β-symmetry and α^{\prime} corrections

Diego Marqués
IAFE-CONICET-UBA
Buenos Aires, Argentina

GRASS-SYMBHOL meeting, Avila, Nov 2023

Based on 2209.02079 and 2307.02537, Baron, DM, Nuez and previous work with
Baron, Bedoya, Codina, Hohm, Lescano, F.-Melgarejo and Nuñez

- A map to perturbative α^{\prime} corrections in string theory
- The role of T-duality in constraining higher-derivative interactions
- Progress and obstructions in T-duality covariant α^{\prime} corrections
- The β-symmetry of supergravity

The focus is on

- The first orders of perturbative tree-level α^{\prime} corrections.
- Scattering amplitudes
- Beta functions
- SUSY
- Neither g_{s} corrections nor non-perturbative effects.
- NSNS sector: metric, two-form and dilaton.

Universal starting point

Common sector for all strings

$$
S=\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

Universal starting point

Common sector for all strings

$$
S=\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

The α^{\prime} corrections depend on

- The string: bosonic, heterotic, type II
- The scheme: ambiguous versus unambiguous terms

First order α^{\prime} corrections

Nepomechie; Gross, Harvey, Martinec and Rhom 1985
Metsaev and Tseytlin, 1987

$$
\begin{aligned}
S_{M T}=\int & d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right. \\
& +\frac{a-b}{4} H^{\mu \nu \rho} \Omega_{\mu \nu \rho} \\
& \left.-\frac{a+b}{8}\left(R \mathrm{iem}^{2}-\frac{1}{2} H H R \mathrm{iem}+\frac{1}{24} H^{4}-\frac{1}{8} H_{\mu \nu}^{2} H^{2 \mu \nu}\right)\right]
\end{aligned}
$$

First order α^{\prime} corrections

Nepomechie; Gross, Harvey, Martinec and Rhom 1985

Metsaev and Tseytlin, 1987

$$
\begin{aligned}
S_{M T}=\int & d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right. \\
& +\frac{a-b}{4} H^{\mu \nu \rho} \Omega_{\mu \nu \rho} \\
& \left.-\frac{a+b}{8}\left(\text { Riem }^{2}-\frac{1}{2} H H R \text { iem }+\frac{1}{24} H^{4}-\frac{1}{8} H_{\mu \nu}^{2} H^{2 \mu \nu}\right)\right]
\end{aligned}
$$

	Bosonic	Heterotic	HSZ	Type II
$a+b$	$-2 \alpha^{\prime}$	$-\alpha^{\prime}$	0	0
$a-b$	0	$-\alpha^{\prime}$	$-2 \alpha^{\prime}$	0

First order α^{\prime} corrections

Bergshoeff and de Roo, 1989

$$
\begin{aligned}
S_{B d R}=\int d x \sqrt{-g} e^{-2 \phi}[R & +4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2} \\
& \left.+\frac{a}{8} R_{\mathrm{iem}}^{(-) 2}+\frac{b}{8} R_{\mathrm{iem}}^{(+) 2}\right]
\end{aligned}
$$

First order α^{\prime} corrections

Bergshoeff and de Roo, 1989

$$
\begin{aligned}
S_{B d R}=\int d x \sqrt{-g} e^{-2 \phi}[R & +4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2} \\
& \left.+\frac{a}{8} R_{\mathrm{iem}}^{(-) 2}+\frac{b}{8} R_{\mathrm{iem}}^{(+) 2}\right]
\end{aligned}
$$

Hiddenly contains higher orders

$$
\begin{array}{ll}
\omega^{(\pm)}=\omega \pm \frac{1}{2} \widehat{H}, & \widehat{H}=H-\frac{3}{2} a \Omega^{(-)}+\frac{3}{2} b \Omega^{(+)} \\
& \Omega^{(\pm)}=\operatorname{tr}\left[\omega^{(\pm)} d \omega^{(\pm)}+\frac{2}{3} \omega^{(\pm) 3}\right]
\end{array}
$$

Second order α^{\prime} corrections

Metsaev and Tseytlin, 1987

$$
L_{\text {bos }}^{(2)}=R_{\mathrm{iem}}^{3}+\text { cubic Gauss Bonnet }
$$

Naseer and Zwiebach; DM and Lescano 2016

$$
L_{H S Z}^{(2)}=-L_{\text {bos }}^{(2)}+(\text { Chern Simons })^{2}
$$

Metsaev and Tseytlin, 1987; Bergshoeff and de Roo, 1989

$$
L_{\text {het }}^{(2)}=(\text { Chern Simons })^{2}
$$

Metsaev and Tseytlin, 1987

$$
L_{\text {type II }}^{(2)}=\text { none }
$$

Cubic order α^{\prime} corrections

Unknown for bosonic and HSZ.

Cai and Nuñez; Gross and Sloan 1986

$$
L_{\text {het }}^{(3)}=\text { Gauge symmetic } R_{\text {iem }}^{4}+\zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{\text {iem }}^{4}
$$

Gross and Witten; Grisaru and Zanon 1986

$$
L_{t y p e ~ / / ~}^{(3)}=\zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{\text {iem }}^{4}
$$

T-duality and α^{\prime}

Sen 1991: tori reductions yield continuous $O(d, d)$ symmetry to all orders in α^{\prime}.

Bergshoeff, Janssen and Ortin 1995: Circle reduction of heterotic string.

Meissner, Kaloper and Meissner 1997: Cosmological and circle reductions of bosonic string.

Baron, Melgarejo, DM and Nuñez 2017: Flux compactification of the bi-parametric action.

T-duality and α^{\prime}

Sen 1991: tori reductions yield continuous $O(d, d)$ symmetry to all orders in α^{\prime}.

Bergshoeff, Janssen and Ortin 1995: Circle reduction of heterotic string.

Meissner, Kaloper and Meissner 1997: Cosmological and circle reductions of bosonic string.

Baron, Melgarejo, DM and Nuñez 2017: Flux compactification of the bi-parametric action.

In this talk I will discuss how to assess T-duality without compactifying.

	Supergravity	DFT
Global Symmetries	GL(D)	O-shifts

Double Field Theory

	Supergravity	DFT
Global Symmetries	GL(D)	O-shifts

Gauge fixing and solving the strong constraint

$$
\left.\begin{array}{rl}
\delta E & =\widehat{\mathcal{L}}_{\xi} E+E \cdot \Lambda \\
\delta d & =\xi \cdot d-\frac{1}{2} \partial \cdot \xi
\end{array}\right\} \quad \rightarrow \quad\left\{\begin{array}{l}
\delta e=L_{\xi} e+e \cdot \Lambda \\
\delta B=L_{\xi} B+d \lambda \\
\delta \phi=L_{\xi} \phi
\end{array}\right.
$$

The Green-Schwarz transformation

The three-form in the BdR scheme

$$
\widehat{H}=d B-\frac{3}{2} a \Omega^{(-)}+\frac{3}{2} b \Omega^{(+)}
$$

is Lorentz invariant due to the Green-Schwarz transformation of B

$$
\begin{aligned}
\delta e^{a} & =L_{\xi} e+e \cdot \Lambda \\
\delta \Omega^{(\pm)} & =L_{\xi} \Omega^{(\pm)}+d \operatorname{tr}\left(\omega^{(\pm)} d \Lambda\right) \\
\delta B & =L_{\xi} B+d \lambda+\frac{a}{2} \operatorname{tr}\left(\omega^{(-)} d \Lambda\right)-\frac{b}{2} \operatorname{tr}\left(\omega^{(+)} d \Lambda\right)
\end{aligned}
$$

The Green-Schwarz transformation

The three-form in the BdR scheme

$$
\widehat{H}=d B-\frac{3}{2} a \Omega^{(-)}+\frac{3}{2} b \Omega^{(+)}
$$

is Lorentz invariant due to the Green-Schwarz transformation of B

$$
\begin{aligned}
\delta e^{a} & =L_{\xi} e+e \cdot \Lambda \\
\delta \Omega^{(\pm)} & =L_{\xi} \Omega^{(\pm)}+d \operatorname{tr}\left(\omega^{(\pm)} d \Lambda\right) \\
\delta B & =L_{\xi} B+d \lambda+\frac{a}{2} \operatorname{tr}\left(\omega^{(-)} d \Lambda\right)-\frac{b}{2} \operatorname{tr}\left(\omega^{(+)} d \Lambda\right)
\end{aligned}
$$

A hint that something is missing in DFT.

The Green-Schwarz transformation

The generalized Green-Schwarz transformation DM and Nunez 2015
$\delta E_{M}{ }^{A}=\widehat{\mathcal{L}}_{\xi} E_{M}{ }^{A}+E_{M}{ }^{B} \Lambda_{B}{ }^{A}+\left(a \partial_{[M} \Lambda_{\underline{B}} \underline{C}^{C} F_{\bar{N}] \underline{C}}{ }^{\underline{B}}-b \partial_{[\bar{M}} \Lambda_{\bar{B}}{ }^{\bar{C}} F_{\underline{N] \bar{C}}}{ }^{\bar{B}}\right) E^{N A}$

- Exactly reproduces the Green-Schwarz transformation of B.
- The anomalous transformation of e can be redefined away.
- Finite version: Borsato and Wulff 2020.

The Green-Schwarz transformation

- Preserves the field constraints and closes to first order

$$
\left[\delta_{\left(\xi_{1}, \Lambda_{1}\right)}, \delta_{\left(\xi_{2}, \Lambda_{2}\right)}\right]=\delta_{\left(\xi_{21}, \wedge_{21}\right)}
$$

w.r.t. the brackets

$$
\begin{aligned}
\xi_{12}^{M}= & {\left[\xi_{1}, \xi_{2}\right]_{(C)}^{M}-\frac{a}{2} \Lambda_{\left[1 \underline{A}^{B}\right.} \partial^{M} \Lambda_{2] \underline{B}}{ }^{A}+\frac{b}{2} \Lambda_{[1 \bar{A}} \bar{B} \partial^{M} \Lambda_{2] \bar{B}} \bar{A} } \\
\Lambda_{12 A B}= & 2 \xi_{[1}^{P} \partial_{P} \Lambda_{2]} A B \\
& +a \partial_{[\bar{A}} \Lambda_{1}^{C D}{\Lambda_{\bar{B}]}} \Lambda_{2} \underline{A}{ }^{C} \Lambda_{2]}+a \partial_{[\underline{[B}} \Lambda_{1} \Lambda_{1}^{C D} \partial_{\underline{B}]} \Lambda_{2 D C} \\
& -b \partial_{[\underline{A}} \Lambda_{1}^{\overline{C D}} \partial_{\underline{B}]} \Lambda_{2 \overline{D C}}-b \partial_{[\bar{A}} \Lambda_{1}^{\overline{C D}} \partial_{\bar{B}]} \Lambda_{2 \overline{D C}}
\end{aligned}
$$

The Green-Schwarz transformation

- Induces a first-order correction to the action

$$
S=\int d X e^{-2 d}\left(\mathcal{R}+a \mathcal{R}^{(0,1)}+b \mathcal{R}^{(1,0)}\right)
$$

The details are not important. We only need to know:

- $\mathcal{R}^{(0,1)}$ and $\mathcal{R}^{(1,0)}$ depend on the generalized fluxes so are scalars under generalized diffeomorphisms.
- $\delta_{\Lambda}^{(1)} \mathcal{R}+\delta_{\Lambda}^{(0)}\left(a \mathcal{R}^{(0,1)}+b \mathcal{R}^{(1,0)}\right)=0$

The Green-Schwarz transformation

- Induces a first-order correction to the action

$$
S=\int d X e^{-2 d}\left(\mathcal{R}+a \mathcal{R}^{(0,1)}+b \mathcal{R}^{(1,0)}\right)
$$

The details are not important. We only need to know:

- $\mathcal{R}^{(0,1)}$ and $\mathcal{R}^{(1,0)}$ depend on the generalized fluxes so are scalars under generalized diffeomorphisms.
- $\delta_{\Lambda}^{(1)} \mathcal{R}+\delta_{\Lambda}^{(0)}\left(a \mathcal{R}^{(0,1)}+b \mathcal{R}^{(1,0)}\right)=0$
- After section, gauge fixing and field redefinitions it reproduces exactly the Bergshoeff-de Roo action

$$
\mathcal{R}+a \mathcal{R}^{(0,1)}+b \mathcal{R}^{(1,0)}=R+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}+\frac{a}{8} R_{\mathrm{iem}}^{(-) 2}+\frac{b}{8} R_{\mathrm{iem}}^{(+) 2}
$$

The Green-Schwarz transformation

$$
\begin{array}{llll}
& & & \mathcal{R}^{(3,0)} \\
\mathcal{R}^{(0,0)} & \mathcal{R}^{(1,0)} \\
& \mathcal{R}^{(0,1)}
\end{array} \mathcal{R}^{(2,0)} \begin{array}{ll}
& \mathcal{R}^{(2,1)} \\
\mathcal{R}^{(1,1)} & \ldots \\
& \\
& \\
& \mathcal{R}^{(0,2)} \\
& \\
& \\
& \mathcal{R}^{(0,2)} \\
& \ldots \\
& \ldots
\end{array}
$$

The Green-Schwarz transformation

To find higher orders there is another idea in supergravity that can be generalized.

The Bergshoeff-de Roo identification

Start with lowest order heterotic supergravity

$$
\mathcal{L}=R+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}-\frac{1}{4} F^{2}+\text { fermions }
$$

where

$$
\widehat{H}=d B+C S(A)+\text { fermions }
$$

The Bergshoeff-de Roo identification

Bergshoeff and de Roo 1988 realized that

gauge fields	A	\leftrightarrow	$\omega^{(-)}$	spin con. w/torsion
gauginos	χ	\leftrightarrow	$D \psi$	gravitino curvature

The Bergshoeff-de Roo identification

Bergshoeff and de Roo 1988 realized that

gauge fields	A	\leftrightarrow	$\omega^{(-)}$	spin con. w/torsion
gauginos	χ	\leftrightarrow	$D \psi$	gravitino curvature

based on supersymmetry

$$
\begin{array}{llrl}
\delta A=\bar{\epsilon} \gamma \chi & \leftrightarrow & \delta \omega^{(-)}=\bar{\epsilon} \gamma D \psi \\
\delta \chi=F_{\mu \nu} \gamma^{\mu \nu} \epsilon & \leftrightarrow & \delta D \psi=R_{-\mu \nu} \gamma^{\mu \nu} \epsilon
\end{array}
$$

The pair $\left(\omega^{(-)}, D \psi\right)$ effectively behaves as a gauge multiplet.

The Bergshoeff-de Roo identification

First order corrections are obtained by including extra Lorentz multiplets and identifying them with $\left(\omega^{(-)}, D \psi\right)$

$$
\mathcal{L}=R+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}-\frac{1}{4} F^{2}+\frac{1}{4} R^{(-) 2}+\text { fermions }
$$

where

$$
\widehat{H}=d B+C S(A)-C S\left(\omega^{(-)}\right)+\text {fermions }
$$

The Bergshoeff-de Roo identification

First order corrections are obtained by including extra Lorentz multiplets and identifying them with $\left(\omega^{(-)}, D \psi\right)$

$$
\mathcal{L}=R+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}-\frac{1}{4} F^{2}+\frac{1}{4} R^{(-) 2}+\text { fermions }
$$

where

$$
\widehat{H}=d B+C S(A)-C S\left(\omega^{(-)}\right)+\text {fermions }
$$

CS $\left(\omega^{(-)}\right)$deforms the transformation of $\omega^{(-)}$itself, rendering the identification ill-defined to second order. Higher orders require a Noether procedure Bergshoeff and de Roo 1989.

The Bergshoeff-de Roo identification

Gauge multiplets can be included in DFT through extensions of the duality group and local symmetries Hohm and Kwak 2011

$$
\begin{gathered}
\mathcal{G}=O(D, D+k), \quad \mathcal{H}=\underline{O(D)} \times \overline{O(D+k)} \\
\mathcal{E} \rightarrow e \oplus B \oplus A, \quad \Psi \rightarrow \psi \oplus \chi
\end{gathered}
$$

Generalized diffeomorphisms $\rightarrow G L(D)$ diffs \oplus B-shifts $\oplus \mathcal{K}$

The Bergshoeff-de Roo identification

Gauge multiplets can be included in DFT through extensions of the duality group and local symmetries Hohm and Kwak 2011

$$
\begin{gathered}
\mathcal{G}=O(D, D+k), \quad \mathcal{H}=\underline{O(D)} \times \overline{O(D+k)} \\
\mathcal{E} \rightarrow e \oplus B \oplus A, \quad \Psi \rightarrow \psi \oplus \chi
\end{gathered}
$$

Generalized diffeomorphisms $\rightarrow G L(D)$ diffs \oplus B-shifts $\oplus \mathcal{K}$
One can then implement the identification
Bedoya, DM and Nuñez; Coimbra, Minasian, Triendl and Waldram; Lee 2014

$$
\begin{array}{rll}
\mathcal{K} & \leftrightarrow & O(D) \in \overline{O(D+k)} \\
A & \leftrightarrow & \omega^{(-)} \\
\chi & \leftrightarrow & D \psi
\end{array}
$$

The Bergshoeff-de Roo identification

Instead of decomposing $O(D, D+k)$ w.r.t. $G L(D)$, we preserve $O(D, D)$ covariance, Hohm, Sen and Zwiebach 2014

$$
\mathcal{E} \rightarrow E \oplus \mathcal{A}, \quad E \in O(D, D), \quad E^{M \bar{A}} \mathcal{A}_{M}{ }^{\alpha}=0
$$

The Bergshoeff-de Roo identification

Instead of decomposing $O(D, D+k)$ w.r.t. $G L(D)$, we preserve $O(D, D)$ covariance, Hohm, Sen and Zwiebach 2014

$$
\mathcal{E} \rightarrow E \oplus \mathcal{A}, \quad E \in O(D, D), \quad E^{M \bar{A}} \mathcal{A}_{M}^{\alpha}=0
$$

Only then one should look for a generalized Bergshoeff-de Roo identification

$$
A_{\mu}{ }^{\alpha} \leftrightarrow \omega_{\mu a b}^{(-)} \mid \quad \mathcal{A}_{M}^{\alpha} \leftrightarrow \text { ??? }
$$

The Bergshoeff-de Roo identification

There are generalizations of everything in DFT:

$$
\begin{array}{rll}
A_{\mu}{ }^{\alpha} & \leftrightarrow & \mathcal{A}_{\underline{A}}{ }^{\alpha} \\
\omega_{\mu b c}^{(-)} & \leftrightarrow & \text { Generalized spin connection } \\
O(D) & \leftrightarrow & O(D) \times \overline{O(D+k)}
\end{array}
$$

The Bergshoeff-de Roo identification

The correct answer turns out to be... Baron, Lescano and DM 2018

$$
\begin{array}{rll}
A_{\mu}^{\alpha} & \leftrightarrow & \mathcal{A}_{\underline{A}}^{\alpha} \\
\omega_{\mu b C}^{(-)} & \leftrightarrow & \mathcal{F}_{\underline{A B C}} \\
O(D) & \leftrightarrow & \overline{O(D+k)}
\end{array}
$$

The Bergshoeff-de Roo identification

From the $O(D, D+k)$ gen diffs we get

$$
\delta \mathcal{A}_{\underline{A} \alpha}=\widehat{\mathcal{L}}_{\xi} \mathcal{A}_{\underline{A} \alpha}-\mathcal{D}_{\underline{A}} \lambda_{\alpha}+\left[\lambda, \mathcal{A}_{\underline{A}}\right]_{\alpha}+\mathcal{A}_{\underline{D} \alpha} \Lambda \underline{\underline{D}}_{\underline{A}}
$$

Which transforms as a generalized spin connection

$$
\delta \mathcal{F}_{\underline{A B C}}=\widehat{\mathcal{L}}_{\xi} \mathcal{F}_{\underline{A B C}}-\mathcal{D}_{\underline{A}} \Lambda_{\overline{\mathcal{B C}}}+\left[\Lambda, \mathcal{F}_{A}\right]_{\overline{\mathcal{B C}}}+\mathcal{F}_{\underline{D} \overline{B C}} \Lambda \underline{D}_{\underline{A}}
$$

The Bergshoeff-de Roo identification

From the $O(D, D+k)$ gen diffs we get

$$
\delta \mathcal{A}_{\underline{A} \alpha}=\widehat{\mathcal{L}}_{\xi} \mathcal{A}_{\underline{A} \alpha}-\mathcal{D}_{\underline{A}} \lambda_{\alpha}+\left[\lambda, \mathcal{A}_{\underline{A}}\right]_{\alpha}+\mathcal{A}_{\underline{\underline{D}} \alpha} \Lambda \underline{\underline{D}}_{\underline{A}}
$$

Which transforms as a generalized spin connection

$$
\delta \mathcal{F}_{\underline{A B C}}=\widehat{\mathcal{L}}_{\xi} \mathcal{F}_{\underline{A B C}}-\mathcal{D}_{\underline{A}} \Lambda_{\overline{\mathcal{B C}}}+\left[\Lambda, \mathcal{F}_{A}\right]_{\overline{\mathcal{B C}}}+\mathcal{F}_{\underline{D} \overline{\mathcal{B C}}} \Lambda \underline{D}_{\underline{A}}
$$

The generalized Bergshoeff-de Roo identification is then Baron, Lescano and DM 2018

$$
\begin{aligned}
\mathcal{K} & =\overline{O(D+k)} \\
-g \lambda_{\alpha}\left(t^{\alpha}\right)_{\overline{\mathcal{A B}}} & =\wedge_{\overline{\mathcal{A B}}} \\
-g \mathcal{A}_{\underline{A} \alpha}\left(t^{\alpha}\right)_{\overline{\mathcal{B C}}} & =\mathcal{F}_{\underline{A B C}}[\mathcal{E}[E, \mathcal{A}]]
\end{aligned}
$$

The Bergshoeff-de Roo identification

- It preserves $O(D, D)$ covariance.
- It is necessarily generalized.
- It is exact, no need for a Noether procedure.
- It gives an iterative procedure to compute an infinite tower of higher-derivatives.
- It doesn't need supersymmetry, but is consistent with it

$$
\begin{aligned}
-g \mathcal{A}_{\underline{A} \alpha}\left(t^{\alpha}\right)_{\overline{\mathcal{B C}}} & =\mathcal{F}_{\underline{A \overline{B C}}}-\frac{1}{2} \bar{\Psi}_{\overline{\mathcal{B}}} \gamma_{\underline{A}} \psi_{\overline{\mathcal{C}}} \\
g \Psi_{\overline{\mathcal{D}}} \mathcal{E}_{\alpha} \overline{\mathcal{D}}\left(t^{\alpha}\right)_{\overline{A B}} & =2\left[\nabla_{[\overline{\mathcal{A}}} \psi_{\overline{\mathcal{B}}]}\right]_{\text {det. }} .
\end{aligned}
$$

The Bergshoeff-de Roo identification

It naturally induces an all-order generalized Green-Schwarz transformation for the $O(D, D)$ generalized frame

$$
\delta E_{M \underline{A}}=\partial_{\bar{M}} \lambda \cdot \mathcal{A}_{\underline{A}} \rightarrow \partial_{\bar{M}} \wedge \cdot \mathcal{F}_{\underline{A}}
$$

The Bergshoeff-de Roo identification

It naturally induces an all-order generalized Green-Schwarz transformation for the $O(D, D)$ generalized frame

$$
\delta E_{M \underline{A}}=\partial_{\bar{M}} \lambda \cdot \mathcal{A}_{\underline{A}} \rightarrow \partial_{\bar{M}} \wedge \cdot \mathcal{F}_{\underline{A}}
$$

Perturbatively we get...

$$
\begin{aligned}
& \delta E_{M^{\underline{A}}}=\widehat{\mathcal{L}}_{\xi} E_{M} \underline{A}^{\underline{A}}+E_{M^{\underline{B}}} \Lambda_{\underline{B}}^{\underline{A}}+\frac{b}{2} \partial_{\bar{M}} \wedge^{\overline{B C}} F^{A} \frac{\overline{B C}}{}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+F^{\underline{C}}{ }_{\overline{E F}} \partial_{\bar{B}} \Lambda^{\bar{E}}{ }_{\bar{G}}\left(F^{\underline{A} \underline{C D}} F^{\underline{D} \overline{G F}}-\partial^{A} F_{\underline{C}} \overline{\overline{G F}}+2 \partial_{\underline{C}} F^{\underline{A} \overline{G F}}\right)-F^{A}{ }_{\overline{E F}} \partial_{\bar{B}}\left(\partial^{\underline{C}} \Lambda^{\overline{E D}} F_{\underline{C}} \overline{\bar{D}}\right)\right]+\ldots
\end{aligned}
$$

The Bergshoeff-de Roo identification

The idea can be extended to account for the two parameter (a, b) family of theories Baron and DM 2020

$$
\begin{array}{|ccc|}
& & \mathcal{R}^{(2,0)} \\
\mathcal{R}^{(0,0)} & \mathcal{R}^{(1,0)} & \mathcal{R}^{(1,1)} \\
& \mathcal{R}^{(0,1)} & \mathcal{R}^{(3,0)} \\
& & \mathcal{R}^{(0,2)} \\
& & \mathcal{R}^{(2,1)} \\
& \ldots \\
\mathcal{R}^{(1,2)} & \ldots \\
\mathcal{R}^{(0,3)} & \ldots
\end{array}
$$

The Bergshoeff-de Roo identification

The idea can be extended to account for the two parameter (a, b) family of theories Baron and DM 2020

This offers the geometrization of an infinite tower of higher-derivatives that includes (a sector of) the heterotic, the bosonic and HSZ.

The third order α^{\prime} corrections

The following step naturally would be moving to the third order

$$
\begin{array}{ll|l|l|l}
& & & \\
\mathcal{R}^{(0,0)} & \mathcal{R}^{(1,0)} & \mathcal{R}^{(2,0)} & \mathcal{R}^{(3,0)} & \ldots \\
& \mathcal{R}^{(0,1)} & \mathcal{R}^{(1,1)} & \ldots \\
& & \mathcal{R}^{(0,2)} & \mathcal{R}^{(1,2)} & \ldots \\
\mathcal{R}^{(0,3)} & \ldots \\
& \ldots
\end{array}
$$

The third order α^{\prime} corrections

The following step naturally would be moving to the third order

$$
\begin{array}{lll|l|l}
& & & \mathcal{R}^{(2,0} & \mathcal{R}^{(3,0)} \\
& & \ldots \\
\mathcal{R}^{(0,0)} & \mathcal{R}^{(1,0)} & \mathcal{R}^{(1,1)} & \mathcal{R}^{(2,1)} & \ldots \\
& \mathcal{R}^{(0,1)} & \ldots \\
& & \mathcal{R}^{(0,2)} & \mathcal{R}^{(1,2)} & \ldots \\
& & & \ldots \\
& & \ldots
\end{array}
$$

These should account for the gauge symmetric $R_{\text {iem }}^{4}$ couplings of the heterotic string

The third order α^{\prime} corrections

The following step naturally would be moving to the third order

$$
\begin{array}{lll|l|l}
& & & \mathcal{R}^{(2,0)} & \mathcal{R}^{(3,0)} \\
\mathcal{R}^{(0,0)} & \mathcal{R}^{(1,0)} & \ldots \\
& \mathcal{R}^{(0,1)} & \mathcal{R}^{(1,1)} & \mathcal{R}^{(2,1)} & \ldots \\
& & \mathcal{R}^{(0,2)} & \ldots \\
\mathcal{R}^{(1,2)} & \ldots \\
& & \ldots
\end{array}
$$

These should account for the gauge symmetric $R_{\text {iem }}^{4}$ couplings of the heterotic string, but not the universal interactions

$$
\alpha^{\prime 3} \zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{i e m}^{4}
$$

The third order α^{\prime} corrections

Since $\zeta(3)$ is irrational, these interactions require a new $\mathcal{O}\left(\alpha^{\prime 3}\right)$ parameter

$$
\alpha^{\prime 3} \zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{i e m}^{4}
$$

The third order α^{\prime} corrections

Since $\zeta(3)$ is irrational, these interactions require a new $\mathcal{O}\left(\alpha^{\prime 3}\right)$ parameter

$$
\alpha^{\prime 3} \zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{i e m}^{4}
$$

In other words, we need a new Lorentz invariant starting at third order

$$
\delta L=\left(\delta^{(0)}+c \delta^{(3)}\right)\left[L^{(0)}+c L^{(3)}\right]=c\left[\delta_{E O M}^{(3)} L^{(0)}+\delta^{(0)} L^{(3)}\right]+\mathcal{O}\left(c^{2}\right)=0
$$

The third order α^{\prime} corrections

Since $\zeta(3)$ is irrational, these interactions require a new $\mathcal{O}\left(\alpha^{\prime 3}\right)$ parameter

$$
\alpha^{\prime 3} \zeta(3)\left(t_{8} t_{8}-\frac{1}{8} \epsilon_{10} \epsilon_{10}\right) R_{i e m}^{4}
$$

In other words, we need a new Lorentz invariant starting at third order
$\delta L=\left(\delta^{(0)}+c \delta^{(3)}\right)\left[L^{(0)}+c L^{(3)}\right]=c\left[\begin{array}{c}\delta^{(3)} L^{(0)} \\ E(0) \\ (0)\end{array} L^{(3)}\right]+\mathcal{O}\left(c^{2}\right)=0$
No Go: under certain assumptions, there is no such invariant in the background independent frame formulation of DFT: Hronek and Wulff 2021.

β-symmetry

The D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

β-symmetry

The D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

when compactified on T^{d} leads to the $n=D-d$ dimensional action
$S=v \int d^{n} x \sqrt{G}\left(R_{n}+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}-\frac{1}{4} F^{2}+\frac{1}{8}(\partial \mathcal{M})^{2}+\ldots\right)$

β-symmetry

The D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

when compactified on T^{d} leads to the $n=D-d$ dimensional action
$S=v \int d^{n} x \sqrt{G}\left(R_{n}+4(\partial \phi)^{2}-\frac{1}{12} \widehat{H}^{2}-\frac{1}{4} F^{2}+\frac{1}{8}(\partial \mathcal{M})^{2}+\ldots\right)$
gaining a symmetry enhancement

$$
O(d, d): G L(d) \otimes \mathrm{b}-\text { shifts } \otimes \beta-\text { transformations }
$$

β-symmetry

The Kaluza-Klein procedure consists of three steps

- Assume isometries

β-symmetry

The Kaluza-Klein procedure consists of three steps

- Assume isometries
- KK reparametrization (make local symmetries manifest)

β-symmetry

The Kaluza-Klein procedure consists of three steps

- Assume isometries
- KK reparametrization (make local symmetries manifest)
- Higher derivative field redefinitions + Lorentz enhancement (make $O(d, d)$ manifest)

β-symmetry

The Kaluza-Klein procedure consists of three steps

- Assume isometries
- KK reparametrization (make local symmetries manifest)
- Higher derivative field redefinitions + Lorentz enhancement (make $O(d, d)$ manifest)

The last two items are just field redefinitions. If not implemented, the local and global symmetries would still be there, though hidden.

β-symmetry

So the D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

under the assumption of isometries is the n dimensional supergravity action (in a scheme that hides the local and global symmetries).

β-symmetry

So the D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

under the assumption of isometries is the n dimensional supergravity action (in a scheme that hides the local and global symmetries).

As such, the assumption of isometries must render the D dimensional action β-invariant.

β-symmetry

So the D dimensional supergravity action

$$
S=\int d^{D} x \sqrt{G}\left(R_{D}+4(\partial \Phi)^{2}-\frac{1}{12} H^{2}+\ldots\right)
$$

under the assumption of isometries is the n dimensional supergravity action (in a scheme that hides the local and global symmetries).

As such, the assumption of isometries must render the D dimensional action β-invariant.

Good news: the emergence of $O(d, d)$ under toroidal compactifications can be assessed in D dimensions without going through the KK procedure.

β-symmetry

The lowest order β-transformations are $\left(E_{\mu \nu}=G_{\mu \nu}+B_{\mu \nu}\right)$

$$
\delta E_{\mu \nu}=-E_{\mu \rho} \beta^{\rho \sigma} E_{\sigma \nu}, \quad \delta \Phi=\frac{1}{2} \beta^{\mu \nu} E_{\mu \nu}
$$

And the assumption of isometries is encoded in the constraint

$$
\beta^{\mu \nu} \partial_{\nu} \cdots=0
$$

enforcing the orthogonality between external derivatives and internal β.

β-symmetry

In the frame formulation, β-symmetry mixes all curvatures

$$
\begin{aligned}
& \delta \omega_{c a b}=\beta_{[a}{ }^{d} H_{b] c d}-\frac{1}{2} \beta_{c}{ }^{d} H_{a b d}, \quad \delta H_{a b c}=-6 \omega^{d}{ }_{[a b} \beta_{c] d} \\
& \delta \nabla_{a} \Phi=\frac{1}{2} \beta^{c d} H_{a c d}
\end{aligned}
$$

β-symmetry

In the frame formulation, β-symmetry mixes all curvatures

$$
\begin{aligned}
& \delta \omega_{c a b}=\beta_{[a}{ }^{d} H_{b] c d}-\frac{1}{2} \beta_{c}{ }^{d} H_{a b d}, \quad \delta H_{a b c}=-6 \omega^{d}{ }_{[a b} \beta_{c] d} \\
& \delta \nabla_{a} \Phi=\frac{1}{2} \beta^{c d} H_{a c d}
\end{aligned}
$$

Demanding β-invariance

$$
\begin{aligned}
0= & \delta\left(R+m(\nabla \phi)^{2}+n \square \phi+p H^{2}\right) \\
= & \beta^{c d} \nabla^{b} H_{b c d}\left(-2+\frac{n}{2}\right)+\beta^{c d} \omega_{c a b} H_{d}^{a b}(5-n+12 p) \\
& +\beta^{c d} H_{b c d} \nabla^{b} \phi(m+n)
\end{aligned}
$$

fixes the two-derivative action

$$
m=-4, \quad n=4, \quad p=-\frac{1}{12}
$$

β-symmetry

To first order in α^{\prime} the β-symmetry receives higher derivative corrections (BdR scheme)

$$
\begin{aligned}
\delta^{(1)} e_{a b}= & \frac{a+b}{8} \beta_{(a}{ }^{e}\left(\omega_{b) c d} H_{e}{ }^{c d}+H_{b) c d} \omega_{e}{ }^{c d}\right) \\
& +\frac{b-a}{4} \beta_{(a}{ }^{e}\left(\omega_{b) c d} \omega_{e}{ }^{c d}+\frac{1}{4} H_{b) c d} H_{e}{ }^{c d}\right) \\
\delta^{(1)} b_{a b}= & (a+b)\left[\beta^{e c} \omega_{e[a}{ }^{d} \omega_{b] c d}-\beta^{e c} \omega_{[a e}{ }^{d} \omega_{\underline{b}] c d}\right. \\
& \left.-\frac{1}{2} \beta_{[a}{ }^{c} \omega_{b] d e} \omega_{c}{ }^{d e}-\frac{1}{8} \beta_{[a}{ }^{c} H_{b] d e} H_{c}{ }^{d e}\right] \\
+ & \frac{b-a}{2}\left[\beta^{e c} \omega_{e[a}{ }^{d} H_{b] c d}-\beta^{e c} \omega_{[a e}{ }^{d} H_{b] c d}\right. \\
& \left.-\frac{1}{2} \beta_{[a}{ }^{c} \omega_{b] d e} H_{c}{ }^{d e}-\frac{1}{2} \beta_{[a}{ }^{c} H_{b] d e} \omega_{c}{ }^{d e}\right]
\end{aligned}
$$

β-symmetry

- These transformations close with Diffeomorphisms, gauge and Lorentz symmetries.

β-symmetry

- These transformations close with Diffeomorphisms, gauge and Lorentz symmetries.
- The bi-parametric transformations can be derived from the generalized Green-Schwarz transformation in DFT, after solving the strong constraint and gauge-fixing the double Lorentz symmetry.

β-symmetry

- These transformations close with Diffeomorphisms, gauge and Lorentz symmetries.
- The bi-parametric transformations can be derived from the generalized Green-Schwarz transformation in DFT, after solving the strong constraint and gauge-fixing the double Lorentz symmetry.
- β-symmetry is unobstructed, as it is simply a convenient realization of $O(d, d)$ in lower dimensions. How it relates to the $\alpha^{\prime 3} \zeta(3) R_{i e m}^{4}$ interactions is work in progress...

Conclusions

- DFT is a convenient framework to generalize ideas in supergravity that lead to higher derivatives consistent with T-duality symmetries.

Conclusions

- DFT is a convenient framework to generalize ideas in supergravity that lead to higher derivatives consistent with T-duality symmetries.
- The universal quartic Riemann interactions are claimed to be unaccessible from the frame formulation of DFT.

Conclusions

- DFT is a convenient framework to generalize ideas in supergravity that lead to higher derivatives consistent with T-duality symmetries.
- The universal quartic Riemann interactions are claimed to be unaccessible from the frame formulation of DFT.
- β-symmetry is implied by DFT, and so it is a necessary condition for its existence. It must be unobstructed, and can be used to fix higher derivatives through duality arguments. Understanding its role in fixing the quartic Riemann might shed light on the no-go in DFT.

Conclusions

- DFT is a convenient framework to generalize ideas in supergravity that lead to higher derivatives consistent with T-duality symmetries.
- The universal quartic Riemann interactions are claimed to be unaccessible from the frame formulation of DFT.
- β-symmetry is implied by DFT, and so it is a necessary condition for its existence. It must be unobstructed, and can be used to fix higher derivatives through duality arguments. Understanding its role in fixing the quartic Riemann might shed light on the no-go in DFT.

Muchas gracias por su atención!

