{2}}\right|^{-4 \Delta_{\mathrm{CFT}_{3}}} \quad$ where $\quad \Delta_{\mathrm{CFT}_{3}} \equiv$ smallest scaling dimension

- Now, $\forall \mathrm{CFT}_{3}$ one has

$$
\Delta_{\mathrm{CFT}_{3}} \geq \Delta_{\text {free scalar }}=\frac{(d-2)}{2} \quad(\text { unitarity bound })
$$

■ Then, $F\left(A_{1} \cup A_{2}\right) / F_{0}$ is absolutely maximized by the free scalar.

■ Consider region with two disconnected components: $A=A_{1} \cup A_{2}$.

- Then, $S\left(A_{1} \cup A_{2}\right)=S\left(A_{1}\right)+S\left(A_{2}\right)-I\left(A_{1}, A_{2}\right)$. If A_{1} and A_{2} are disks:

$$
\frac{F\left(A_{1} \cup A_{2}\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}
$$

■ For long separations, free scalar provides greatest value of $I\left(A_{1}, A_{2}\right)$. In general: [Cardy: Agon, Faukner] $I\left(A_{1}, A_{2}\right) \sim\left|r_{A_{1}}-r_{A_{2}}\right|^{-4 \Delta_{\mathrm{CFT}_{3}}} \quad$ where $\quad \Delta_{\mathrm{CFT}_{3}} \equiv$ smallest scaling dimension

- Now, $\forall \mathrm{CFT}_{3}$ one has

$$
\Delta_{\mathrm{CFT}_{3}} \geq \Delta_{\text {free scalar }}=\frac{(d-2)}{2} \quad(\text { unitarity bound })
$$

- Then, $F\left(A_{1} \cup A_{2}\right) / F_{0}$ is absolutely maximized by the free scalar.
- Also holds for general shapes if it holds for A_{1} and A_{2} individually.

■ Let $A_{1}(\delta, \epsilon)$ be the causal cone of some disk region A to which one has removed a conical frustrum of angle ϵ and radial height δ.

■ Let $A_{1}(\delta, \epsilon)$ be the causal cone of some disk region A to which one has removed a conical frustrum of angle ϵ and radial height δ. Let A_{2} be some other disk region and $A=A_{1}(\delta, \epsilon) \cup A_{2}$.

■ Let $A_{1}(\delta, \epsilon)$ be the causal cone of some disk region A to which one has removed a conical frustrum of angle ϵ and radial height δ. Let A_{2} be some other disk region and $A=A_{1}(\delta, \epsilon) \cup A_{2}$. Then, the so-called "pinching property" implies that: [casin, Teste, Torroba]

$$
\begin{array}{ll}
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2, & \text { (interacting } \\
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}, & \text { (free CFTs) }
\end{array}
$$

■ Let $A_{1}(\delta, \epsilon)$ be the causal cone of some disk region A to which one has removed a conical frustrum of angle ϵ and radial height δ. Let A_{2} be some other disk region and $A=A_{1}(\delta, \epsilon) \cup A_{2}$. Then, the so-called "pinching property" implies that: [casin, Teste, Torobab]

$$
\begin{array}{ll}
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2, & \text { (interactins } \\
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}, & \text { (free CFTs) }
\end{array}
$$

regardless of the separation between A_{1} and A_{2}.

■ Let $A_{1}(\delta, \epsilon)$ be the causal cone of some disk region A to which one has removed a conical frustrum of angle ϵ and radial height δ. Let A_{2} be some other disk region and $A=A_{1}(\delta, \epsilon) \cup A_{2}$. Then, the so-called "pinching property" implies that: [casini, Teste, Torroba]

$$
\begin{array}{ll}
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2, & \text { (interacting } \\
\frac{F\left(\lim _{\epsilon \rightarrow 0} \lim _{\delta \rightarrow 0} A\right)}{F_{0}}=2+\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}, & \text { (free CFTs) }
\end{array}
$$

regardless of the separation between A_{1} and A_{2}.

- In this case, $F(A) / F_{0}$ is smaller for any interacting CFT than for any free one.

■ Now, strong numerical evidence suggests that:
[Agon, PB, Lasso Andino, Vilar Lopez]

$$
\left.\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}\right|_{\text {free fermion }}<\left.\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}\right|_{\text {free scalar }}
$$

for arbitrary spatial regions A_{1}, A_{2}.

- Now, strong numerical evidence suggests that:
[Agon, PB, Lasso Andino, Vilar Lopez]

$$
\left.\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}\right|_{\text {free fermion }}<\left.\frac{I\left(A_{1}, A_{2}\right)}{F_{0}}\right|_{\text {free scalar }}
$$

for arbitrary spatial regions A_{1}, A_{2}.

- Once again the free scalar provides an absolute maximum for $F(A) / F_{0}$.

3.5 CONNECTED REGIONS

^ SMALL DEFORMATIONS OF A DISK REGION

SMALL DEFORMATIONS OF A DISK REGION
■ Consider general slightly deformed disks

$$
\frac{r(\theta)}{R}=1+\frac{\epsilon}{\sqrt{\pi}} \sum_{\ell}\left[a_{\ell,(c)} \cos (\ell \theta)+a_{\ell,(s)} \sin (\ell \theta)\right], \quad(\epsilon \ll 1)
$$

- Consider general slightly deformed disks

$$
\frac{r(\theta)}{R}=1+\frac{\epsilon}{\sqrt{\pi}} \sum_{\ell}\left[a_{\ell,(c)} \cos (\ell \theta)+a_{\ell,(\mathrm{s})} \sin (\ell \theta)\right], \quad(\epsilon \ll 1)
$$

- Then, at leading order in ϵ, we have [Mezeif Faukner, Leigh, Parrikar]

$$
\frac{F(A)}{F_{0}}=1+\frac{\pi^{3}}{24} \frac{C_{T}}{F_{0}} \sum_{\ell} \ell\left(\ell^{2}-1\right)\left[a_{\ell,(c)}^{2}+a_{\ell,(\mathrm{s})}^{2}\right] \epsilon^{2},
$$

■ Consider general slightly deformed disks

$$
\frac{r(\theta)}{R}=1+\frac{\epsilon}{\sqrt{\pi}} \sum_{\ell}\left[a_{\ell,(c)} \cos (\ell \theta)+a_{\ell,(s)} \sin (\ell \theta)\right], \quad(\epsilon \ll 1)
$$

■ Then, at leading order in ϵ, we have [mezeif Faukner, Leigh, Parrikar]

$$
\frac{F(A)}{F_{0}}=1+\frac{\pi^{3}}{24} \frac{C_{T}}{F_{0}} \sum_{\ell} \ell\left(\ell^{2}-1\right)\left[a_{\ell,(c)}^{2}+a_{\ell,(s)}^{2}\right] \epsilon^{2},
$$

where C_{T} controls, for a general CFT, the stress-tensor two-point function,

$$
\left\langle T_{\mu \nu}(x) T_{\rho \sigma}(0)\right\rangle_{\mathbb{R}^{3}}=\frac{C_{T}}{x^{6}}\left[I_{\mu(\rho} I_{\sigma) \nu}-\frac{\delta_{\mu \nu} \delta_{\rho \sigma}}{3}\right],
$$

CONFORMAL BOUNDS IN THREE DIMENSIONS

From our general conjecture it follows that:

$$
\mathrm{O} \leq \frac{C_{T}}{F_{\mathrm{o}}} \leq\left.\frac{C_{T}}{F_{\mathrm{o}}}\right|_{\mathrm{free} \text { scalar }}=\frac{3}{4 \pi^{2} \log 2-6 \zeta[3]} \simeq 0.14887 \ldots
$$

From our general conjecture it follows that:

$$
\mathrm{O} \leq \frac{C_{T}}{F_{\mathrm{O}}} \leq\left.\frac{C_{T}}{F_{\mathrm{o}}}\right|_{\mathrm{freescalar}}=\frac{3}{4 \pi^{2} \log 2-6 \zeta[3]} \simeq 0.14887 \ldots
$$

■ New three-dimensional version of HM bounds!

CONFORMAL BOUNDS IN THREE DIMENSIONS

ABJM model

* ELLIPSES AND CORNERS

ELLIPSES AND CORNERS

- Moving from the perturbeddisks regime, values of $F(A) / F_{0}$ for more complicated regions exist in some cases, at least for a few theories.

■ Moving from the perturbeddisks regime, values of $F(A) / F_{0}$ for more complicated regions exist in some cases, at least for a few theories.

- The conjectural bounds are always satisfied.

ELLIPSES AND CORNERS

■ Moving from the perturbeddisks regime, values of $F(A) / F_{0}$ for more complicated regions exist in some cases, at least for a few theories.
■ The conjectural bounds are always satisfied.

4. FUTURE

■ Find additional evidence/general proof/counterexample

■ Find additional evidence/general proof/counterexample
■ More restrictive upper bound for SUSY theories?

■ Find additional evidence/general proof/counterexample

- More restrictive upper bound for SUSY theories?
- Analogous conjecture in $d=5$ CFTs?

■ Find additional evidence/general proof/counterexample
■ More restrictive upper bound for SUSY theories?

- Analogous conjecture in $d=5$ CFTs?

■ Bounds on other ratios of seemingly unrelated universal quantities?

The End

