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Plan

I A map to perturbative α′ corrections in string theory

I The role of T-duality in constraining higher-derivative
interactions

I Progress and obstructions in T-duality covariant α′ corrections

I The β-symmetry of supergravity
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The focus is on

I The first orders of perturbative tree-level α′ corrections.

I Scattering amplitudes

I Beta functions

I SUSY

I Neither gs corrections nor non-perturbative effects.

I NSNS sector: metric, two-form and dilaton.
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Universal starting point

Common sector for all strings

S =

∫
dx
√
−ge−2φ

[
R + 4 (∂φ)2 − 1

12
H2

]

The α′ corrections depend on

I The string: bosonic, heterotic, type II

I The scheme: ambiguous versus unambiguous terms
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First order α′ corrections

Nepomechie; Gross, Harvey, Martinec and Rhom 1985

Metsaev and Tseytlin, 1987

SMT =

∫
dx
√
−ge−2φ

[
R + 4 (∂φ)2 − 1

12
H2

+
a− b

4
HµνρΩµνρ

−a + b

8

(
Riem2 − 1

2
H H Riem +

1

24
H4 − 1

8
H2
µνH

2µν

)]

Bosonic Heterotic HSZ Type II

a + b −2α′ −α′ 0 0

a− b 0 −α′ −2α′ 0
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First order α′ corrections

Bergshoeff and de Roo, 1989

SBdR =

∫
dx
√
−ge−2φ

[
R + 4 (∂φ)2 − 1

12
Ĥ2

+
a

8
R

(−)2
iem +

b

8
R

(+)2
iem

]

Hiddenly contains higher orders

ω(±) = ω ± 1
2
Ĥ , Ĥ = H − 3

2
aΩ(−) + 3

2
b Ω(+)

Ω(±) = tr[ω(±) dω(±) + 2
3
ω(±)3]
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Second order α′ corrections

Metsaev and Tseytlin, 1987

L
(2)
bos = R3

iem + cubic Gauss Bonnet

Naseer and Zwiebach; DM and Lescano 2016

L
(2)
HSZ = −L(2)

bos + (Chern Simons)2

Metsaev and Tseytlin, 1987; Bergshoeff and de Roo, 1989

L
(2)
het = (Chern Simons)2

Metsaev and Tseytlin, 1987

L
(2)
type II = none
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Cubic order α′ corrections

Unknown for bosonic and HSZ.

Cai and Nuñez; Gross and Sloan 1986

L
(3)
het = Gauge symmetic R4

iem + ζ(3)(t8t8 − 1
8
ε10ε10)R4

iem

Gross and Witten; Grisaru and Zanon 1986

L
(3)
type II = ζ(3)(t8t8 − 1

8
ε10ε10)R4

iem
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T-duality and α′

Sen 1991: tori reductions yield continuous O(d , d) symmetry to all
orders in α′.

Bergshoeff, Janssen and Ortin 1995: Circle reduction of heterotic
string.

Meissner, Kaloper and Meissner 1997: Cosmological and circle
reductions of bosonic string.

Baron, Melgarejo, DM and Nuñez 2017: Flux compactification of
the bi-parametric action.

In this talk I will discuss how to assess T-duality without
compactifying.
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Double Field Theory Siegel 1993; Hohm, Hull and Zwiebach 2009

Supergravity DFT

Global GL(D) O(D,D)
Symmetries B-shifts

Local Lorentz Lorentz× Lorentz
Symmetries Diffs and gauge Generalized diffs

Fields e, B and φ E (e, ē,B) and d(φ, g)

Space D-dimensional 2D-dimensional
Strong constraint

Gauge fixing and solving the strong constraint

δE = L̂ξE + E · Λ
δd = ξ · d − 1

2 ∂ · ξ

}
→


δe = Lξe + e · Λ
δB = LξB + dλ
δφ = Lξφ
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The Green-Schwarz transformation

The three-form in the BdR scheme

Ĥ = dB − 3
2
aΩ(−) + 3

2
b Ω(+)

is Lorentz invariant due to the Green-Schwarz transformation of B

δea = Lξe + e · Λ

δΩ(±) = LξΩ
(±) + d tr

(
ω(±) dΛ

)
δB = LξB + dλ+

a

2
tr
(
ω(−) dΛ

)
− b

2
tr
(
ω(+) dΛ

)

A hint that something is missing in DFT.
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The Green-Schwarz transformation

The generalized Green-Schwarz transformation
DM and Nunez 2015

δEM
A = L̂ξEM

A +EM
BΛB

A +
(
a ∂[MΛB

C FN]C
B − b ∂[MΛB

C FN]C
B
)
ENA

I Exactly reproduces the Green-Schwarz transformation of B.

I The anomalous transformation of e can be redefined away.

I Finite version: Borsato and Wulff 2020.
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The Green-Schwarz transformation

I Preserves the field constraints and closes to first order[
δ(ξ1 ,Λ1), δ(ξ2 ,Λ2)

]
= δ(ξ21 ,Λ21)

w.r.t. the brackets

ξM12 = [ξ1 , ξ2]M(C) −
a

2
Λ[1A

B∂MΛ2]B
A +

b

2
Λ[1A

B∂MΛ2]B
A

Λ12AB = 2ξP[1∂PΛ2]AB − 2Λ[1A
CΛ2]CB

+a ∂[AΛ
CD
1 ∂B]Λ2DC + a ∂[AΛ

CD
1 ∂B]Λ2DC

−b ∂[AΛCD
1 ∂B]Λ2DC − b ∂[AΛCD

1 ∂B]Λ2DC
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The Green-Schwarz transformation

I Induces a first-order correction to the action

S =

∫
dXe−2d

(
R+ aR(0,1) + bR(1,0)

)
The details are not important. We only need to know:

I R(0,1) and R(1,0) depend on the generalized fluxes so are
scalars under generalized diffeomorphisms.

I δ
(1)
Λ R+ δ

(0)
Λ

(
aR(0,1) + bR(1,0)

)
= 0

I After section, gauge fixing and field redefinitions it reproduces
exactly the Bergshoeff-de Roo action

R+aR(0,1)+bR(1,0) = R + 4 (∂φ)2− 1

12
Ĥ2+

a

8
R

(−)2
iem +

b

8
R

(+)2
iem
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The Green-Schwarz transformation

R(0,0)
R(1,0)

R(0,1)

R(2,0)

R(1,1)

R(0,2)

R(3,0)

R(2,1)

R(1,2)

R(0,3)

. . .

. . .

. . .

. . .

. . .

To find higher orders there is another idea in supergravity that can
be generalized.
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The Bergshoeff-de Roo identification

Start with lowest order heterotic supergravity

L = R + 4(∂φ)2 − 1

12
Ĥ2 − 1

4
F 2 + fermions

where

Ĥ = dB + CS(A) + fermions
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The Bergshoeff-de Roo identification

Bergshoeff and de Roo 1988 realized that

gauge fields A ↔ ω(−) spin con. w/torsion

gauginos χ ↔ Dψ gravitino curvature

based on supersymmetry

δA = ε̄γχ ↔ δω(−) = ε̄γDψ

δχ = Fµνγ
µνε ↔ δDψ = R−µνγ

µνε

The pair (ω(−), Dψ) effectively behaves as a gauge multiplet.
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The Bergshoeff-de Roo identification

First order corrections are obtained by including extra Lorentz
multiplets and identifying them with (ω(−), Dψ)

L = R + 4(∂φ)2 − 1

12
Ĥ2 − 1

4
F 2 +

1

4
R(−)2 + fermions

where
Ĥ = dB + CS(A)− CS(ω(−)) + fermions

CS(ω(−)) deforms the transformation of ω(−) itself, rendering the
identification ill-defined to second order. Higher orders require a
Noether procedure Bergshoeff and de Roo 1989.
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Ĥ2 − 1

4
F 2 +

1

4
R(−)2 + fermions

where
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The Bergshoeff-de Roo identification

Gauge multiplets can be included in DFT through extensions of
the duality group and local symmetries Hohm and Kwak 2011

G = O(D,D + k) , H = O(D)× O(D + k)

E → e ⊕ B ⊕ A , Ψ→ ψ ⊕ χ

Generalized diffeomorphisms → GL(D) diffs ⊕ B-shifts ⊕ K

One can then implement the identification
Bedoya, DM and Nuñez; Coimbra, Minasian, Triendl and Waldram; Lee 2014

K ↔ O(D) ∈ O(D + k)

A ↔ ω(−)

χ ↔ Dψ
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The Bergshoeff-de Roo identification

Instead of decomposing O(D,D + k) w.r.t. GL(D), we preserve
O(D,D) covariance, Hohm, Sen and Zwiebach 2014

E → E ⊕A , E ∈ O(D,D) , EMAAM
α = 0

Only then one should look for a generalized Bergshoeff-de Roo
identification

Aµ
α ↔ ω

(−)
µab | AM

α ↔ ???
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The Bergshoeff-de Roo identification

Instead of decomposing O(D,D + k) w.r.t. GL(D), we preserve
O(D,D) covariance, Hohm, Sen and Zwiebach 2014

E → E ⊕A , E ∈ O(D,D) , EMAAM
α = 0

Only then one should look for a generalized Bergshoeff-de Roo
identification

Aµ
α ↔ ω

(−)
µab | AM

α ↔ ???

Diego Marqués



The Bergshoeff-de Roo identification

There are generalizations of everything in DFT:

Aµ
α ↔ AA

α

ω
(−)
µbc ↔ Generalized spin connection

O(D) ↔ O(D)× O(D + k)
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The Bergshoeff-de Roo identification

The correct answer turns out to be... Baron, Lescano and DM 2018

Aµ
α ↔ AA

α

ω
(−)
µbc ↔ FABC

O(D) ↔ O(D + k)
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The Bergshoeff-de Roo identification

From the O(D,D + k) gen diffs we get

δAAα = L̂ξAAα −DAλα +
[
λ , AA

]
α

+ADαΛD
A

Which transforms as a generalized spin connection

δFABC = L̂ξFABC −DAΛBC +
[
Λ , FA

]
BC + FDBCΛD

A

The generalized Bergshoeff-de Roo identification is then Baron,
Lescano and DM 2018

K = O(D + k)

−g λα (tα)AB = ΛAB
−g AAα (tα)BC = FABC[E [E ,A]]
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The Bergshoeff-de Roo identification

I It preserves O(D,D) covariance.

I It is necessarily generalized.

I It is exact, no need for a Noether procedure.

I It gives an iterative procedure to compute an infinite tower of
higher-derivatives.

I It doesn’t need supersymmetry, but is consistent with it

−g AAα (tα)BC = FABC −
1

2
Ψ̄BγAΨC

gΨDEα
D(tα)AB = 2

[
∇[AΨB]

]
det.
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The Bergshoeff-de Roo identification

It naturally induces an all-order generalized Green-Schwarz
transformation for the O(D,D) generalized frame

δEMA = ∂Mλ · AA → ∂MΛ · FA

Perturbatively we get...

δEM
A = L̂ξEM

A + EM
B ΛB

A +
b

2
∂
M

ΛBC FA
BC

+
b2

2
EM

B
[
∂
B
∂
C ΛEF

(
F
CD

AFD
EF

+ ∂
C
FA

EF

)
− FA

EF
F
CD

F
(
FC HD

∂
B

Λ
H
E − FC HE

∂
B

Λ
H
D
)

+ FC
EF
∂
B

ΛE
G

(
FA

CDFDGF − ∂AFC
GF + 2 ∂CFAGF

)
− FA

EF
∂
B

(
∂
C ΛEDF

CD
F
)]

+ . . .
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The Bergshoeff-de Roo identification

The idea can be extended to account for the two parameter (a, b)
family of theories Baron and DM 2020

R(0,0)
R(1,0)

R(0,1)

R(2,0)

R(1,1)

R(0,2)

R(3,0)

R(2,1)

R(1,2)

R(0,3)

. . .

. . .

. . .

. . .

. . .

This offers the geometrization of an infinite tower of
higher-derivatives that includes (a sector of) the heterotic, the
bosonic and HSZ.
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The third order α′ corrections

The following step naturally would be moving to the third order

R(0,0)
R(1,0)

R(0,1)

R(2,0)

R(1,1)

R(0,2)

R(3,0)

R(2,1)

R(1,2)

R(0,3)

. . .

. . .

. . .

. . .

. . .

These should account for the gauge symmetric R4
iem couplings of

the heterotic string, but not the universal interactions

α′3 ζ(3)(t8t8 − 1
8
ε10ε10)R4

iem
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The third order α′ corrections

Since ζ(3) is irrational, these interactions require a new O(α′3)
parameter

α′3 ζ(3)(t8t8 − 1
8
ε10ε10)R4

iem

In other words, we need a new Lorentz invariant starting at third
order

δL = (δ(0) +cδ(3))[L(0) +cL(3)] = c[δ(3)L(0)

EOM
+δ(0)L(3)]+O(c2) = 0

No Go: under certain assumptions, there is no such invariant in the
background independent frame formulation of DFT: Hronek and
Wulff 2021.
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β-symmetry

The D dimensional supergravity action

S =

∫
dDx
√
G

(
RD + 4(∂Φ)2 − 1

12
H2 + . . .

)

when compactified on T d leads to the n = D − d dimensional
action

S = v

∫
dnx
√
G

(
Rn + 4(∂φ)2 − 1

12
Ĥ2 − 1

4
F 2 +

1

8
(∂M)2 + . . .

)
gaining a symmetry enhancement

O(d , d) : GL(d)⊗ b− shifts⊗ β−transformations
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β-symmetry

The Kaluza-Klein procedure consists of three steps

I Assume isometries

I KK reparametrization (make local symmetries manifest)

I Higher derivative field redefinitions + Lorentz enhancement
(make O(d , d) manifest)

The last two items are just field redefinitions. If not implemented,
the local and global symmetries would still be there, though hidden.
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β-symmetry

So the D dimensional supergravity action

S =

∫
dDx
√
G

(
RD + 4(∂Φ)2 − 1

12
H2 + . . .

)
under the assumption of isometries is the n dimensional
supergravity action (in a scheme that hides the local and global
symmetries).

As such, the assumption of isometries must render the D
dimensional action β-invariant.

Good news: the emergence of O(d , d) under toroidal
compactifications can be assessed in D dimensions without going
through the KK procedure.
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β-symmetry

The lowest order β-transformations are (Eµν = Gµν + Bµν)

δEµν = −EµρβρσEσν , δΦ =
1

2
βµνEµν

And the assumption of isometries is encoded in the constraint

βµν∂ν · · · = 0

enforcing the orthogonality between external derivatives and
internal β.
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β-symmetry

In the frame formulation, β-symmetry mixes all curvatures

δωcab = β[a
dHb]cd −

1

2
βc

dHabd , δHabc = −6ωd
[abβc]d

δ∇aΦ =
1

2
βcdHacd

Demanding β-invariance

0 = δ
(
R + m (∇φ)2 + n�φ+ p H2

)
= βcd∇bHbcd

(
−2 +

n

2

)
+ βcdωcabHd

ab (5− n + 12p)

+ βcdHbcd∇bφ (m + n)

fixes the two-derivative action

m = −4 , n = 4 , p = − 1

12
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β-symmetry

To first order in α′ the β-symmetry receives higher derivative
corrections (BdR scheme)

δ(1)eab =
a + b

8
β(a

e
(
ωb)cdHe

cd + Hb)cdωe
cd
)

+
b − a

4
β(a

e

(
ωb)cdωe

cd +
1

4
Hb)cdHe

cd

)
δ(1)bab = (a + b)

[
βecωe[a

dωb]cd − βecω[ae
dωb]cd

−1

2
β[a

cωb]deωc
de − 1

8
β[a

cHb]deHc
de

]
+

b − a

2

[
βecωe[a

dHb]cd − βecω[ae
dHb]cd

−1

2
β[a

cωb]deHc
de − 1

2
β[a

cHb]deωc
de

]
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β-symmetry

I These transformations close with Diffeomorphisms, gauge and
Lorentz symmetries.

I The bi-parametric transformations can be derived from the
generalized Green-Schwarz transformation in DFT, after
solving the strong constraint and gauge-fixing the double
Lorentz symmetry.

I β-symmetry is unobstructed, as it is simply a convenient
realization of O(d , d) in lower dimensions. How it relates to
the α′3ζ(3)R4

iem interactions is work in progress...
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Conclusions

I DFT is a convenient framework to generalize ideas in
supergravity that lead to higher derivatives consistent with
T-duality symmetries.

I The universal quartic Riemann interactions are claimed to be
unaccessible from the frame formulation of DFT.

I β-symmetry is implied by DFT, and so it is a necessary
condition for its existence. It must be unobstructed, and can
be used to fix higher derivatives through duality arguments.
Understanding its role in fixing the quartic Riemann might
shed light on the no-go in DFT.

Muchas gracias por su atención!
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