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Introduction

Objectives

My goal with this talk is to give a pedagogical introduction to a canonical
gauge fixing procedure in euclidean Einstein-Yang-Mills theory.

The procedure can be applied to any gravity-coupled theory following
exactly the same steps that I will follow for Einstein-Yang-Mills theory.

In particular, it applies to Einstein and Yang-Mills theories, where it gives
the expected results in terms of divergence-free tensors.

Ultimately, our goal is to apply the procedure to the study of supersymmetric
initial data sets in supergravity on compact Cauchy hypersurfaces.

C. S. Shahbazi UNED - Madrid In collaboration with Severin Bunk (Oxford) and Vicente Muñoz (Madrid)2/23 2 / 23



Context and motivation

A semi-classical theory on a category of geometric objects Φ is defined via:

Its configuration space Conf(Φ), an infinite-dimensional manifold.

A smooth map E : Conf(Φ) → W into an auxiliary target space W.

An automorphism group G(Φ) of Φ equipped with a natural action both on
Conf(P) and W respect to which the smooth map E is equivariant.

E−1(0) ⊂ Conf(P) is the solution space of the theory whereas:

B(Φ) = Conf(Φ)/G(Φ)

is the physical configuration space, where gauge-related configurations are identi-
fied. Similarly, E−1(0)/G(Φ) ⊂ B(Φ) is the moduli space of solutions. No global
gauge fixing ξ : B(Φ) → Conf(Φ) possible in general: Gribov ambiguity problem!

Understanding B(Φ) is of fundamental physical importance, since path
integrals and partition functions are computed via integration on B(Φ).

Understanding B(Φ) is of fundamental mathematical: it has been used to
define diverse smooth invariants via the study of E−1(0)/G(Φ) ⊂ B(Φ).
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Example: euclidean Maxwell theory

Underlying object: Φ = π : P → M principal U(1) bundle on a manifold M.

Conf(P) = AP , the affine space of connection on P.

Symmetry group G(P): gauge transformations of P, which consist of the
group of all automorphisms of P covering the identity.

Since U(1) is abelian we have G(P) = C∞(M,U(1)), which acts naturally on AP :

AP × G(P) → AP , (A, u) 7→ u∗(A) = A+ u−1du

The theory is defined via the smooth map E : AP → Ω1(gP) , A 7→ dg∗
A FA.

YM connections: E−1(0) ⊂ AP . Moduli space: E−1(0)/G(P) ≃ H1(M,R)
H1(M,Z)

If M is simply connected, then B(P) ≃ Ω1(M)/Ω1
ex(M).

Note that E−1(0)/G(P) is a topological invariant of the underlying M!
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The Einstein-Yang-Mills system

The euclidean EYM system is determined by the following data:

A principal bundle P over a connected and compact manifold M.

An inner product c on the adjoint bundle gP of P.

The EYM functional determined by (P, c) is:

SP,c : Conf(P) → R , (g ,A) 7→ SP,c[g ,A] =

∫
M

{
sg + κ|FA|2g,c

}
νg ,

where Conf(P) = Met(M)× C(P) and κ ∈ Z2.

The variational problem of S defines the Einstein-Yang-Mills system:

Gg = T (g ,A) =
κ

2
|FA|2g,c g − κFA ◦g,c FA , dg∗

A FA = 0

where Gg = Ricg − 1
2 s

gg and dg∗
A is the formal adjoint of dA.
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The symmetry group I

Automorphism group Aut(P): group of equivariant diffeomorphisms of P, that is:

Aut(P) := {u ∈ Diff(P) | u(po) = u(p)o ∀ o ∈ G} .

Every equivariant diffeomorphism u ∈ Aut(P) covers a unique diffeomorphism
fu : M → M of M. If the identity, we obtain the gauge group G(P) ⊂ Aut(P):

G(P) := {u ∈ Aut(P) | π ◦ u = π} , 1 → G(P) → Aut(P) → Diff ′(M) → 1

The Lie algebra of Aut(P) is given by the G-invariant vector fields X(P)G on P.

0 → Γ(gP) → X(P)G = Γ(AP) → X(M) → 0 , AP = TP/G

A choice of connection gives Γ(AP) = X(M)⊕ Γ(gP) with bracket:

[v1 + τ1, v2 + τ2]P = [v1, v2] +∇A
v1τ2 −∇A

v2τ1 +RA(v1, v2) + [τ1, τ2]gP

This gives an explicit realization of the Lie algebra aut(P) of Aut(P).
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The symmetry group II

Diff(P) is a tame Fréchet Lie group by Leslie and Hamilton. Charts are constructed
using the exponential map associated to an auxiliary Riemannian metric on P.

Proposition
The automorphism group Aut(P) ⊂ Diff(P) is a closed tame Fréchet Lie subgroup of
Diff(P) locally modeled on the tame Fréchet Lie algebra X(P)G with the standard
bracket of vector fields or, equivalently, Γ(AP) with Lie bracket [·, ·]AP .

Proof.

Prove that X(P)G is closed in X(P) and admits a closed complement. Appropriately
restrict the exponential map of a G-invariant metric on P.

Similarly, the subgroup G(P) ⊂ Aut(P) is a closed tame Fréchet Lie subgroup of
Aut(P) locally modeled on the tame Fréchet space Γ(gP) with Lie bracket [·, ·]gP .
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The moduli space of Einstein-Yang-Mills pairs

Consider the following smooth map of Fréchet manifolds:

E := (E1, E2) : Conf(P) → Γ(T ∗M ⊙ T ∗M)× Ω1(M, gP)

(g ,A) 7→ (E1(g ,A) := Gg − T (g ,A) , E2(g ,A) := dg∗
A FA)

Space of solutions on (P, c): E−1(0) ⊂ Conf(P) with the subspace topology.

Aut(P) has a natural smooth action on Conf(P) via pullback:

Φ: Conf(P)× Aut(P) → Conf(P) , (g ,A, u) 7→ (f ∗u g , u
∗A)

E is equivariant with respect to this action, that is, E(f ∗u g , u∗A) = f ∗u E(g ,A).
Hence, Aut(P) preserves the solution space E−1(0) ⊂ Conf(P). The quotient:

M(P, c) = E−1(0)/Aut(P) ,

equipped with quotient topology is the moduli space of Einstein-Yang-Mills pairs.
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Symmetries in Einstein-Yang-Mills theory

Orbit map: Φ(g,A) : Aut(P) → Conf(P) , u 7→ (f ∗u g , u
∗(A)).

Orbit through (g ,A): O(g,A) := Im(Φ(g,A)) ⊂ Conf(P).

Stabilizer: I(g,A) := {u ∈ Aut(P) | (f ∗u g , u
∗(A)) = (g ,A)}

The isotropy group I(g,A) fits non-canonically into the following short exact sequence:

1 → C [Holm(A),G] → I(g,A) → Iso(M, g)′ → 1 ,

where C [Holm(A),Aut(Pm)] denotes the centralizer of the holonomy of A at m ∈ M
inside the automorphism group Aut(Pm) ∼= G of the fiber Pm and Iso(M, g)′ denotes the
Lie subgroup of the isometry group of (M, g) that can be covered by elements in I(g,A).
Recall that, since both C [Holm(A),G] and Iso(M, g)′ are finite-dimensional Lie groups it
follows that I(g,A) is a finite-dimensional Lie group: even more, it is a compact Lie group!
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The slice theorem I

We would like to understand in more detail the local structure of Conf(P)/Aut(P). How
can we proceed further? Let us start with the local structure of this space!

For this, it is very useful to construct a slice, that is, an embedded smooth space
as transverse as possible to the orbit O(g,A) and nearby orbits, which produces a
tubular neighbourhood of O(g,A) via the action of Aut(P) as well as a local chat for
Conf(P)/Aut(P) around (g ,A) modulo the natural action of the stabilizer I(g,A).
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The slice theorem II: what is a slice?

Let M be a G manifold. A slice at m ∈ M is a submanifold S ⊂ M containing
m with the following properties:

The submanifold S is invariant under Gm ⊂ G.

Any u ∈ G with (u · S) ∩ S ̸= ∅ satisfies u ∈ Gm.

The projection G → G/Gm is a principal bundle admitting a local section
χ : U → G around the identity coset such that:

χ̄ : U × S → M , ([u], s) 7→ χ([u]) · s

is a diffeomorphism onto an open neighborhood of m.

If Gm is trivial ((g ,A) has no symmetries) then a slice around m is an embedded
submanifold that intersects each orbit only once. Therefore is in one to one
correspondence with the orbits of G acting on M around Om. In particular:

M/G ≃ S locally aroundm
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The slice theorem III

Natural candidate for a chart of the slice: the orthogonal complement to T(g,A)O(g,A)!

Lemma

The adjoint differential operator deΦ
∗
(g,A) : T(g,A)Conf(P) → X(P)G is given by:

deΦ
∗
(g,A)(h, a) = (2(∇g∗h)♯g − (a⌟cgFA)

♯g , dg∗
A a)

In particular, the orthogonal complement of T(g,A)O(g,A) in T(g,A)Conf(P) is given by:

T(g,A)O
⊥g

(g,A) =
{
(g , a) ∈ T(g,A)Conf(P) | 2∇g∗h = a⌟cgFA , dg∗

A a = 0
}
.

Here a⌟cgFA ∈ Ω1(M) defined by (a⌟cgFA)(v) = −⟨a, ιvFA⟩g,c .

T(g,A)O
⊥g

(g,A) ⊂ T(g,A)Conf(P) is the natural candidate of infinitesimal slice for the
action of Aut(P) on Conf(P). This is verified in the following slice theorem.
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The slice theorem IV

Theorem
Let (g ,A) ∈ Conf(P). Then, there exists a slice S ⊂ Conf(P) around (g ,A) ∈ Conf(P)
which is the image of an equivariant diffeomorphism E : U → S, where U ⊂ T(g,A)O

⊥g

(g,A)

is an open neighbourhood of 0 ∈ U in T(g,A)O
⊥g

(g,A).

Proof.
Use the general slice theorem of Diez and Rudolph together with:

Diff(P) is a tame Lie group acting tamely and properly on the tame Fréchet
manifold Met(P) ⇒ Aut(P) acts on Im(Θc) ⊂ Met(P) tamely and properly.

Oḡ is a closed submanifold of Aut(P) and the L2 orthogonal complements of TOḡ

inside T Im(Θc)|Oḡ assemble into a smooth normal subbundle NOḡ of the latter.

Im(Θc) inherits a smooth exponential map from that of Met(P) whose restriction to
a neighbourhood of the zero section of the normal bundle NOḡ is an equivariant
local diffeomorphism onto its image.
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Corollaries

This is only the very beginning of the study of moduli spaces! Still, it improves our
understanding of the configuration space of Einstein-Yang-Mills theory.

Corollary
There exists an open neighborhood U of the identity in Aut(P) and an open
neighborhood V of (g ,A) in Conf(P) such that for any (g ′,A′) ∈ V the symmetry group
I(g′,A′) of (g ′,A′) is conjugate to a subgroup of I(g,A) via an element in U .

Corollary
The subset of elements of Conf(P) with trivial symmetry group is open in Conf(P).

The fact that the set of metrics with trivial isometry group and connections with trivial
symmetry group is open and dense in Met(M) and C(P), respectively, together with the
fact that Conf(P) is the direct product of Met(M) and C(P) equipped with the
corresponding product Fréchet structures implies, in addition, the following result.

Corollary
The set of elements with trivial symmetry group is open and dense in Conf(P).
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Conjecture

General infinitesimal deformations of susy initial data are again susy.

Gracias!
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Infinitesimal deformations I

Proposition
For every (g ,A) ∈ Conf(P) we have deΦ

∗
(g,A)(E(g ,A)) = 0. Furthermore:

0 → Γ(AP)
deΦ(g,A)−−−−−→ T(g,A)Conf(P)

d(g,A)E−−−−→ T(g,A)Conf(P)
deΦ

∗
(g,A)−−−−−→ Γ(AP) → 0

is a complex if (g ,A) is an EYM pair.

Elements (h, a) ∈ T(g,A)Conf(P) in the kernel of d(g,A)E are the so-called infinitesimal
deformations of the Einstein-Yang-Mills pair (g ,A). Associated cohomology groups:

H0
(g,A) = Ker(deΦ(g,A)) , H1

(g,A) =
Ker(d(g,A)E)
Im(deΦ(g,A))

, H2
(g,A) =

Ker(deΦ
∗
(g,A))

Im(d(g,A)E)

Elements in the vector space H0
g,A correspond to the infinitesimal symmetries of (g ,A),

whereas elements in the vector space H1
g,A correspond to the infinitesimal deformations of

(g ,A) modulo the infinitesimal action of Aut(P). (H3
(g,A) defined similarly).
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Infinitesimal deformations II

Theorem

For every Einstein-Yang-Mills pair (g ,A) the vector space of essential deformations H1
(g,A)

is finite-dimensional and isomorphic to the vector space of obstructions H2
(g,A).

Proof.

The fact that H1
(g,A) is finite-dimensional follows from the ellipticity of the deformation

complex. d(g,A)Ē : T(g,A)Conf(P) → T(g,A)Conf(P) is self-adjoint, whence:

T(g,A)Conf(P) = Ker(∆(1)
(g,A))⊕ Im(d(g,A)Ē)⊕ Im(deΦ(g,A))

T(g,A)Conf(P) = Ker(∆(2)
(g,A))⊕ Im(d(g,A)Ē)⊕ Im(deΦ(g,A))

We obtain an isomorphism between Ker(∆(1)
(g,A)) and Ker(∆(2)

(g,A)) which immediately
implies that H1

(g,A) and H2
(g,A) are isomorphic as finite dimensional vector spaces.

Essential deformations E(g,A) = Ker(d(g,A)E) ∩ KerdeΦ
∗
(g,A) ≃ H1

(g,A).
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The Kuranishi model

Theorem
Let (g ,A) be an Einstein-Yang-Mills pair and S ⊂ T(g,A)Conf(P) a slice around (g ,A).
Then, there exists an analytic closed submanifold Z(g,A) ⊂ S of S such that:

T(g,A)Z = Ker(d(g,A)E) ∩ KerdeΦ
∗
(g,A)

and E−1(0) ∩ S is an analytic subset of Z(g,A).

Proof.
By the Hodge decomposition we have Im(d(g,A)ES) = Im(d(g,A)E) ⊂ T(g,A)Conf(P).
Denote by P : T(g,A)Conf(P) → Im(d(g,A)E) the natural projection. Then:

P ◦ ES : S → Im(d(g,A)E)

is a smooth map that has a surjective derivative at (g ,A) ∈ Conf(P). We realize this
map as a projective limit of Sobolev spaces and maps, applying the inverse function
theorem in the Hilbert category and proving that the local model for the inverse of zero
does not depend on the Sobolev norm and consists only of smooth elements.
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Essential deformations I

Proposition
A pair (h, a) ∈ T(g,A)Conf(P) is an essential deformation of (g ,A) if and only if:

1
2 (∇

g∗∇g )h − Rg
o (h)− δg∇g∗h − 1

2∇
gdTrg (h)− κ

(
FA ◦h,c FA + h ◦g (FA ◦g,c FA)

−2FA ◦g,c dAa
)
− κ

n−2

(
2⟨FA,dAa⟩g,c − g(FA ◦g,c FA, h)

)
g = 0

dg∗
A dAa− a⌟ggFA − 1

2dTrg (h)⌟gFA + dg∗
A (FA)

g
h = 0 , 2∇g∗h = a⌟cgFA , dg∗

A a = 0

Deformations of the EYM system do not decouple even for pure metric or YM
deformations: a ∈ Ω1(M, gP) defines (0, a) ∈ H1

(g,A) if and only if:

dg∗
A dAa = a⌟ggFA , dg∗

A a = 0 , FA ◦g,c dAa =
1

n − 2
⟨FA, dAa⟩g,cg , a⌟cgFA = 0

By Koiso, solutions to the first and second equations above correspond to essential
deformations of A as a YM connection. Hence, essential deformations of the
form (0, a) correspond to the subset of the essential deformations of A as a YM
connection that satisfies the third and fourth equations above.
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Essential deformations II

The previous slide implies:

Lemma
Let (h, a) ∈ Ker(d(g,A)E) ⊂ T(g,A)Conf(P) be an infinitesimal deformation of (g ,A).
Then, the following equations hold according to the dimension n:

∆g tr(h) + (∇g∗∇g∗)h + κ g((FA ◦g,c FA)
o , ho) = 0 , n = 4

∆g tr(h) + (∇g∗∇g∗)h +
sg

n
trg (h) = 2κ

n − 4
2 − n

⟨dAa,FA⟩g,c +
2κ

2 − n
g((FA ◦g,c FA)

o , ho) , n ̸= 4

where (FA ◦g,c FA)
o and ho denote the trace-less projections of (FA◦g,c ,FA) and h.

Corollary
Let (h, a) ∈ Ker(d(g,A)E) ⊂ T(g,A)Conf(P) be an infinitesimal deformation of an
Einstein-Yang-Mills pair (g ,A). Then, the following equations hold:∫

M

sg

n
trg (h)νg =

2κ
2 − n

∫
M

g((FA ◦g,c FA)
o , ho)νg , 0 = [2∇g∗ho − a⌟cgFA] ∈ H1(M,R)

In particular, if n = 4 we have
∫
M
g((FA ◦g,c FA)

o , ho)νg = 0.
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Essential deformations in four dimensions I

The trace of a deformation (h, a) ∈ T(g,A)Conf(P) does not in general decouple.
Define (ho , a) ∈ T o

(g,A)Conf(P) to be completable if there exists f ∈ C∞(M) such
that (fg/4 + ho , a) is an essential deformation of (g ,A).

Theorem
Let (g ,A) be an anti-self-dual Einstein-Yang-Mills pair on a principal bundle P over a
four-dimensional manifold M. An unobstructed pair (ho , a) ∈ T o

(g,A)Conf(P) is a
completable essential deformation of (g ,A) if and only if:

1
2∇

g∗∇gho − Rg
o (h

o)− 2δg∇g∗ho − 1
6∇

g∗∇g∗hog + 1
2δ

g (a⌟cgFA)

−κ
(
FA ◦ho ,c FA + 1

2 |FA|2g,cho − 2FA ◦g,c dAa+ ⟨FA,dAa⟩g,cg
)
= 0

dg∗
A dAa− a⌟ggFA + dg∗

A (FA)
g
ho = 0 , dg∗

A a = 0

If that is the case, the completed essential deformation (h, a) satisfies 4h = fg + 4ho ,
where df = 4∇g∗ho − 2 a⌟cgFA.
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Essential deformations in four dimensions II

Natural examples of Ricci flat metrics coupled to instantons in 4d : zero-slope
holomorphic vector bundles over K3 surfaces or complex tori. These have their own
deformation problem based on first-order differential operators: E(g,A) ⊂ H1

(g,A).

Natural question: Is E(g,A) = H1
(g,A)?

Corollary

Let (h, a) ∈ H1
(g,A). If dA(FA)

g
ho = 0 and Ker(dA) ∩ Ker(dg∗

A ) ⊂ Ω2(M, gP) vanishes then
(h, a) ∈ E(g,A).
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Future directions

Construct examples of Einstein-Yang-Mills pairs whose Yang-Mills connection is not
an instanton.

Classify homogenous Riemannian manifolds carrying Einstein-Yang-Mills pairs.

Study the vector space of essential deformations of an Einstein-Yang-Mills pair and
the rigidity of Einstein-Yang-Mills pairs.

Study the second variation of the Einstein-Yang-Mills functional and the stability of
Einstein-Yang-Mills pairs.

Extend the current results to supergravity.
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