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Entanglement = non-separability (of quantum states)

Consider a finite quantum system made of two subsystems A, B in some state
WJ> € Ha @ Hp.

m If|¢) can be written as [¢)) = |¢),®|d), = |¢)is called separable.
m If [¢)) cannot be written as |¢) = |¢),®|d); = |v) is called entangled.

In the latter case, the state of each subsystem cannot be fully described with-
out the other. The two form a single inseparable entity < taking partial traces
we loose information.
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m S.n(p) > o for any state.
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Given a system composed of two subsystems A and B in some pure state
pas, the Entanglement Entropy of A with respect to B is defined as the von
Neumann entropy of px:

S(A) = Syn(pa) = — Tra palog pa

where py = Trp pag is the reduced density matrix.

m S(A) quantifies “how entangled” is A with B.
m If pap is separable, py will be pure and then S(A) = o.
m By definition it satisfies S(A) = S(B).
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m The natural subsystems in QFT are spacetime regions, e.g., fix some time-
slice &, divide it in two regions A and B:

t
B
ZI/‘“Q)

Associated to A there is an algebra of operators A(A) (associated to B
there is another).

m Given a global state and some region A, one would like to associate a
density matrix to .A(A) and compute functionals such as the EE...
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m In QFT the entanglement entropy of subregions is divergent in any state:
S(A) = +o0.

m Any state is intrinsically and infinitely entangled across A(A) and A(B).
m We can either regulate the theory (e.g., in the lattice) or consider alterna-
tive well-defined measures.

m In a general QFT in d dimensions, in any state, the EE of any spacetime
region A has the structure:

d—1

Ld—2 Ld—4 bt 4 (—1)7 suniv, (odd d)
S(d)A:b +b + 102 —2 -/ '
( ) d 2 5d—2 d b sd—u chLTZ + (_ﬂ"Tsumv log (%) + by, (even d) )

where L is some characteristic length of A and ¢ is a UV regulator.
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Let us focus on d = 3 conformal field theories (CFTs).
m The vacuum EE of some region A is given by:

perimeter(0A)
)

m We will be interested in the universal term, F(A).

m It is not possible to resolve A with more precision than the one deter-
mined by §: perimeter and perimeter-(1 + ad) with a ~ O(1) cannot be
distinguished. This uncertainty pollutes F(A) via the area-law term:

S=3)(A) = b,

F(A) + O(9)

F(A) — F(A) — a - b, - perimeter(0A)
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ENTANGLEMENT IN THREE-DIMENSIONAL CFTS

In order to define F(A) rigorously, we can use mutual information,
I(A,B) = S(A) + S(B) — S(AU B),,

which is well-defined in the continuum.

Robust definition of F(A):

ds

(A A7) = i /8 200,

[Casini, Huerta, Myers, Yale]
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Obvious candidate < A = round disk
m Let F, = F(round disk).

m This coincides with the Euclidean free energy on the round sphere for
genel’al theories: [Casini, Huerta, Myers]

Fo = — |OgZ§3 Y CFT3

m “Natural” to expect that F(A) > F, V region A. Previous evidence from
hOIOgraphic th eories [Alexakis, Mazzeo; Asmmeh,Gibl)ons,Soludukhim], Sma“ deformations OfdiSk
regions w1, regions with sharp features,



WHICH SHAPE MINIMIZES ?

the EMI model...

[PB, Casini, Moreno, Lasso Andino]
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General proof from strong subaddtivitiy of EE.

[PB, Casini, Moreno, Lasso Andino]

F(A)
Fo

vV CFT;, V region A :

>1, with

=1 << A = round disk

F(A)
F

(0]

For regions with ny, connected boundaries, the bound can be improved:

vV CFT;, V region A :

F(A) > NoaFo
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CONFORMAL BOUNDS

m Originally obtained from positivity of energy flux escaping at infinity for
states resulting from local insertions of the stress tensor on the vacuum
= constraints on local correlators’ (TT) and (TTT) coefficients.

[Hofman, Maldacenal

| R|g0 FOUS prOOf USing bootstrap methOdS [Hofman, Li, Meltzer, Poland, Rejon-Barrera]
Prototypical example in d = 4 for trace-anomaly coefficients

. a C
< ‘l‘> B _167T2X4 + 1672 CrarpoC

LV po

Universal bound:

G <€ Y CFT,
a a

a | Mmaxwell free scalar
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¢ Conjecture:
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In d = 4, the universal term is local in nature and appears as the coefficient

Of a logal’lthmlC dlvergel’lce. [Solodukhin; Perlmutter, Rangamani, Rota]
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Waa and Ky, are fixed positive definite and positive semidefinite respectively,
so an analogous conjecture to ours:
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univ univ
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is trivially equivalent to the HM bounds!
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ORBIFOLD THEORIES

Consider a theory O obtained from quotienting some complete theory C by
some finite symmetry group G.

| The mutual |nf0rmat|0n |S g|ven by [Casini, Huerta, Magan, Pontello]
I°(AT,A7) = I°(AT,A7) — naalog|G| +A, A>o0
m Using the definition of F(A) from the MI, one finds

F(A) F(A)lc + "2 log |G| _ F(A)
Fo lo = Folo+3loglG] — Fo |g

Noa <

m Hence, the ratio F(A)/F, for the parent theory is always greater than the
one for the orbifold theory.
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ORBIFOLD THEORIES

m The same happens for infinite symmetry groups.

m The Maxwell theory is an orbifold of the free scalar under R implementing
¢ — ¢ +0.

m One has: F(A)|yaxwet = F(A)lfree scatar - Non/4 log(— log(4)), and from this:

F(A)

N = Ny,
Fs 9

Maxwell

m Hence, the lower bound is equivalent to the improved general bound for
topologically non-trivial regions.
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n < F(A)
" ="F, Fo

V CFT3; V region A

free scalar

Lower bound not conjectural (follows from the general shape-dependence results).
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m Consider region with two disconnected components: A = A, UA,.
m Then, S(A, UA,) = S(A,) + S(A,) — I(A,,A,). If A, and A, are disks:
F(AUAY) 1A AY)
Fo Fo
m For long separations, free scalar provides greatest value of I(A,,A,). In
general. [Cardy; Agon, Faulkner]
I(Ar,A;) ~ |Fa,—ra,| %A where Acrr, = smallest scaling dimension
m Now, V CFT; one has
(d —2)
2

m Then, F(A, UA,)/F, is absolutely maximized by the free scalar.
m Also holds for general shapes if it holds for A, and A, individually.

(unitarity bound)

ACFT3 > Afree scalar —
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m Let A,(4,¢) be the causal cone of some disk region A to which one has
removed a conical frustrum of angle e and radial height §. Let A, be some
other disk region and A = A,(d,¢) U A,. Then, the so-called “pinching
property” implies that: icusin reste, roroba)

: =2, (interacting CFTs)
(o]
F(li li A
(lime_o lims_0 A) L. I(A,A,) . (free CFTs)
Fo FO

regardless of the separation between A, and A,.

m In this case, F(A)/F, is smaller for any interacting CFT than for any free
one.
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m Now, strong numerical evidence suggests that:
[Agon, PB, Lasso Andino, Vilar Lopez]
,(A17A2) I(A17A2)
<
Fo Fo

free fermion free scalar

for arbitrary spatial regions A, A,.
m Once again the free scalar provides an absolute maximum for F(A)/Fo.
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SMALL DEFORMATIONS OF A DISK REGION

m Consider general slightly deformed disks

LRQ) — N % ;[06,@) cos(40) + Qg (s) sin(€9)], (e 1)

| Then, at leadlng Order |n 6, we have [Mezei; Faulkner, Leigh, Parrikar]

F(A) ™ C
=1+ 2L Y UP 1) [a3+ ) &,

where C; controls, for a general CFT, the stress-tensor two-point

function,
C: 5W5p0]
3

(T 00T OV = 5 oo -

9
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CONFORMAL BOUNDS IN THREE DIMENSIONS

From our general conjecture it follows that:

o<l
~Fo T Fo

3

free scalar - 47—‘-2 |0g2 o 6C[3]

~ 0.14887 . ..

m New three-dimensional version of HM bounds!




CONFORMAL BOUNDS IN THREE DIMENSIONS

c/a CT/F()

free scalar free scalar O(N)

WZ XZ(N)

free fermion GN

holography

free fermion

~ n C| »n

holography
g )

Maxwell

Maxwell



CONFORMAL BOUNDS IN THREE DIMENSIONS

Cr/Fy ’U(N)ka(N)Ak ABJM

ABJM model
0.14 -
0.12 e k=1 e k=10 — Free scalar
A k=2 ® k=20 — Holography
0.10+
m k=3 e k=30 — Maxwell
0.08 1, e
e °
0.06 a . 2 2 8 2 8
) o = .
*°
0.04 $
]
0.02+
0
2 4 5 6 8 9 10
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m Moving from the perturbed-
disks regime, values of
F(A)/F, for more complicated
regions exist in some cases,
at least for a few theories.

m The conjectural bounds are
always satisfied.
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FUTURE

m Find additional evidence/general proof/counterexample

m More restrictive upper bound for SUSY theories?

m Analogous conjecture in d = 5 CFTs?

m Bounds on other ratios of seemingly unrelated universal quantities?



THE END
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